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Abstract—Many vision tasks rely upon the identification of sets of corresponding

features among different images. This paper presents a method that, given some

corresponding features in two stereo images, matches them with features

extracted from a second stereo pair captured from a distant viewpoint. The

proposed method is based on the assumption that the viewed scene contains two

planar surfaces and exploits geometric constraints that are imposed by the

existence of these planes to first transfer and then match image features between

the two stereo pairs. The resulting scheme handles point and line features in a

unified manner and is capable of successfully matching features extracted from

stereo pairs that are acquired from considerably different viewpoints. Experimental

results are presented, which demonstrate that the performance of the proposed

method compares favorably to that of epipolar and tensor-based approaches.

Index Terms—Feature correspondence, feature transfer, projective

transformations, plane homography, fundamental matrix, trifocal tensor, wide

baseline matching.
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1 INTRODUCTION

A fundamental problem in computer vision that appears in different
forms in tasks such as discrete motion estimation, 3D scene
reconstruction, feature based stereo, object recognition, image
registration, camera self-calibration, visual servoing, image-based
rendering, augmented reality, etc., is that of determining the
correspondence among sets of image features extracted from
different views of the same scene. The correspondence problem is
very difficult to solve and a general solution is yet to be found. The
difficulty stems mainly from the fact that common physical
phenomena, such as changes in illumination, occlusion, perspective
distortion, transparency, etc., have a significant impact on the
appearance of a scene in different views, thus complicating the
feature matching process. Most approaches for dealing with the
correspondence problem rely upon the assumption that the
photometric and geometric properties of matching features in
different images are similar. Thus, feature matching is based on the
affinity of pixel intensities and the similarity of 2D geometric
descriptions, such as image location for points and length or
orientation for lines. Such properties, however, are not preserved
under general perspective projection, which implies that the
correspondence methods that exploit them (e.g., [1], [2], [3]) are
applicable only to images that have been acquired from adjacent
viewpoints, for which disparities are small.

However, by using images of a certain scene that have been
acquired from very different viewpoints, the estimation of structure
from motion becomes more accurate, the flexibility in image
acquisition is increased, and fewer views are required for effectively
sampling the environment. To facilitate the matching of features
extracted from such images, two basic alternative strategies have

been proposed in the literature. The first, often adopting a semi-
automatic approach, is to assume that a priori information
regarding the images of the viewed scene is available. For example,
Georgis et al. [4] require that the projections of four corresponding
coplanar points at arbitrary positions are known. Schmid and
Zisserman [5] assume that either the epipolar geometry of two views
or the trifocal geometry of three views is known. Faugeras and
Robert [6] assume the availability of the epipolar geometry among
three views, to predict the location in the third view of features that
are matched between the first two views. Related to the previous
method are the techniques reported in [7], [8], which synthesize
novel views based on a set of reference views and knowledge of the
associated epipolar and trifocal geometry, respectively.

The second approach to determining feature correspondence in
the presence of large disparities is to exploit quantities that remain
invariant under perspective projection and can be directly computed
from images. By exploiting the fact that a perspective transformation
of a smooth surface can be locally approximated by an affine
distortion, affine texture invariants are used in [9] and [10] to match
features across widely separated views. Other methods employ
geometric constraints by exploiting projective invariants involving
the location of image features. The lack of general-case view
invariants [11] obliges the latter approaches to make assumptions
regarding the structure of the viewed scene. Since planes are very
common in human-made environments and have attractive geo-
metric properties, the most popular assumption made by such
methods is that the features to be matched lie on a single 3D plane in
the scene. Meer et al. [12], for example, employ projective and
permutation invariants to obtain representations of coplanar point
sets that are insensitive to both projective transformations and
permutations in the labeling of the set. Pritchett and Zisserman [13]
rely on the existence of suitable coplanar feature structures, namely
parallelograms, to estimate local plane homographies which are then
used to compensate for viewpoint differences and generate putative
point matches. Lourakis et al. [14] propose a “generate and test”
scheme for expanding small sets of corresponding planar features to
large ones that are related by general projective transformations.

