Three-dimensional tracking of multiple skin-colored
regions by a moving stereoscopic system

Antonis A. Argyros and Manolis I. A. Lourakis

A system that performs three-dimensional (3D) tracking of multiple skin-colored regions (SCRs) in
images acquired by a calibrated, possibly moving stereoscopic rig is described. The system consists of a
collection of techniques that permit the modeling and detection of SCRs, the determination of their
temporal association in monocular image sequences, the establishment of their correspondence between
stereo images, and the extraction of their 3D positions in a world-centered coordinate system. The
development of these techniques has been motivated by the need for robust, near-real-time tracking
performance. SCRs are detected by use of a Bayesian classifier that is trained with the aid of a novel
technique. More specifically, the classifier is bootstrapped with a small set of training data. Then, as
new images are being processed, an iterative training procedure is employed to refine the classifier.
Furthermore, a technique is proposed to enable the classifier to cope with changes in illumination.
Tracking of SCRs in time as well as matching of SCRs in the images of the employed stereo rig is
performed through computationally inexpensive and robust techniques. One of the main characteristics
of the skin-colored region tracker (SCRT) instrument is its ability to report the 3D positions of SCRs in
a world-centered coordinate system by employing a possibly moving stereo rig with independently

verging CCD cameras. The system operates on images of dimensions 640 X 480 pixels at a rate of 13
Hz on a conventional Pentium 4 processor at 1.8 GHz. Representative experimental results from the
application of the SCRT to image sequences are also provided. © 2004 Optical Society of America
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1. Introduction

Human beings have a remarkable ability to interpret
the activities of other human beings visually. De-
veloping machines with similar perceptual and cog-
nitive capabilities constitutes an ambitious research
goal. The accomplishment of this goal will have far-
reaching implications in a wide spectrum of applica-
tions such as human-machine interaction, gesture
tracking for surveillance systems, and development
of tools for teaching by demonstration. The impor-
tance and the difficulty of solving this problem justify
the great volume of research effort that has been
devoted worldwide to providing a robust solution.

A fundamental building block of any system that is
able to interpret activities is one that permits the
three-dimensional (3D) tracking of a human operator
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as he or she performs a certain task. Several sen-
sors and techniques to achieve this goal have been
developed.! Nevertheless, vision-based methods are
considered preferable because they are passive and
not invasive, in the sense that they do not require
modification of the environment or wearing of any
special equipment by the human operator. A funda-
mental issue in human tracking is related to the
modeling of a human operator. The human body is
a complex, nonrigid structure with many degrees of
freedom. Therefore the type and complexity of the
proposed models vary dramatically,23 depending
heavily on the requirements of the application do-
main under consideration. For example, tracking
people in an indoors environment in the context of a
surveillance application has completely different
modeling requirements from tracking the fingers of a
hand for vision-based recognition of a sign language.
In the research reported here, skin color is the fun-
damental visual cue employed for detection of the
presence of a human being in a scene. Color offers
many advantages over geometric models, such as ro-
bustness to occlusions, changes in scale and resolu-
tion, and geometric transformations. Additionally,
the computational requirements of color processing



are considerably lower than those associated with the
processing of complex geometric models. For these
reasons, color-based models have been applied to a
broad spectrum of applications, such as content-
based image retrieval and quality control.

A. Previous Work

Vision-based methods for tracking skin-colored re-
gions in three dimensions need to provide answers to
several questions, each of which constitutes an open
research problem: How is skin color modeled and
how are instances of the model used detected in an
image? How are detected instances associated tem-
porally in sequences of images? How is 3D position
information attained from the inherently two-
dimensional (2D) observations of the tracked models?

What follows is a description of some representa-
tive methods for solving the problems listed above
that have been proposed. It is important to note
that the available options for solving partial problems
should be evaluated with respect to several criteria,
such as the quality of their results, their robustness,
and their computational complexity.

1. Skin-Color Modeling and Detection

A major step toward providing a model of skin color is
the selection of the color space to be employed. Sev-
eral color spaces, including RGB,* normalized
RGB,>¢ HSV,” YCrCb,® and YUV,? have been pro-
posed. Color spaces that efficiently separate the
chrominance from the luminance components of color
are typically preferable because, by employing only
chrominance-dependent components of color, one
may achieve some degree of robustness to changes in
illumination. The choice of such color spaces is also
justified by the fact that skin tones differ mostly in
chrominance and less in intensity. Terrillon et al.1°
reviewed skin chrominance models and evaluated
their performance.

When a suitable color space has been selected, the
simplest methods define skin color by employing
bounds in the coordinates of this space.® These
bounds are typically selected empirically, i.e., by ex-
amination of the distribution of skin colors in a pre-
selected set of images. Another approach to defining
skin color is to assume that the probabilities of skin
colors follow a distribution that can be learned. This
learning is achieved through an off-line procedure,
although on-line iterative methods have also been
suggested.”

