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hree-dimensional tracking of multiple skin-colored
egions by a moving stereoscopic system

ntonis A. Argyros and Manolis I. A. Lourakis

A system that performs three-dimensional �3D� tracking of multiple skin-colored regions �SCRs� in
images acquired by a calibrated, possibly moving stereoscopic rig is described. The system consists of a
collection of techniques that permit the modeling and detection of SCRs, the determination of their
temporal association in monocular image sequences, the establishment of their correspondence between
stereo images, and the extraction of their 3D positions in a world-centered coordinate system. The
development of these techniques has been motivated by the need for robust, near-real-time tracking
performance. SCRs are detected by use of a Bayesian classifier that is trained with the aid of a novel
technique. More specifically, the classifier is bootstrapped with a small set of training data. Then, as
new images are being processed, an iterative training procedure is employed to refine the classifier.
Furthermore, a technique is proposed to enable the classifier to cope with changes in illumination.
Tracking of SCRs in time as well as matching of SCRs in the images of the employed stereo rig is
performed through computationally inexpensive and robust techniques. One of the main characteristics
of the skin-colored region tracker �SCRT� instrument is its ability to report the 3D positions of SCRs in
a world-centered coordinate system by employing a possibly moving stereo rig with independently
verging CCD cameras. The system operates on images of dimensions 640 � 480 pixels at a rate of 13
Hz on a conventional Pentium 4 processor at 1.8 GHz. Representative experimental results from the
application of the SCRT to image sequences are also provided. © 2004 Optical Society of America

OCIS codes: 150.6910, 330.0330.
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. Introduction

uman beings have a remarkable ability to interpret
he activities of other human beings visually. De-
eloping machines with similar perceptual and cog-
itive capabilities constitutes an ambitious research
oal. The accomplishment of this goal will have far-
eaching implications in a wide spectrum of applica-
ions such as human–machine interaction, gesture
racking for surveillance systems, and development
f tools for teaching by demonstration. The impor-
ance and the difficulty of solving this problem justify
he great volume of research effort that has been
evoted worldwide to providing a robust solution.
A fundamental building block of any system that is

ble to interpret activities is one that permits the
hree-dimensional �3D� tracking of a human operator
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s he or she performs a certain task. Several sen-
ors and techniques to achieve this goal have been
eveloped.1 Nevertheless, vision-based methods are
onsidered preferable because they are passive and
ot invasive, in the sense that they do not require
odification of the environment or wearing of any

pecial equipment by the human operator. A funda-
ental issue in human tracking is related to the
odeling of a human operator. The human body is
complex, nonrigid structure with many degrees of

reedom. Therefore the type and complexity of the
roposed models vary dramatically,2,3 depending
eavily on the requirements of the application do-
ain under consideration. For example, tracking

eople in an indoors environment in the context of a
urveillance application has completely different
odeling requirements from tracking the fingers of a
and for vision-based recognition of a sign language.
n the research reported here, skin color is the fun-
amental visual cue employed for detection of the
resence of a human being in a scene. Color offers
any advantages over geometric models, such as ro-

ustness to occlusions, changes in scale and resolu-
ion, and geometric transformations. Additionally,
he computational requirements of color processing
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re considerably lower than those associated with the
rocessing of complex geometric models. For these
easons, color-based models have been applied to a
road spectrum of applications, such as content-
ased image retrieval and quality control.

. Previous Work

ision-based methods for tracking skin-colored re-
ions in three dimensions need to provide answers to
everal questions, each of which constitutes an open
esearch problem: How is skin color modeled and
ow are instances of the model used detected in an

mage? How are detected instances associated tem-
orally in sequences of images? How is 3D position
nformation attained from the inherently two-
imensional �2D� observations of the tracked models?
What follows is a description of some representa-

ive methods for solving the problems listed above
hat have been proposed. It is important to note
hat the available options for solving partial problems
hould be evaluated with respect to several criteria,
uch as the quality of their results, their robustness,
nd their computational complexity.

. Skin-Color Modeling and Detection
major step toward providing a model of skin color is

he selection of the color space to be employed. Sev-
ral color spaces, including RGB,4 normalized
GB,5,6 HSV,7 YCrCb,8 and YUV,9 have been pro-
osed. Color spaces that efficiently separate the
hrominance from the luminance components of color
re typically preferable because, by employing only
hrominance-dependent components of color, one
ay achieve some degree of robustness to changes in

llumination. The choice of such color spaces is also
ustified by the fact that skin tones differ mostly in
hrominance and less in intensity. Terrillon et al.10

eviewed skin chrominance models and evaluated
heir performance.