In this work, we propose a novel method for matching features
between widely separated uncalibrated stereoscopic views, which is
based on transferring matching features from two images of one
stereo pair to another. An initial investigation of this method was
reported in [15]. The method is based on the assumption that the
viewed scene contains two planar surfaces and employs scene
constraints that are derived with the aid of projective geometry.
Points and lines are treated in a unified manner and their
correspondence is determined by feature transfer between images
that are related by arbitrary projective transformations. In conjunc-
tion to the matching method, a new technique for identifying
coplanar feature sets is described. The rest of the paper is organized
as follows: The proposed method is presented in Section 2.
Experimental results obtained from the application of the proposed
method to synthetic and real images are presented and discussed in
Section 3. The paper is concluded with a brief discussion in Section 4.

2 THE PROPOSED METHOD

A high-level block diagram of the proposed method is shown in
Fig. 1a, while Fig. 1b illustrates the main transformations involved
in the computations.

The method starts by establishing feature correspondences
within each of the two stereo pairs (blocks labeled (A) in Fig. 1a).
Based on these correspondences, the two dominant planes that are
assumed to exist in the viewed scene are identified in each stereo
pair and their homographies are estimated (blocks (B) in Fig. 1a).
Planar features are then matched between the disparate stereo pairs
by exploiting appropriate projective invariants (block (C) in Fig. 1a).
Finally, using geometric constraints that are imposed by the
matched 3D planes, correspondence is established among features
of the two stereo pairs that do not belong to the planes (block (D) in
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Fig. 1a). The original contribution of this paper lies in the algorithms
related to blocks (B) and (D); blocks (A) and (C) are implemented
based on techniques existing in the literature. Assuming a basic
familiarity with projective geometry [16], the following sections
provide more details on the algorithmic steps outlined above.

2.1 Computing Intrastereo Correspondences

The computation of intrastereo feature correspondences is based on
existing techniques. More specifically, point correspondences are
obtained using the cross-correlation based technique proposed in
[2], whereas line correspondences are obtained by employing the
technique presented in [3]. The latter technique extracts line
segments by detecting edges and then fitting straight lines to the
resulting edge points. Following this, potential matches between
line segments are formed and then disambiguated through
relaxation labeling.

2.2 Segmenting Planar Surfaces

In this section, an iterative method for identifying coplanar sets of
corresponding features is presented; more details can be found in
[17]. The method relies upon the availability of a set of correspond-
ing points and lines extracted from two stereoscopic images. First,
the fundamental matrix defined by the two stereo images is
estimated using [18]. Following this, the homography induced by
the plane defined by a 3D line L and a 3D point P=2L is computed. As
illustrated in Fig. 2a, L is the common intersection of a pencil of
3D planes containing it. The homographies of this pencil’s planes are
given by a single parameter equation [5]:

Hð�Þ ¼ ½l0��Fþ �e0lT ; � 2 R: ð1Þ

In (1), l and l0 are the projections of L in the two images, F is the
underlying fundamental matrix, e0 is the epipole in the second
image defined by FTe0 ¼ 0 and ½l0�� is the skew symmetric matrix
representing the vector cross product (i.e., 8 x; ½l0��x ¼ l0 � x).
Assuming that P projects to the corresponding image points p and
p0, let q ¼ p� p0. Clearly, p0 � q ¼ 0 and, since p0 ’ Hð�Þp, (1)
leads to:

ð½l0��FpÞ � qþ �ðe0lTpÞ � q ¼ 0: ð2Þ

The parameter � for the plane defined by L and P is determined by
solving (2). Then, the corresponding homography is obtained by
substituting the solution into (1).

Based on the above computation, a method for segmenting the
two most prominent 3D planes, i.e., the ones containing the two
largest sets of corresponding features, can be devised as follows.
Initially, the homographies of the planes defined by all pairs of

corresponding lines and points are computed. Next, each of these
homographies is used to predict, that is transfer, the location of
every feature from one image to the other. A vote is cast in favor of
the homography for which the predicted location best approximates
the true location of the matching feature. In addition, features are
associated with the homographies that correctly predict their
location in the other image. Upon termination of this voting process,
the two planes corresponding to the homographies that receive the
largest and second largest numbers of votes are identified as the two
most prominent ones. The homographies pertaining to the two most
prominent planes are then reestimated using LMedS robust
regression [19] on the constraints derived from the full sets of
features assigned to them [14]. Using these two estimates as initial
solutions, the two homographies are further refined by applying the
Levenberg-Marquardt algorithm to the corresponding LMedS
inliers for iteratively minimizing a nonlinear criterion that involves
the mean symmetric transfer error between actual and transferred
point features in the two images [16].