In contrast to the aforementioned nonparametric
approaches, another paradigm is related to methods
that make use of parametric models. These meth-
ods are based either on a unimodal Gaussian
probability-density function®9!! or on multimodal
Gaussian mixtures!2-15 that model the probability
distribution of skin color. Maximum-likelihood es-
timation techniques are used to derive the parame-
ters of wunimodal Gaussian density functions.
Multimodal Gaussian mixtures require an
expectation-maximization algorithm to be employed.
According to Yang and Ahuja,'¢ a mixture of Gauss-

ians is preferable to a single Gaussian distribution.
Still, histogram models provide better accuracy and
lower computational cost than mixture models for the
detection of skin-colored areas in an image.®

A few of the proposed methods involve some sort of
adaptation to become insensitive to changes in the
illumination conditions. For example, adaptation of
a Gaussian mixture model that approximates the
multimodal distribution of the object’s colors based on
a recent history of detected skin-colored regions has
been suggested.12:13

Skin color is an important cue in detecting the
presence of humans in a scene. However, it is often
insufficient to separate skin objects from nonskin ob-
jects that appear to be skin colored. Therefore skin
color is often fused with other cues such as motion,
texture, shape, and 3D structure information. A re-
cent surveyl? gave an interesting overview of the use
of color and other visual cues in skin-color detection.

2. Tracking

As soon as skin-colored regions have been modeled
and can be detected in an image, another major prob-
lem must be addressed, which concerns the temporal
association of these observations in an image se-
quence. The traditional approach to solving this
problem has been based on the original work of Kal-
man?® and its extensions. If the observations and
object dynamics are of a Gaussian nature, Kalman
filtering suffices to solve the tracking problem.
However, in many cases the distributions are non-
Gaussian, and thus the underlying assumptions of
Kalman filtering are violated.

As noted by Spengler and Schiele,?2 recent re-
search efforts that deal with object tracking can be
classified into two categories, those that solve the
tracking problem in a non-Bayesian framework19-24
and those that tackle it in a Bayesian framework.25-31
In many cases,25-27 the focus is on single-object track-
ing. These single-object approaches usually rely on
sophisticated, powerful object models. In other
cases28-31 the problem of tracking several objects in
parallel is addressed. Some of these methods solve
the multiobject tracking problem by employing con-
figurations of individual objects, thus reducing the
multiobject tracking problem to several instances of
the less-difficult single-object tracking problem.
Other methods employ particle-filtering-based algo-
rithms, which track multiple objects simultaneously.

Despite the considerable amount of research that
has been devoted to tracking, an efficient and robust
solution to the general formulation of the problem is
still lacking, especially for simultaneous tracking of
multiple targets.

3. Three-Dimensional Reconstruction

Tracking provides a mechanism for associating ob-
servations of models over time. Still, it involves 2D
information regarding the location of the tracked
model. Providing 3D position information requires
at least two observations of the same object, from
different viewpoints. Although techniques based on
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multiple views acquired from more than two cameras
have been proposed,32 most of the existing approach-
es33 involve a single, calibrated stereoscopic system.

To the best of our knowledge, all existing ap-
proaches use a static stereoscopic system because em-
ploying a moving stereoscopic system would
considerably complicate the process of tracking. If
the stereoscopic system moves, everything changes in
the fields of view of both cameras. Therefore, back-
ground subtraction (i.e., detection of temporal
change) cannot be used as a means of providing ad-
ditional evidence regarding the presence of moving
skin-colored regions (SCRs). Further complications
related to 3D reconstruction are introduced when the
geometry of the stereoscopic system does not remain
constant over time, i.e., when cameras with indepen-
dent pan and tilt control are employed. Employing a
moving stereoscopic system is often desirable, how-
ever, because in this case cameras can be purpose-
fully positioned in a way that facilitates the
observation of a certain activity.

An important implication of employing a stereo-
scopic configuration for computing 3D trajectories of
tracked objects is that model detection and tracking
should be performed in both views, thus increasing
the computational requirements of the tracking sys-
tem. In addition, an extra computational step is re-
quired that relates the two images of a stereo pair to
each other. This is a crucial task because it permits
the extraction of 3D information through standard
3D reconstruction techniques.3435

B. Proposed Approach to Three-Dimensional Tracking

In this paper we present our approach to 3D tracking
of multiple SCRs observed by a moving stereoscopic
system. This study was carried out in the context of
a more-general research effort3¢ toward developing a
cognitive vision methodology to permit the interpre-
tation of activities of people who are handling tools.
Research and development are focused on the active
observation and interpretation of the activities, on
the extraction of the essential activities and their
functional dependence, and on organizing the activi-
ties into their constituent behavior elements. The
approach is active in the sense that the system seeks
to obtain views that facilitate the interpretation of
the activities observed. Therefore the ability to
modify the viewpoint of observation of a certain ac-
tivity is of utmost importance. Moreover, task and
context knowledge is exploited as a means to con-
strain interpretation. Robust perception and inter-
pretation of activities is the key to capturing the
essential information that permits reproduction of
task sequences from easy-to-understand representa-
tions.

The system that we propose is able to track and
report the 3D trajectories of all SCRs that are present
in a viewed scene. The proposed method for detect-
ing SCRs has several attractive properties. A skin-
color representation is learned through an off-line
procedure. A new technique is proposed that elim-
inates much of the burden involved in generating
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Fig. 1. Stereoscopic head (courtesy of Profactor GmbH) that is
used to acquire stereo image pairs that are fed to the SCRT system.

training data. Moreover, the method adapts the
skin-color model based on the recent history of
tracked SCRs. Thus, without the need for complex
models, the proposed approach is able to detect SCRs
robustly and efficiently, even in conditions of chang-
ing illumination. The system employs a moving ste-
reoscopic rig with cameras that have independent
vergence control. To the best of our knowledge, this
is the first method that is capable of tracking SCRs
based on a moving stereoscopic system. Despite the
motion of the cameras, the estimation of the 3D po-
sition of the detected and tracked SCRs is performed
on a world-centered (i.e., extrinsic to the cameras)
coordinate system. SCRs are tracked in time and
associated with the images of each stereo pair by use
of simple, computationally inexpensive techniques.
The tracking system is implemented in C and can
track multiple SCRs at a rate of 13 Hz on a Pentium
4 processor running Linux; the stereo stream em-
ployed consists of images with dimensions 640 X 480
pixels.