When a suitable color space has been selected, the
implest methods define skin color by employing
ounds in the coordinates of this space.8 These
ounds are typically selected empirically, i.e., by ex-
mination of the distribution of skin colors in a pre-
elected set of images. Another approach to defining
kin color is to assume that the probabilities of skin
olors follow a distribution that can be learned. This
earning is achieved through an off-line procedure,
lthough on-line iterative methods have also been
uggested.7
In contrast to the aforementioned nonparametric

pproaches, another paradigm is related to methods
hat make use of parametric models. These meth-
ds are based either on a unimodal Gaussian
robability-density function5,9,11 or on multimodal
aussian mixtures12–15 that model the probability
istribution of skin color. Maximum-likelihood es-
imation techniques are used to derive the parame-
ers of unimodal Gaussian density functions.
ultimodal Gaussian mixtures require an

xpectation-maximization algorithm to be employed.
ccording to Yang and Ahuja,16 a mixture of Gauss-
ans is preferable to a single Gaussian distribution.
till, histogram models provide better accuracy and

ower computational cost than mixture models for the
etection of skin-colored areas in an image.6
A few of the proposed methods involve some sort of

daptation to become insensitive to changes in the
llumination conditions. For example, adaptation of

Gaussian mixture model that approximates the
ultimodal distribution of the object’s colors based on
recent history of detected skin-colored regions has

een suggested.12,13

Skin color is an important cue in detecting the
resence of humans in a scene. However, it is often
nsufficient to separate skin objects from nonskin ob-
ects that appear to be skin colored. Therefore skin
olor is often fused with other cues such as motion,
exture, shape, and 3D structure information. A re-
ent survey17 gave an interesting overview of the use
f color and other visual cues in skin-color detection.

. Tracking
s soon as skin-colored regions have been modeled
nd can be detected in an image, another major prob-
em must be addressed, which concerns the temporal
ssociation of these observations in an image se-
uence. The traditional approach to solving this
roblem has been based on the original work of Kal-
an18 and its extensions. If the observations and

bject dynamics are of a Gaussian nature, Kalman
ltering suffices to solve the tracking problem.
owever, in many cases the distributions are non-
aussian, and thus the underlying assumptions of
alman filtering are violated.
As noted by Spengler and Schiele,22 recent re-

earch efforts that deal with object tracking can be
lassified into two categories, those that solve the
racking problem in a non-Bayesian framework19–24

nd those that tackle it in a Bayesian framework.25–31

n many cases,25–27 the focus is on single-object track-
ng. These single-object approaches usually rely on
ophisticated, powerful object models. In other
ases28–31 the problem of tracking several objects in
arallel is addressed. Some of these methods solve
he multiobject tracking problem by employing con-
gurations of individual objects, thus reducing the
ultiobject tracking problem to several instances of

he less-difficult single-object tracking problem.
ther methods employ particle-filtering-based algo-

ithms, which track multiple objects simultaneously.
Despite the considerable amount of research that

as been devoted to tracking, an efficient and robust
olution to the general formulation of the problem is
till lacking, especially for simultaneous tracking of
ultiple targets.

. Three-Dimensional Reconstruction
racking provides a mechanism for associating ob-
ervations of models over time. Still, it involves 2D
nformation regarding the location of the tracked

odel. Providing 3D position information requires
t least two observations of the same object, from
ifferent viewpoints. Although techniques based on
10 January 2004 � Vol. 43, No. 2 � APPLIED OPTICS 367
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ultiple views acquired from more than two cameras
ave been proposed,32 most of the existing approach-
s33 involve a single, calibrated stereoscopic system.
To the best of our knowledge, all existing ap-

roaches use a static stereoscopic system because em-
loying a moving stereoscopic system would
onsiderably complicate the process of tracking. If
he stereoscopic system moves, everything changes in
he fields of view of both cameras. Therefore, back-
round subtraction �i.e., detection of temporal
hange� cannot be used as a means of providing ad-
itional evidence regarding the presence of moving
kin-colored regions �SCRs�. Further complications
elated to 3D reconstruction are introduced when the
eometry of the stereoscopic system does not remain
onstant over time, i.e., when cameras with indepen-
ent pan and tilt control are employed. Employing a
oving stereoscopic system is often desirable, how-

ver, because in this case cameras can be purpose-
ully positioned in a way that facilitates the
bservation of a certain activity.
An important implication of employing a stereo-

copic configuration for computing 3D trajectories of
racked objects is that model detection and tracking
hould be performed in both views, thus increasing
he computational requirements of the tracking sys-
em. In addition, an extra computational step is re-
uired that relates the two images of a stereo pair to
ach other. This is a crucial task because it permits
he extraction of 3D information through standard
D reconstruction techniques.34,35