2.3 Matching Coplanar Features between Distant Views

Suppose that point and line features have been extracted in two
disparate views of the same planar surface. In order to match these
features, the algorithm described in [14] is employed. Briefly, this
algorithm employs a randomized search scheme, guided by
geometric constraints derived using the two-line two-point projective
invariant, to form hypotheses regarding the correspondence of small
subsets of the two feature sets that are to be matched. The validity of
such hypotheses is then verified by using the subsets that are
assumed to be matching to recover the associated plane homography
and predict more matches. Due to the fact that the algorithm is based
on a projective invariant, it is able to correspond features that have
been extracted from images acquired from considerably different
viewpoints. Moreover, it does not make use of any photometric
information, since the latter usually varies significantly between
disparate views.

2.4 Matching Noncoplanar Features between Distant
Views

For clarity of notation, the following conventions are made. Each
image is identified by a positive index i, with I1 and I2

representing the first stereo image pair and I3 and I4 representing
the stereo pair acquired from the distant location (see also Fig. 1b).
The same indices are also used for identifying corresponding
points between the two images, i.e., a 3D point P gives rise to two
corresponding points p1 and p2 in images I1 and I2. For a pair of
images Ii and Ij, Hij and Uij denote the homographies induced
between them by the two 3D planes, respectively. Furthermore, it
is assumed that intrastereo point and line matches (i.e., between
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Fig. 1. High-level description of the proposed method: (a) block diagram and (b) projective transformations defined by the two viewed 3D planes.



images I1 - I2 and I3 - I4) have been obtained (as described in
Section 2.1), the two most prominent coplanar feature sets have
been identified in both stereo pairs (as described in Section 2.2) and
the features of I3 that lie on the two dominant planes have been
matched with those of I2 (as described in Section 2.3). In the
remainder of this section, a geometric construction for solving the
interstereo matching problem, i.e., matching the features of I3 that
are not on the two planes with the features of I1 and I2, is
described. Image I4 contributes only to identifying the features of
the two planes in the second stereo pair.

The proposed matching scheme exploits geometric constraints to
first transfer nonplanar features from I2 to I3. Once this transfer is
achieved, matching is realized by examining the features extracted in
the neighborhood of the predicted feature location. The following
sections describe in more detail the steps involved in feature transfer
and matching.

2.4.1 Feature Transfer

The core idea behind transferring point features not belonging to the
two dominant planes of the scene between distant views, is to express
each such point as the intersection of lines with end points on the
planes. Then, these end points can be transferred between the distant
views using the available plane homographies, enabling the
reconstruction of the related lines in the distant views. The
intersection of the reconstructed lines defines the location of the
point to be transferred in the distant view. Intuitively, the two scene
planes constitute a “reference frame” for the nonplanar 3D points,
thus providing an algebraic representation of geometric structure at
the image level. Such parameterizations for structure and motion
recovery when the imaged scenes are piecewise planar, have
appeared only recently [20].

To further clarify the construction, consider Fig. 3, where P and
O are two 3D points, with P lying on one of the two most prominent
planes and O not lying on either of these two planes. Using their
projections p1 and o1 in I1, the line r1 ’ p1 � o1 is defined, which
corresponds to r2 ’ H12p1 � o2 in image I2. The underlying 3D line
R intersects the other plane at a point projecting to m2 in I2. As
shown in [21], m2 is defined by m2 ’ r2 �UÿT12 r1 (see also Fig. 2b).
Similarly, if Q is a second point on the first plane, a line s1 ’ q1 � o1

is defined in I1, corresponding to line s2 ’ H12q1 � o2 in I2. The
image in I2 of the intersection of line S with the second plane is given
by n2 ’ s2 �UÿT12 s1. Thus, the projections in I1 and I2 of two lines R
and S that intersect at point O have been constructed. Since the
intersections of lines R and S with the two planes are known, their
projections in I3 can also be constructed as

r3 ’ ðH23p2Þ � ðU23m2Þ

and

s3 ’ ðH23q2Þ � ðU23n2Þ;

where p2 ’ H12p1 and q2 ’ H12q1 are, respectively, the points
corresponding to p1 and q1 in I2. Given r3 and s3, the projection of
point O in I3 is simply o3 ’ r3 � s3.