The rest of the paper is organized as follows: In
Section 2 we describe the skin-colored region tracker
(SCRT). In Section 3 we provide sample results
from operation of the SCRT in binocular image se-
quences. In Section 4, issues related to the compu-
tational performance of the SCRT are discussed.
Finally, Section 5 provides the main conclusions of
this research as well as information on its extension
that is still under investigation.

2. Skin-Colored Region Tracker System

The SCRT is able to detect multiple SCRs and report
their 3D positions by using images acquired by a
moving stereoscopic head, such as the one shown in
Fig. 1. Apart from providing raw stereo image
streams, the stereoscopic head continuously provides



the position and orientation of each of the two CCD
cameras with respect to a world-centered coordinate
system. This is accomplished through the use of
proprioceptive information provided by the motor en-
coders of the head. The SCRT exploits multiple cues
toward achieving SCR tracking. These cues include
color information and structure information as well
as information regarding the camera positions and
the epipolar geometry of the stereo system. In the
remainder of this section we provide a brief outline of
the SCRT system; more-detailed descriptions of its
functional modules are provided in subsequent sec-
tions.

At each time instance ¢, the stereoscopic system
acquires a synchronized image stereo pair, I, (¢) and
I,(¢). Each of the pair’s images is independently fed
to a skin-color detection (SCD) module. SCD in-
volves four key operations, specifically, (a) measure-
ment of the probability of a pixel’s being skin colored,
(b) hysteresis thresholding on the derived probabili-
ties map, (c) connecting components labeling to de-
termine SCRs, and (d) computation of statistical
information for each SCR (up to second-order mo-
ments). These SCRs, together with SCRs derived at
the previous time instance ¢ — 1, are then associated
in time (AT module). The aims of using this module
are (a) to assign a new, unique label to each new SCR
(i.e., to a SCR that appears in the field of view for the
first time) and (b) to propagate the labels of already
detected SCRs in time. Then the SCRs detected in
the left- and the right-hand images, along with the
associated labels, are fed to a module that finds the
correspondence between SCRs in the two images of
the stereo pair (AS module). Infact, each SCRin the
right image of the stereo pair is assigned the label of
the corresponding SCR in the left image of the stereo
pair if such a corresponding SCR actually exists. Af-
ter completion of this type of association, the cen-
troids of the corresponding SCRs are refined by a
correlation-based stereo matching technique carried
out by a centroid-matching (CM) module. This en-
sures that these points correspond to the same 3D
scene point. The refined matches are then fed to a
3D reconstruction (3DR) module, which, taking into
account the known geometry of the stereoscopic sys-
tem as well as the intrinsic calibration parameters of
the cameras, computes the 3D location of the centroid
that pertains to each SCR. Finally, the 3D position
that the system reports for each SCR is a weighted
sum of 3D measurements in a sliding time window.
The temporal smoothing (T'S) module provides this
type of functionality. A high-level block diagram
that provides an overview of the SCRT system is
illustrated in Fig. 2. In what follows, a more-
detailed description of each of the aforementioned
modules is provided.

A. Skin-Color Detection Module

SCD is one of the fundamental building blocks of the
SCRT system. The goal of the SCD module is to
detect SCRs in an image. SCD adopts a Bayesian
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Fig. 2. Block diagram of the SCRT system.

approach that involves an iterative training phase
and an adaptive detection phase.

1. Basic Supervised Training and Detection
Mechanisms

A set of training input images is selected upon which
a human operator manually marks SCRs. The color
representation used in this process3? is YUV 4:2:2,
which directly encodes the images acquired by the
cameras used in the stereoscopic system of Fig. 1.
However, the Y component of this representation is
not employed for two reasons: (a) the Y component
corresponds to the illumination of an image point,
and therefore by omitting it the developed classifier
gains some illumination-independent characteristics,
and (b) employing a 2D color representation (UV), as
opposed to a 3D representation (YUV), reduces the
dimensionality of the problem and lowers the compu-
tational requirements of the overall system.

Assuming that image points I(x, y) have a color ¢ =
c(x,y) = (u, v), we use the training set to compute the
following information:

¢ The prior probability P(s) of having skin color in
animage. This is the ratio of the skin-colored image
points in the training set to the total number of image
points.

e The prior probability P(c) of the occurrence of
each color ¢ in the training set. This is computed as
the ratio of the number of occurrences of each color ¢
to the total number of image points in the training
set.

e The prior probability P(c|s) that color c is a skin
color. This is defined as the ratio of the number of
occurrences of a color ¢ within the skin-colored areas
to the number of skin-colored image points in the
training set.

Based on the information extracted in the training
phase, the probability P(s|c) that a color ¢ is a skin
color can be computed by use of the Bayes rule38

P(sle) :P("’IE”()CI;(S). 1)

Then the probability that each image point I(x, y) will

be skin colored can be determined with the aid of a
lookup table indexed with the point’s color. The re-
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sultant probability map is subsequently thresholded,
and all image points with probability P(s|c) > T\p,ax
are considered skin colored. These points constitute
the seeds of potential SCRs. More specifically, im-
age points with probability P(s|c) > T,,;,, where T ;.
< T, . that are immediate neighbors of skin-colored
image points are recursively added to the set of skin-
colored points. The rationale behind this region-
growing operation is that an image point with a
relatively low probability of being skin-colored should
be considered as such, when it is a neighbor of an
image point with a high probability of being skin
colored. This hysteresis thresholding type of opera-
tion has been successfully applied to edge detection3?
and also proves extremely useful in the robust iden-
tification of SCRs. Indicative values for thresholds
T ohax and T, are 0.5 and 0.15, respectively.