. Proposed Approach to Three-Dimensional Tracking

n this paper we present our approach to 3D tracking
f multiple SCRs observed by a moving stereoscopic
ystem. This study was carried out in the context of
more-general research effort36 toward developing a

ognitive vision methodology to permit the interpre-
ation of activities of people who are handling tools.
esearch and development are focused on the active
bservation and interpretation of the activities, on
he extraction of the essential activities and their
unctional dependence, and on organizing the activi-
ies into their constituent behavior elements. The
pproach is active in the sense that the system seeks
o obtain views that facilitate the interpretation of
he activities observed. Therefore the ability to
odify the viewpoint of observation of a certain ac-

ivity is of utmost importance. Moreover, task and
ontext knowledge is exploited as a means to con-
train interpretation. Robust perception and inter-
retation of activities is the key to capturing the
ssential information that permits reproduction of
ask sequences from easy-to-understand representa-
ions.

The system that we propose is able to track and
eport the 3D trajectories of all SCRs that are present
n a viewed scene. The proposed method for detect-
ng SCRs has several attractive properties. A skin-
olor representation is learned through an off-line
rocedure. A new technique is proposed that elim-
nates much of the burden involved in generating
68 APPLIED OPTICS � Vol. 43, No. 2 � 10 January 2004
raining data. Moreover, the method adapts the
kin-color model based on the recent history of
racked SCRs. Thus, without the need for complex
odels, the proposed approach is able to detect SCRs

obustly and efficiently, even in conditions of chang-
ng illumination. The system employs a moving ste-
eoscopic rig with cameras that have independent
ergence control. To the best of our knowledge, this
s the first method that is capable of tracking SCRs
ased on a moving stereoscopic system. Despite the
otion of the cameras, the estimation of the 3D po-

ition of the detected and tracked SCRs is performed
n a world-centered �i.e., extrinsic to the cameras�
oordinate system. SCRs are tracked in time and
ssociated with the images of each stereo pair by use
f simple, computationally inexpensive techniques.
he tracking system is implemented in C and can
rack multiple SCRs at a rate of 13 Hz on a Pentium

processor running Linux; the stereo stream em-
loyed consists of images with dimensions 640 � 480
ixels.
The rest of the paper is organized as follows: In

ection 2 we describe the skin-colored region tracker
SCRT�. In Section 3 we provide sample results
rom operation of the SCRT in binocular image se-
uences. In Section 4, issues related to the compu-
ational performance of the SCRT are discussed.
inally, Section 5 provides the main conclusions of
his research as well as information on its extension
hat is still under investigation.

. Skin-Colored Region Tracker System

he SCRT is able to detect multiple SCRs and report
heir 3D positions by using images acquired by a
oving stereoscopic head, such as the one shown in
ig. 1. Apart from providing raw stereo image
treams, the stereoscopic head continuously provides

ig. 1. Stereoscopic head �courtesy of Profactor GmbH� that is
sed to acquire stereo image pairs that are fed to the SCRT system.
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he position and orientation of each of the two CCD
ameras with respect to a world-centered coordinate
ystem. This is accomplished through the use of
roprioceptive information provided by the motor en-
oders of the head. The SCRT exploits multiple cues
oward achieving SCR tracking. These cues include
olor information and structure information as well
s information regarding the camera positions and
he epipolar geometry of the stereo system. In the
emainder of this section we provide a brief outline of
he SCRT system; more-detailed descriptions of its
unctional modules are provided in subsequent sec-
ions.