Notice that the role of points P and Q can be assumed by any
pair of distinct points lying on either of the two planes. In fact, the
projection of point O in I3 can be found by intersecting several
lines between the two planes, which are formed as explained
above. The over-constrained point of intersection of these lines is
obtained using the LMedS robust estimator [19] and is tolerant to
feature mismatches and errors in feature localization.

So far, only the case of transferring points to I3 has been
examined. In the case of line segments, it suffices to transfer their
endpoints in I3. For increased accuracy, more points on a given
line L can be transferred in I3, as follows. If p1 is a point on l1 in I1,
its corresponding point in I2 is given by p2 ’ F12p1 � l2, where F12

is the fundamental matrix corresponding to I1 and I2. Then, the
construction of the previous paragraph can be repeated for finding
p3. Assuming that several points lying on L have been transferred
in I3, the equation of l3 can be determined by robust line fitting
using the set of transferred points.

The main advantage of the method proposed here is that it
relies on constraints arising from the scene structure, which are
therefore independent of the camera positions. This is in contrast
to the epipolar transfer method of Faugeras and Robert [6], which is
based on intersecting corresponding epipolar lines and, thus,
involves constraints related to the relative positions of the cameras.
Epipolar transfer fails for 3D points being close to the trifocal plane
defined by the three image optical centers, since in this case, pairs
of corresponding epipolar lines in the third image are almost
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Fig. 2. Stereoscopic views of planes. (a) A 3D line L projects to image lines l and l0 and defines a pencil of 3D planes that gives rise to a single parameter family of
homographies between the two images. (b) The projection in the right image of the point of intersection M of the 3D line R with the plane � is given by the intersection of
image lines r2 and l2. Lines r2 and l2 are the projections in the right image of the 3D lines R and L, L being R’s projection on �.

Fig. 3. Point O (not lying on either plane), together with points P and Q (lying on
the first plane) defines the lines R and S, respectively. These lines intersect the
second plane at points M and N. The projections of 3D points and lines in a
stereoscopic view are also shown.



coincident. Epipolar transfer will also fail for all points in the
degenerate case where all three optical centers are collinear. The
limitations of epipolar transfer can be overcome by basing point
transfer on the trifocal tensor [22], which elegantly encodes the
geometry of three views. However, besides the fact that estimating
the trifocal tensor is more complicated compared to estimating
plane homographies, it will be demonstrated in Section 3 that, in
order for this tensor to be accurately estimated, certain conditions
related to the spatial distribution and the cardinality of matches
among the three views have to be met.

2.4.2 Feature Matching

Noise in the images to be matched causes the location of transferred
features in I3 to differ slightly from the location of actual features
extracted from it, even in the case that these features are indeed
correct matches. To overcome this problem, we allow for some error
by considering each feature f of I2 to match the feature of I3 that is
closest to f ’s predicted location in I3. Feature proximity is quantified
by the Euclidean distance between the normalized homogeneous
vectors representing transferred and extracted features.

3 EXPERIMENTAL RESULTS

3.1 Experiments on Plane Segmentation

The plane segmentation technique described in Section 2.2 plays a
key role in the proposed method. In order to quantitatively study the
performance of plane segmentation under increasing amounts of
noise, a set of experiments using simulated data has been carried out.
Due to the high dimensionality of the problem, it is not feasible to
carry out an exhaustive study of the effects induced on the
performance of the technique by a systematic variation of all of the
parameters involved. Therefore, a realistic scenario corresponding
to an obstacle detection task was simulated. A camera was assumed
to be overlooking a planar floor at a height of 1:5 meters, with its
optical axis at an angle of 15o with respect to the horizon. The
simulated retina is 750� 750 pixels and the focal length of the camera
is equal to 700 pixels. It is also assumed that the camera is moving
rigidly with 3D translational velocity of ð0:100; 0:181; 0:676Þmeters/
frame. The synthetic scene viewed by the camera consists of
300 random 3D points and 60 random 3D lines, 100 and 20 of which
are respectively assumed to lie on the simulated 3D floor. The heights
of the 3D points not lying on the floor are assumed to be uniformly
distributed in the range of ½0:15; 2:0�meters. The standard deviation
of the zero mean Gaussian noise added to retinal projections varied
between 0.0 and 2.0 pixels in steps of 0.2 pixels. The proposed plane
segmentation technique was applied to the set of the simulated
2D matching features to classify them as being planar or nonplanar.
The number of features that are correctly classified, divided by the
total number of simulated features, was used as a performance index
(PI) for the plane detection technique. To ensure that the results are
independent of a particular configuration of the 3D features
employed in the simulation, for each noise level the average
performance in 100 independent trials is reported, with each trial
involving a different, random set of 3D features. The mean and
standard deviation of the PI for each noise level is summarized in
Table 1, which shows that the method performs satisfactorily even in
the presence of large amounts of noise.