A connected-components labeling algorithm is then
responsible for assigning labels to the image points of
various SCRs. Size filtering of the connected com-
ponents is also employed to eliminate small, isolated
blobs that are attributed to noise and do not corre-
spond to interesting SCRs. Thus, connected compo-
nents that consist of fewer than 7T, = 500 image
points are rejected from further consideration. Each
of the remaining connected components corresponds
to a SCR whose 2D image position is defined by its
centroid.

2. Adaptability

The basic scheme for SCD described above has two
major drawbacks:

e Training. Training is an off-line procedure
that does not affect the on-line performance of the
SCRT system. Nevertheless, it is a time-consuming
process in the sense that a human operator should
manually mark all skin-colored pixels in the chosen
training set. Moreover, to obtain a training set that
is capable of supporting tracking of various skin tones
in images acquired from different cameras requires a
large training set. Therefore, devising a method
that will automate the processing of training data is
considered quite important.

e Detection. When illumination conditions vary,
the SCD module may produce poor results, despite
the fact that the color representation employed has
certain illumination-independent characteristics.
Hence a method is required that adapts the repre-
sentation of skin-colored image points according to
the recent history of detected skin-colored points.

To cope with the first problem we developed an adap-
tive training procedure. Training is performed on
an initial, small set of images for which the human
operator provides ground truth by defining SCRs.
Then detection, together with hysteresis threshold-
ing, is used to update the prior probabilities P(s), P(c),
and P(c|s) continually in new images. The updated
prior probabilities are then used to reclassify the full
data set into skin-colored and non-skin-colored image
points. When the classifier produces wrong results
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(false positives or false negatives), manual user in-
tervention to correct these errors is necessary; still,
up to this point the classifier has automatically com-
pleted much of the required work. The final train-
ing of the classifier is then performed based on the
training set that results after user editing. This pro-
cess for adapting the prior probabilities P(s), P(c),
and P(c|s) either can be disabled as soon as it is
decided that the achieved training is sufficient for the
purposes of the SCRT system or can continue as more
input images are fed into the system.

At this point it is important to note that hysteresis
thresholding is crucial for achieving the adaptation of
prior probabilities described above. If hysteresis
thresholding is not used, colors with probability P(s|c)
< T,,.x Will never have the chance of being considered
skin colors. Hysteresis thresholding with a thresh-
old T',;,, considerably smaller than T, ., allows colors
with low probability of representing skin to be con-
sidered skin colors and permits the appropriate ad-
aptation of their probabilities.

To solve the second problem, the SCD module
maintains two sets of prior probabilities: P(s), P(c),
and P(c|s), which correspond to the training set, and
P,(s), P,(c), and P,(c|s), which correspond to the
evidence that the system gathers during the w most-
recent frames. Clearly, the second set better reflects
the recent appearance of SCRs and is better adapted

to the current illumination conditions. SCD is then
performed based on
P,(slc) = aP(slc) + (1 — a)P,(s|c), (2)

where P(s|c) and P, (s|c) are both given by Eq. (1) but
involve prior probabilities that have been computed
from the whole training set [for P(s|c)] and prior prob-
abilities that have been computed from the detection
results in the last w frames [for P, (s|c)]. In Eq. (2),
a is a sensitivity parameter that controls the influ-
ence of the training set in the detection process (0 <
a=1). Ifa =1, then SCD takes into account only
the training set, and no adaptation takes place; if a is
close to zero, then SCD becomes highly reactive, re-
lying strongly on the recent past for deriving a model
of the immediate future. Values ofa = 0.8 and w =
5 gave good results in the tests that have been carried
out.

A basic advantage of the proposed scheme lies in its
simplicity. Other methods of adaptation have been
proposed in the literature.l213 However, these
methods require much more-complex modeling of the
color characteristics of skin (i.e., modeling based on
mixtures of Gaussians). An interesting study® has
shown that, compared to mixture models, histogram
models such as the one proposed in this paper provide
better accuracy and lower computational cost for skin
detection.

B. Associating Skin-Colored Regions in Time: AT
Module

As soon as a SCR is detected, it has to be tracked over
time. This is a crucial function of the SCRT system



because it provides the temporal continuity of SCR
observations.

We denote by S, the set of all SCRs detected at
time ¢ in the image acquired by camera C (left or right
camera of the stereoscopic system). Also, let S (i)
be a particular SCR of this set with index i, 1 =i =
N', where N/ is the cardinality of S>. A distance
measure D {S."'(i), Sc'(j)] between two SCRs,
S 71(i) and SS(j), that have been detected at times
t — 1 and ¢, respectively, is defined as follows:

DS 7@, S()] = Imd 7' @) — md (). (3)