At each time instance t, the stereoscopic system
cquires a synchronized image stereo pair, IL�t� and
R�t�. Each of the pair’s images is independently fed
o a skin-color detection �SCD� module. SCD in-
olves four key operations, specifically, �a� measure-
ent of the probability of a pixel’s being skin colored,

b� hysteresis thresholding on the derived probabili-
ies map, �c� connecting components labeling to de-
ermine SCRs, and �d� computation of statistical
nformation for each SCR �up to second-order mo-

ents�. These SCRs, together with SCRs derived at
he previous time instance t � 1, are then associated
n time �AT module�. The aims of using this module
re �a� to assign a new, unique label to each new SCR
i.e., to a SCR that appears in the field of view for the
rst time� and �b� to propagate the labels of already
etected SCRs in time. Then the SCRs detected in
he left- and the right-hand images, along with the
ssociated labels, are fed to a module that finds the
orrespondence between SCRs in the two images of
he stereo pair �AS module�. In fact, each SCR in the
ight image of the stereo pair is assigned the label of
he corresponding SCR in the left image of the stereo
air if such a corresponding SCR actually exists. Af-
er completion of this type of association, the cen-
roids of the corresponding SCRs are refined by a
orrelation-based stereo matching technique carried
ut by a centroid-matching �CM� module. This en-
ures that these points correspond to the same 3D
cene point. The refined matches are then fed to a
D reconstruction �3DR� module, which, taking into
ccount the known geometry of the stereoscopic sys-
em as well as the intrinsic calibration parameters of
he cameras, computes the 3D location of the centroid
hat pertains to each SCR. Finally, the 3D position
hat the system reports for each SCR is a weighted
um of 3D measurements in a sliding time window.
he temporal smoothing �TS� module provides this
ype of functionality. A high-level block diagram
hat provides an overview of the SCRT system is
llustrated in Fig. 2. In what follows, a more-
etailed description of each of the aforementioned
odules is provided.

. Skin-Color Detection Module

CD is one of the fundamental building blocks of the
CRT system. The goal of the SCD module is to
etect SCRs in an image. SCD adopts a Bayesian
pproach that involves an iterative training phase
nd an adaptive detection phase.

. Basic Supervised Training and Detection
echanisms
set of training input images is selected upon which
human operator manually marks SCRs. The color

epresentation used in this process37 is YUV 4:2:2,
hich directly encodes the images acquired by the

ameras used in the stereoscopic system of Fig. 1.
owever, the Y component of this representation is
ot employed for two reasons: �a� the Y component
orresponds to the illumination of an image point,
nd therefore by omitting it the developed classifier
ains some illumination-independent characteristics,
nd �b� employing a 2D color representation �UV�, as
pposed to a 3D representation �YUV�, reduces the
imensionality of the problem and lowers the compu-
ational requirements of the overall system.

Assuming that image points I�x, y� have a color c �
�x, y� � �u, v�, we use the training set to compute the
ollowing information:

• The prior probability P�s� of having skin color in
n image. This is the ratio of the skin-colored image
oints in the training set to the total number of image
oints.
• The prior probability P�c� of the occurrence of

ach color c in the training set. This is computed as
he ratio of the number of occurrences of each color c
o the total number of image points in the training
et.

• The prior probability P�c�s� that color c is a skin
olor. This is defined as the ratio of the number of
ccurrences of a color c within the skin-colored areas
o the number of skin-colored image points in the
raining set.

ased on the information extracted in the training
hase, the probability P�s�c� that a color c is a skin
olor can be computed by use of the Bayes rule38

P�s�c� �
P�c�s� P�s�

P�c�
. (1)

hen the probability that each image point I�x, y� will
e skin colored can be determined with the aid of a
ookup table indexed with the point’s color. The re-

Fig. 2. Block diagram of the SCRT system.
10 January 2004 � Vol. 43, No. 2 � APPLIED OPTICS 369
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ultant probability map is subsequently thresholded,
nd all image points with probability P�s�c� � Tmax
re considered skin colored. These points constitute
he seeds of potential SCRs. More specifically, im-
ge points with probability P�s�c� � Tmin, where Tmin
Tmax, that are immediate neighbors of skin-colored

mage points are recursively added to the set of skin-
olored points. The rationale behind this region-
rowing operation is that an image point with a
elatively low probability of being skin-colored should
e considered as such, when it is a neighbor of an
mage point with a high probability of being skin
olored. This hysteresis thresholding type of opera-
ion has been successfully applied to edge detection39

nd also proves extremely useful in the robust iden-
ification of SCRs. Indicative values for thresholds
max and Tmin are 0.5 and 0.15, respectively.
A connected-components labeling algorithm is then

esponsible for assigning labels to the image points of
arious SCRs. Size filtering of the connected com-
onents is also employed to eliminate small, isolated
lobs that are attributed to noise and do not corre-
pond to interesting SCRs. Thus, connected compo-
ents that consist of fewer than Tsize � 500 image
oints are rejected from further consideration. Each
f the remaining connected components corresponds
o a SCR whose 2D image position is defined by its
entroid.