3.2 Experiments on Feature Matching

This section reports two representative experiments involving the
application of the proposed matching method to stereo pairs. As
demonstrated by these experiments, the proposed method, when
applicable, yields results of similar or even better quality compared
to those obtained by epipolar or tensor-based feature transfer. The
first experiment is performed using two stereo pairs of an indoor
scene acquired with a fixed zoom digital camera. The first stereo pair
is shown in Figs. 4a and 4b, while Fig. 4c illustrates the left image of
the second stereo pair. The latter has been obtained after approaching
the viewed scene. To ensure the readability of results, the 95 line
segments that have been used by the proposed method are not
shown. A total of 227 corresponding point pairs were identified in the
first stereo pair, 202 of which were correct (see Figs. 4a and 4b). The
two most prominent scene planes (namely the two walls in the
background) contained 83 and 69 points in the first stereo pair,
respectively. The ones that are visible in Fig. 4c are marked with +s
and x’s. Fig. 4c also shows the locations of nonplanar points that were
matched in the second stereo pair using the proposed method (a total
of 50 points). Aiming to assess the accuracy of feature transfer which
is critical for matching, true point matches were determined
manually in Fig. 4c and then the mean Euclidean distance between
transferred and actual point locations was measured. The mean
transfer error for the proposed method was found to be 1.59 pixels.
By comparison, the mean error obtained from the epipolar transfer of
[6] was 2.95 pixels. The estimation of the fundamental matrices
required by [6] (specifically between the images of Fig. 4a and Fig. 4c
and, Fig. 4b and Fig. 4c) was based on corresponding features located
on the two prominent planes only. In order to investigate tensor-
based point transfer, corresponding points on the two most
prominent planes along with the associated homographies were
employed for estimating the tensor defined by the images of Figs. 4a,
4b, and 4c. The tensor was estimated using a “plane plus parallax”
approach (see [16, p. 393]), which uniquely determines it using the
homographies induced by a reference plane and a pair of points off
the plane. Each of the two available planes assumed the role of the
reference plane and all point pairs not lying on it were considered for
computing the tensor yielding the minimum mean transfer error for
points on both planes. The mean error for this tensor was 1.77 pixels,
very close to that of the proposed method. For each pair of points in
Figs. 4a and 4b, the transferred point in Fig. 4c was computed as the
point of intersection of the nine 2D constraint lines arising from the
trilinearities defined by the tensor. In addition to the parallax-based
approach, the tensor was also estimated using a generic method that
does not explicitly exploit the existence of planes. The trifocal tensor
in this case was estimated with the aid of the Projective Vision
Toolkit1 using the 124 point features lying on the two prominent
planes in Figs. 4a, 4b, and 4c. The mean transfer error corresponding
to the tensor estimated in this manner was 1.52 pixels.

Using the point matches determined by the proposed method,
the self-calibration technique developed in [24] was employed to
estimate the camera intrinsic calibration parameters. Then, the
point matches along with the estimated intrinsic parameters were
fed to the algorithm described by Zhang in [25] for determining the
rigid 3D motion of the camera and reconstructing the scene
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TABLE 1
The Effect of Noise on the Performance Index (PI) for Plane Segmentation

1. A free implementation of [23] by the Computational Video Group of
the Institute for Information Technology of the National Research Council
of Canada; see http://www.cv.iit.nrc.ca/~gerhard/PVT/.



structure up to a scale. This reconstruction is provided as a means
to indirectly evaluate the accuracy of the matches produced by the
proposed feature matching algorithm. Fig. 4d shows a side view of
a rough wireframe model which was obtained by defining a set of
polygons which correspond to planar scene patches. The recon-
structed 3D locations of the cameras are also shown. Clearly, the
structure of the scene has been captured correctly.