In Eq. (3), m (k) denotes the centroid of SCR S/ (k)
and || denotes vector magnitude. Equation (3)
states that the distance between two SCRs is the
Euclidean distance of their centroids. SCR S/ (i)
matches SCR S//(j), where

j =argmin {D{S. (i), S (k)]}. (4)
1=k=Nct

The two SCRs, S’ (i) and S//(j), are assumed to
correspond to the same physical object if (a) So’ (i)
matches S:/(j), (b) Sc'(j) matches S/~ 1(i), and (c)
DS 10), Sc'()] < Tp and DS (), S0 <
Tp. Criterion (a) essentially states that, among all
candidate SCRs at time ¢, the centroid of S/(j) is the
closest to the centroid of S/ (i). Symmetrically,
criterion (b) states that, among all candidate SCRs at
time ¢ — 1, the centroid of S’ (i) is the closest to the
centroid of S./(j). Criterion (c) provides an addi-
tional constraint on the actual distances of the cen-
troids of matching SCRs. T, is a distance threshold
that depends on the image-acquisition frame rate and
on the velocity of the SCRs on the image plane. As-
suming intrinsically calibrated images, it can be
shown that

C (]
- (|Umax | + |Umax |)f
Zminv

In inequality (5), U, is the maximum lateral com-
ponent of 3D motion of a skin-colored object, U,  is
the maximum expected lateral component of camera
motion, Z_; is the minimum expected distance of
this object from the camera, fis the focal length of the
camera measured in pixels, and v is the image-
acquisition frame rate. Then T}, in inequality (5)
corresponds to the maximum expected displacement
between two successive images in time of a point on
the image plane and is measured in pixels. The def-
inition of 7', above is very conservative in the sense
that it corresponds to a lateral motion of the object
with respect to the camera, with camera motion oc-
curring in the direction opposite the object’s motion
and with the object located close to the camera. In
practice, smaller values for T, are sufficient for as-
sociating SCRs in time.

The labels at time ¢ — 1 of all corresponding SCRs
are propagated to the current time instance ¢. All
SCRs detected at time ¢ that do not correspond to
SCRs at time ¢ — 1 are assigned new labels, because
they constitute regions observed for the first time.

The AT module is employed independently on the
left and the right images of the stereo pair. The
related process is simple and computationally cheap.
Moreover, it proves robust in all cases when SCRs do
not overlap because of occlusions.

C. Associating Skin-Colored Regions in a Stereo Pair:
AS Module

To provide information regarding the 3D position of
each SCR, the tracker should be able to define the
relationship of SCRs in the images of a stereo pair.
This purpose is served by the AS module. As has
already been stated here, it is assumed that the po-
sition and the orientation of each camera of the stereo
pair are known with respect to a world-centered co-
ordinate system. Based on this information, it is
possible to compute the rotation matrix R and the
translation vector ¢ of the relative rigid motion be-
tween the coordinate systems of the cameras of the
stereoscopic system. Knowledge of R and ¢, in turn
provides the means to compute analytically the fun-
damental matrix F' that captures the underlying epi-
polar geometry of the stereo pair4°:

F= dot(Ay) ler].H.., (6)

where
er = Agt, (7
H.=AzRA, . (8)

In Egs. (6)—(8),A;, and Ay are the intrinsic calibration
matrices of the left and right cameras, respectively,
H_, is the homography of the plane at infinity, and ej,
is the epipole in the right image. [eg]. denotes the
skew-symmetric matrix associated with the vector
cross product; i.e., for each vector y, [eg].y = exr X ¥.
Assuming that m; and my are two corresponding
points in the left and the right images of the stereo
pair, then my, is constrained to lie on the epipolar line
lp, defined3® as lp = Fm;. Similarly, m; is con-
strained to lie on the epipolar line /;, defined as [; =
F'mp, (see Fig. 3). The AS module employs the epi-
polar constraint to relate the SCRs of the images of a
stereo pair. As in the case of the AT module, we
denote by S;’ and S’ the sets of SCRs that have been
detected at time ¢ in the left and right images of the
stereo pair, respectively. Moreover, S;'(i) and
Sz(j) denote specific SCRs with indices i and j de-
tected at time ¢, 1 =i = N, and 1 =j = N;z/. A
distance measure Dg[S;’(i), Sg'(j)] is defined be-
tween two SCRs, S; /(i) and Sz'()), as

DS[SLt(i), SRt(j)] =
max{d[FmLt(i)) mRt(j)],
d[F'mg'(j), m/ @)1} (9)

In Eq. (9), m;/(i) and mz'(j) are the centroids of SCRs
S (i) and Sz'(j), respectively, and d(l, p) denotes the
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Rt

Fig. 3. Graphic illustration of the epipolar geometry of a stereo
pair. Epipolar plane C; MCj intersects the two image planes
along epipolar lines /; and /.

Euclidean distance of point p from line /. SCR .S;(i)

matches SCR Sz'(j), where

J = arg min {Dg[S;'(i), Sx'(k)]}. (10)

1=k=Npg'

Symmetrically, SCR Sz‘(j) matches SCR S;‘(i),
where

i = arg min {D[SE'(j), SL'(R)]}.

1=k=Np!

(11)

Two SCRs, S;’(i) and S;'(j), are assumed to corre-
spond to each other if S;’(i) matches Sz'(j), Sk'(j)
matches S; (i), and Dg[S; (i), Sg’(j)] < T, where Ty
is a threshold that depends on the accuracy of the
estimated epipolar geometry. Note that by defini-
tion this distance is symmetric; i.e., Dg[S; (1), S'()]
= Dg[SE'(j), S'@)].

For all corresponding SCRs, the label of the SCR in
the left image propagates to the corresponding SCR
in the right stereo image. All SCRs that have not
been paired are excluded from further consideration
in the subsequent process of 3D position estimation.
Such SCRs typically correspond to skin-colored ob-
jects that are visible only in one of the two cameras of
the stereo pair.