. Adaptability
he basic scheme for SCD described above has two
ajor drawbacks:

• Training. Training is an off-line procedure
hat does not affect the on-line performance of the
CRT system. Nevertheless, it is a time-consuming
rocess in the sense that a human operator should
anually mark all skin-colored pixels in the chosen

raining set. Moreover, to obtain a training set that
s capable of supporting tracking of various skin tones
n images acquired from different cameras requires a
arge training set. Therefore, devising a method
hat will automate the processing of training data is
onsidered quite important.

• Detection. When illumination conditions vary,
he SCD module may produce poor results, despite
he fact that the color representation employed has
ertain illumination-independent characteristics.
ence a method is required that adapts the repre-

entation of skin-colored image points according to
he recent history of detected skin-colored points.

o cope with the first problem we developed an adap-
ive training procedure. Training is performed on
n initial, small set of images for which the human
perator provides ground truth by defining SCRs.
hen detection, together with hysteresis threshold-

ng, is used to update the prior probabilities P�s�, P�c�,
nd P�c�s� continually in new images. The updated
rior probabilities are then used to reclassify the full
ata set into skin-colored and non-skin-colored image
oints. When the classifier produces wrong results
70 APPLIED OPTICS � Vol. 43, No. 2 � 10 January 2004
false positives or false negatives�, manual user in-
ervention to correct these errors is necessary; still,
p to this point the classifier has automatically com-
leted much of the required work. The final train-
ng of the classifier is then performed based on the
raining set that results after user editing. This pro-
ess for adapting the prior probabilities P�s�, P�c�,
nd P�c�s� either can be disabled as soon as it is
ecided that the achieved training is sufficient for the
urposes of the SCRT system or can continue as more
nput images are fed into the system.

At this point it is important to note that hysteresis
hresholding is crucial for achieving the adaptation of
rior probabilities described above. If hysteresis
hresholding is not used, colors with probability P�s�c�

Tmax will never have the chance of being considered
kin colors. Hysteresis thresholding with a thresh-
ld Tmin considerably smaller than Tmax allows colors
ith low probability of representing skin to be con-

idered skin colors and permits the appropriate ad-
ptation of their probabilities.
To solve the second problem, the SCD module
aintains two sets of prior probabilities: P�s�, P�c�,

nd P�c�s�, which correspond to the training set, and
w�s�, Pw�c�, and Pw�c�s�, which correspond to the
vidence that the system gathers during the w most-
ecent frames. Clearly, the second set better reflects
he recent appearance of SCRs and is better adapted
o the current illumination conditions. SCD is then
erformed based on

PA�s�c� � aP�s�c� � �1 � a� Pw�s�c�, (2)

here P�s�c� and Pw�s�c� are both given by Eq. �1� but
nvolve prior probabilities that have been computed
rom the whole training set �for P�s�c�	 and prior prob-
bilities that have been computed from the detection
esults in the last w frames �for Pw�s�c�	. In Eq. �2�,
is a sensitivity parameter that controls the influ-

nce of the training set in the detection process �0 �
� 1�. If a � 1, then SCD takes into account only

he training set, and no adaptation takes place; if a is
lose to zero, then SCD becomes highly reactive, re-
ying strongly on the recent past for deriving a model
f the immediate future. Values of a � 0.8 and w �
gave good results in the tests that have been carried
ut.
A basic advantage of the proposed scheme lies in its

implicity. Other methods of adaptation have been
roposed in the literature.12,13 However, these
ethods require much more-complex modeling of the

olor characteristics of skin �i.e., modeling based on
ixtures of Gaussians�. An interesting study6 has

hown that, compared to mixture models, histogram
odels such as the one proposed in this paper provide

etter accuracy and lower computational cost for skin
etection.