The second experiment refers to the outdoor images of Fig. 5,
showing part of FORTH’s premises in Heraklion, Crete. Intrastereo
point matches are again shown with identical labels in Figs. 5a and
5b, while points lying on the two scene planes are marked with the
symbols + and x in the more distant view of Fig. 5c. Compared to
the first, the second stereo pair has been acquired from a viewpoint
that is further away from the imaged objects. In this experiment,
the proposed algorithm did not employ the two most prominent
planes of the scene (i.e., the two walls of the building in the
background). The plane of the left building wall and the plane
corresponding to the car in the foreground were used instead. This
choice of scene planes was intended to test the performance of the
method in the case of planes having small spatial extent and
containing minute numbers of features. A total of 186 correspond-
ing point pairs were identified in the first stereo pair, 165 of which
were correct. The employed scene planes contained 43 and 29
points in the first stereo pair, respectively. The 78 nonplanar points
that were matched in the second stereo pair are shown numbered
in Fig. 5c. In this experiment, the mean transfer error was 1.79
pixels, while epipolar transfer [6] yielded a mean transfer error of
6.15 pixels. This difference in the performance of the two
techniques is due to the fact that, for several of the transferred
points, the associated interstereo epipolar lines are almost parallel
and, thus, their points of intersection cannot be accurately
computed. The method proposed in this paper is independent of
the relative camera positions and therefore its accuracy is not
affected in this case. The mean point transfer error pertaining to
the tensor estimated with the parallax-based approach was 2.59
pixels. On the other hand, point transfer through the trifocal tensor
estimated with the generic approach yielded a large mean transfer

error, namely 9.21 pixels. This last result is due to the fact that the
planar points available for estimating the tensor covered a small
part of the image plane and were only 71, thus providing
insufficient constraints for accurately estimating it. This is further
exemplified by considering that when the set of corresponding
point triplets used to estimate the tensor was expanded using 82
more matches that were determined manually, the mean transfer
error dropped to 1.43 pixels only. At this point it should be
stressed that a set of matched features having limited spatial extent
and small cardinality is not uncommon when dealing with
disparate views, since in this case, the large baselines and the
limited overlap among viewing locations increase the difficulty of
feature matching. As demonstrated by this experiment, the
proposed method should be preferred over the generic tensor-
based one when the matches among the three views are
concentrated in small portions of the images or their number is
small. The proposed method relies on the computation of
fundamental matrices and homographies which have modest
degrees of freedom (7 and 8, respectively). On the other hand, the
trifocal tensor has 18 degrees of freedom and is therefore more
difficult to estimate accurately from a set of weak constraints. As in
the previous experiment, the point matches determined by the
proposed method were used for self-calibrating the camera and
reconstructing the 3D scene. A top view of the obtained model is
shown in Fig. 5d. Notice that the right angle between the two
background walls has been correctly recovered.

4 CONCLUSIONS

In this paper, a fully automatic method for matching image
features between two disparate stereo pairs has been presented.
The proposed method exploits geometric constraints arising from
the structure of a scene, which are valid regardless of the
viewpoints of images and can be computed without any knowl-
edge of camera calibration. Multiple such constraints are defined
for each feature, thereby increasing robustness by over-determin-
ing the solution. Second, the method is capable of handling images
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Fig. 4. Indoor scene experiment: (a) and (b) first stereo pair, (c) an image from the second stereo pair; corresponding points are labeled with identical numbers, and

(d) side view of the reconstructed wireframe model and the recovered camera positions.



that have been captured from significantly different viewpoints,

despite effects due to illumination changes, perspective foreshor-

tening, etc. Therefore, it is applicable in cases where tracking

methods assuming small motion between images would fail.

Third, it does not rely on the epipolar or trifocal geometry, whose

recovery might be difficult in certain cases. Finally, the method

handles points and lines in a unified manner by relying on the

same principles for determining their correspondence.
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Fig. 5. Outdoor scene experiment: (a) and (b) first stereo pair, (c) an image from the second stereo pair, and (d) top view of the reconstruction.
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