The method for matching SCRs described above
becomes unstable if the epipolar geometry is not ac-
curately computed. In this case the threshold T
has to be set conservatively to quite a large value,
which leaves room for errors in matching the SCRs.
For this reason, 3D position information from previ-
ous time instances can be used, if available. More
specifically, when distances Dg[S;‘(i), Sz’(j)] are
computed, the 3D position of the SCR that results
from the assumption that S;’(i) actually corresponds
to Sg’(j) is computed. If the resultant 3D position is
invalid (in the sense that this position either is not
plausible or differs substantially from the SCR’s 3D
position in the previous time step), a penalty term is
added to the corresponding distance measure to guar-
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Fig. 4. Two methods of achieving the propagation of labels of
SCRs both in time and between two stereo views. (a) The AS
module is used to match SCRs of the left and the right images of
the stereo pair at each point in time. The AT module is used to
propagate labels in time in the image sequence of the left camera
only. (b) The AS module is used to match SCRs only when a new
SCR appears in the field of view. Separate AT modules are then
used to propagate the SCR labels in time independently for the left
and the right image sequences. As the AT module is typically
more robust than the AS module, the second approach is adopted.

antee that S; /(i) and Sz’(j) will not be considered to
correspond.

In general, the information on camera position and
orientation that is computed from the encoders of the
stereoscopic system is not reliable enough to permit
an accurate estimation of the epipolar geometry of
the stereo pair. For instance, experiments carried
out with prerecorded image sequences indicated that
the average distance of image points from their esti-
mated epipolar lines was of the order of 15 pixels.
The later error, in turn, affects the robustness of the
AS module. To overcome this problem we apply AS
only to SCRs that appear in the field of view for the
first time. As soon as this is achieved, the AT mod-
ule, which is more robust than the AS module, prop-
agates the correct SCR labels in both images of the
stereo pair, as is exemplified in Fig. 4. It should be
mentioned at this point that a more accurate, image-
based estimation of the stereo system’s epipolar ge-
ometry4! (as opposed to the currently employed
encoder-based estimation) will considerably improve
the robustness of the AS module. Still, such meth-
ods incur a significant computational overhead that
is undesirable in the context of the SCRT system.

D. Centroid Matching: CM Module

The matching of SCRs in the left and right images of
a stereo pair leads to a rough correspondence be-
tween SCR centroids. This property can be used
directly for deriving the 3D positions of SCRs. How-
ever, centroids are computed by the SCD module
from the mean x and y coordinates of each SCR.
Therefore it is not guaranteed that the left and right
centroids of a SCR will correspond to the same 3D
point. To refine this rough, initial correspondence
we employ a correlation-based matching algorithm.
Let m; and my denote the centroids of a SCR in the
left and the right images, respectively, of a stereo
pair. Then a model template W,, around m; and a
search window Wg around my are defined. W, is



Fig. 5. Configuration of overlapping windows used in the corre-
lation method proposed by Hirschmiiller.42

placed over all possible positions in Wg, and a corre-
lation measure A is computed. The location mg' in
Wg where correlation measure A is maximized (Ayax)
is considered the refined right centroid of the specific
SCR. We repeat the process symmetrically, by de-
fining a model template around my and a search
window around m;. If this search gives rise to a
correlation score greater than Ayzx for some point
m;' in the left image, then we consider the (m;', mp)
pair of centroid correspondences instead of the (m;,,
mpg') pair. This centroid refinement process is re-
peated for all pairs of corresponding SCRs. Note
that if epipolar geometry has been computed accu-
rately enough, search bands defined along epipolar
lines can be used instead of search regions. Corre-
lation measure A used in the CM module is inspired
by the work of Hirschmiiller42 on dense stereo match-
ing. Model template W,, is divided into five overlap-
ping subwindows, a central (W), an upper-left
(Wy), an upper-right (W), a bottom-left (Wg;,), and
a bottom-right (Wgg). These five windows overlap
as shown in Fig. 5. All subwindows have dimen-
sions of 3 X 3 pixels, resulting in a 5 X 5 pixel model
template. Inasmuch as in the work of Hirschmiil-
ler42 a rectified stereo pair is assumed, search tem-
plates are essentially one dimensional. In our case,
the dimensions of the search window are 25 X 25
pixels.

At each placement of model template W,, in search
window Wg, five correlation values, Aq, Ayr, Ayrs
App, and Agg, are independently computed. These
values measure the correlation of each subwindow
with the corresponding part in the search window.
Then we can compute correlation value A for this
placement by adding the values of the two best sur-
rounding correlation windows, A,,..; and A, ..., to
that of the middle window:

A= AC’ + Amaxl + AmaxZ' (12)

In fact, in this approach a small central window is
used, and the correlation decision is supported by
four nearby windows. This formulation enables the
refinement process to cope well with depth disconti-

nuities and occluded and revealed regions that intro-
duce errors when standard correlation is employed
between the model window and the corresponding
part of the search window. It should be noted that
depth discontinuities and occlusions are common in
this particular SCR tracking process, in which the
SCRs are typically small image regions, closer to the
cameras than to their immediate surroundings.

E. Three-Dimensional Reconstruction of the Positions of
Skin-Colored Regions: 3DR Module

The refined centroid correspondence of the SCRs are
fed to a 3DR module, which computes the 3D position
of each SCR. Two different reconstruction methods
have been considered.

In the first method4® the 3D position (X, Y, Z) of a
point P, given its projections m; and mpg in the left
and the right images of a stereo pair, are computed as

_ (mg X ep)(mp X H.mp)
[mg X H.m|?

X= Z[ALil(O)]mL,

Y =Z[A; Y (1)]m,. (13)

Z:

b

In Eqgs. (13), m;, and my are homogeneous vectors and
er and H_, are defined as in Eqgs. (7) and (8), respec-
tively. Moreover, [A;'(r)] denotes the vector that
corresponds to the rth row of the inverse of the in-
trinsic calibration-parameter matrix of the left cam-
era. Equation (13) gives the 3D position (X, Y, Z) of
point P with respect to the coordinate system of the
left camera. The 3D position of this point with re-
spect to the world-centered coordinate system can
easily be computed through a rigid 3D transforma-
tion involving the position of the left camera with
respect to the world-centered coordinate system.

In the second method the 3D position of a point is
computed as the intersection of two 3D lines. More
specifically, a 3D line is defined by 3D points C; and
M;, where C; is the optical center of the left camera
and M; is the 3D position of the centroid of a SCR on
the left image. Similarly, a second 3D line is defined
by 3D points Cr and My, where Cy is the optical
center of the right camera and My, is the 3D position
of the centroid of the corresponding SCR in the right
image. In the case of perfect, noiseless measure-
ments these two lines should intersect at the desired
3D point. However, noise in the corresponding im-
age coordinates m; and my as well as inaccuracies in
the calibration parameters will almost certainly re-
sult in these two lines’ being skewed. Then the 3D
location P of the SCR is%3

P=1 (CL + ]/)LSL + CR + f)RSR)’ (14)
where

. det(MR - MLﬁRvLR)

det(MR - MLﬁLvLR)
St — =

) Sp =

ki

(15)

|VLR|2 |VLR|2
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(16)

If the 3D lines actually intersect, then P in Eq. (14) is
their point of intersection. If the 3D lines are
skewed, then P is the midpoint of the minimum-
length line segment whose endpoints lie on the two
3D lines. Points C;, M;, Cg, and My can be easily
computed from the known 3D positions and orienta-
tions of the cameras with respect to the world-
centered coordinate system and the knowledge of the
refined centroids of corresponding SCRs.

The first reconstruction method is based on accu-
rately computed epipolar geometry between the cam-
eras of the stereo pair and on the availability of point
matches that satisfy this epipolar geometry. If the
first condition is satisfied and the second is not, there
exist methods34 to refine the point matches so as to
enforce that refined matches satisfy the prescribed
epipolar geometry. If, however, the epipolar geom-
etry has not been accurately computed, the 3D recon-
struction is inaccurate even for perfect matches. In
the context of the SCRT system, the second method
provides more-accurate 3D reconstruction results
than the first reconstruction approach and, therefore,
has been adopted in the 3DR module.

F. Temporal Smoothing: TS Module

The temporal smoothing (T'S) module performs tem-
poral filtering of the derived 3D position of each SCR,
based on the assumption that the 3D trajectory of a
SCR is smooth as a function of time. The current
implementation considers 3D positions P,_,, P, 5,
and P, of a SCR as they were computed in the last
three time instances, t — 2, ¢ — 1, and ¢, and reports
3D position P, defined as a weighted average of these
measurements:

(17)

Weights are appropriately adapted whenever 3D po-
sition measurements in time instances ¢ — 2or¢ — 1
are not available.

P=0.6P,+ 0.3P,_; + 0.1P,_,.

3. Sample Results

In this section we provide representative results of
the application of the SCRT system to sequences of
stereo images. All experiments reported here as
well as several others that are not included because of
space limitations were conducted by employing the
same set of parameters in the different SCRT mod-
ules.

Experiments with two stereoscopic sequences, each
of which has been acquired by a different stereoscopic
system, are reported here. More specifically, the
first sequence (Sequencel_head) was acquired by the
stereo head shown in Fig. 1, and the second sequence
(Sequence2_arm) was captured by a different set of
cameras mounted upon a robotic arm. Despite the
fact that in both experiments there are four cameras,
each with different color response characteristics, a
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single training set has been established and SCD has
been based on the same set of probabilities derived
through Eq. (1) for the images of all four cameras.
The initial, seed training set contained 40 images (10
from each camera) and was later refined in a semi-
automatic way (as described in Subsection 2.B) by
use of 160 additional images (40 from each camera).

Sequencel_head shows a human operator manip-
ulating a CD player (the operator opens the tray,
picks up a CD, places it in the tray, and closes the
tray). The stereoscopic system does not move in this
experiment. The full sequence consists of 146 left
and 146 right frames. Figure 6 (top to bottom, left to
right) shows characteristic snapshots from the track-
ing results obtained. Every tenth frame is shown in
this figure. For purposes of illustration, each SCR
appears as a color blob superimposed upon the right
image of the stereo pair. A cross marks the centroid
of each SCR. Moreover, an ellipse derived from the
statistics of each SCR is shown surrounding each
color blob. It can be seen that the system identifies
three SCRs, namely, the head of the human operator,
the skin-colored arm of the armchair, and the hand of
the human operator. It can be verified that the la-
beling of the SCRs is consistent throughout the whole
sequence, which means that SCRs are correctly
tracked both in time and between the images of the
stereo pair.

Figure 7 shows the 3D trajectories computed by the
system for the three tracked SCRs. The upper facet
of the CD player has also been reconstructed to serve
as areference. The trajectory of the operator’s hand
appears to be qualitatively correct. In this sequence
the arm of the armchair does not move, and the head
of the operator moves slightly. To measure the sta-
bility of the derived 3D coordinates we computed the
3D bounding box of all estimated 3D positions for
each SCR. For the static arm of the armchair, the
dimensions of this bounding box are 1.2 cm X 1.5
cm X 1.6 cm, close to zero, as expected.

In the Sequence2_arm a human operator again
manipulates a CD player. In this sequence the cam-
eras move in time. The sequence consists of 134 left
and 134 right frames. Figure 8 (top to bottom, left to
right) shows characteristic snapshots from the track-
ing results. Every tenth frame is again shown in
this figure. It can be seen that the system identifies
two SCRs, which correspond to the head of the hu-
man operator and to the hand of the human operator.
It can be verified that the labeling of the SCRs is
consistent throughout the whole experiment, which
implies that SCRs are correctly tracked both in time
and between the images of the stereo pair. Figure 9
shows the 3D trajectory computed by the system for
the hand of the operator. Note that, despite the mo-
tion of the cameras, the hand’s trajectory appears
smooth, which serves as an indication that only small
range errors, which are due to SCD detection, cen-
troid estimation, and camera motion estimation, are
introduced.

Videos related to the above experimental results
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Fig. 6. Tracking results for Sequencel_head. Each SCR appears as a color blob superimposed upon the right image of the stereo pair.

can be retrieved at http://www.ics.forth.gr/cvrl/
demos.html.

4. Properties of the Skin-Colored Region Tracker’s
Computational Performance

Several tests aimed at assessing the functionality
and the performance of a prototype implementation
of the SCRT system have been carried out. Both
off-line experiments (involving prerecorded image se-
quences) and on-line experiments were conducted.
It turns out that one cycle of operations of the SCRT
system takes approximately 75 ms to process 640 X
480 images on an Intel P4 processor at 1.8 GHz run-
ning Linux. The cycle includes all SCRT system
functionality plus reading a stereo pair of 640 X 480
images from the hard disk. Approximately 40% of
the cycle time is spent on image input—output, 40%
on SCD, and the rest on the remaining modules.
The SCRT system may be modified to operate on
subsampled versions of the original images. More

precisely, if the input images are subsampled by a
factor of 2 (i.e., if 320 X 240 images are employed), the
SCRT cycle time drops to 35 ms. The reason why
the performance gain is not directly proportional to
the reduction in input data (i.e., a factor of 4) is that
SCRT always imports full-resolution images, which
are then subsampled appropriately. Therefore, ac-
quisition time is constant and independent of the
operational image resolution. As an illustration of
this claim, we measured image input—output and
subsampling to account for almost 80% of the cycle
time in the case of half-image resolution.

An important observation is that the SCR tra-
jectories computed in full image resolution closely
resemble the SCR trajectories computed at half-
resolution. To illustrate this finding, we applied the
SCRT system to Sequencel_head at both full and half
resolution and computed the average distance be-
tween the reconstructed 3D positions of the hand in
these two cases. This distance was of the order of 6
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Fig. 9. 3D trajectory of the hand detected in the experiment of
Fig. 8. The small straight-line segment that appears at the right
corresponds to the tray of the CD player.

Fig. 7. 3D trajectories of the SCRs tracked in the experiment of
Fig. 6. The top-left and middle-left isolated spots correspond to
the motion of the operator’s head and of the armchair’s arm, re-
spectively. The trajectory in the center of the image corresponds
to the hand trajectory. The upper facet of the CD player has also
been reconstructed, to serve as a reference.

Fig. 8. Tracking results for Sequence2_arm. Each SCR appears as a color blob superimposed upon the right image of the stereo pair.
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mm, thus demonstrating that a significant speedup
can be obtained with little sacrifice of accuracy.
Still, a rate of 13 Hz (for full resolution images) or 28
Hz (for half-resolution images) is considered suffi-
cient for purposes of the SCRT.

5. Discussion

In this paper, a skin-colored region tracker system
has been described. The SCRT is capable of detect-
ing and tracking multiple SCRs in scenes viewed by
a moving stereoscopic system in which each camera
can move independently. The computational perfor-
mance of the SCRT system is near real time when
operating in full-resolution 640 X 480 images and can
be considerably improved by subsampling the input
images by a factor of two. In this case, the SCRT
system operates in real time, without noticeable deg-
radation of the quality of the computed 3D trajecto-
ries.

Ongoing research activities are focused on improv-
ing the robustness of the SCRT system in the case of
overlapping SCRs. Tracking of each new SCR based
on Kalman filtering!® is expected to improve the ca-
pability of the SCRT system to handle occluded SCRs.

Currently, SCRs correspond to any skin-colored re-
gion in the employed images; moreover, each SCR is
represented as a point in 3D space. However, in
many cases it is desirable to focus attention on the
activities of human hands, and it would also be de-
sirable to provide information regarding the 3D po-
sition of each hand and the 3D positions of the
fingertips. Another avenue of research aims at pro-
viding specialized hand models that will turn a SCRT
system into a 3D hand tracker.

Finally, current research and development activi-
ties are targeted toward integrating vision-based
camera tracking techniques44 with the SCRT system.
We expect that vision-based camera tracking will
substantially improve the estimation of camera posi-
tion and orientation, which will in turn improve ac-
curacy in estimating the 3D position of a SCR.
Additionally, this will alleviate the current depen-
dence of SCRT on specialized equipment needed for
continual monitoring of the position and orientation
of the two cameras of a stereo rig.
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