. Associating Skin-Colored Regions in Time: AT
odule

s soon as a SCR is detected, it has to be tracked over
ime. This is a crucial function of the SCRT system
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ecause it provides the temporal continuity of SCR
bservations.
We denote by SC

t the set of all SCRs detected at
ime t in the image acquired by camera C �left or right
amera of the stereoscopic system�. Also, let SC

t�i�
e a particular SCR of this set with index i, 1 � i �

C
t, where NC

t is the cardinality of SC
t. A distance

easure DT�SC
t�1�i�, SC

t� j�	 between two SCRs,
C

t�1�i� and SC
t� j�, that have been detected at times

� 1 and t, respectively, is defined as follows:

DT�SC
t�1�i�, SC

t� j�	 � �mC
t�1�i� � mC

t� j��. (3)

n Eq. �3�, mC
t�k� denotes the centroid of SCR SC

t�k�
nd � � denotes vector magnitude. Equation �3�
tates that the distance between two SCRs is the
uclidean distance of their centroids. SCR SC

t�1�i�
atches SCR SC

t� j�, where

j � arg min
1�k�NCt


DT�SC
t�1�i�, SC

t�k�	�. (4)

he two SCRs, SC
t�1�i� and SC

t� j�, are assumed to
orrespond to the same physical object if �a� SC

t�1�i�
atches SC

t� j�, �b� SC
t� j� matches SC

t�1�i�, and �c�

T�SC
t�1�i�, SC

t� j�	 � TD and DT�SC
t� j�, SC

t�1�i�	 �

D. Criterion �a� essentially states that, among all
andidate SCRs at time t, the centroid of SC

t� j� is the
losest to the centroid of SC

t�1�i�. Symmetrically,
riterion �b� states that, among all candidate SCRs at
ime t � 1, the centroid of SC

t�1�i� is the closest to the
entroid of SC

t� j�. Criterion �c� provides an addi-
ional constraint on the actual distances of the cen-
roids of matching SCRs. TD is a distance threshold
hat depends on the image-acquisition frame rate and
n the velocity of the SCRs on the image plane. As-
uming intrinsically calibrated images, it can be
hown that

TD �
��Umax

C� � �Umax
O�� f

Zmin�
. (5)

n inequality �5�, Umax
O is the maximum lateral com-

onent of 3D motion of a skin-colored object, Umax
C is

he maximum expected lateral component of camera
otion, Zmin is the minimum expected distance of

his object from the camera, f is the focal length of the
amera measured in pixels, and � is the image-
cquisition frame rate. Then TD in inequality �5�
orresponds to the maximum expected displacement
etween two successive images in time of a point on
he image plane and is measured in pixels. The def-
nition of TD above is very conservative in the sense
hat it corresponds to a lateral motion of the object
ith respect to the camera, with camera motion oc-

urring in the direction opposite the object’s motion
nd with the object located close to the camera. In
ractice, smaller values for TD are sufficient for as-
ociating SCRs in time.
The labels at time t � 1 of all corresponding SCRs

re propagated to the current time instance t. All
CRs detected at time t that do not correspond to
CRs at time t � 1 are assigned new labels, because
hey constitute regions observed for the first time.
The AT module is employed independently on the
eft and the right images of the stereo pair. The
elated process is simple and computationally cheap.
oreover, it proves robust in all cases when SCRs do

ot overlap because of occlusions.

. Associating Skin-Colored Regions in a Stereo Pair:
S Module

o provide information regarding the 3D position of
ach SCR, the tracker should be able to define the
elationship of SCRs in the images of a stereo pair.
his purpose is served by the AS module. As has
lready been stated here, it is assumed that the po-
ition and the orientation of each camera of the stereo
air are known with respect to a world-centered co-
rdinate system. Based on this information, it is
ossible to compute the rotation matrix R and the
ranslation vector t of the relative rigid motion be-
ween the coordinate systems of the cameras of the
tereoscopic system. Knowledge of R and t, in turn
rovides the means to compute analytically the fun-
amental matrix F that captures the underlying epi-
olar geometry of the stereo pair40:

F �
1

det� AR�
�eR	x H
, (6)

here

eR � AR t, (7)

H
 � AR RAL
�1. (8)

n Eqs. �6�–�8�, AL and AR are the intrinsic calibration
atrices of the left and right cameras, respectively,

 is the homography of the plane at infinity, and eR

s the epipole in the right image. �eR	x denotes the
kew-symmetric matrix associated with the vector
ross product; i.e., for each vector y, �eR	xy � eR � y.
ssuming that mL and mR are two corresponding
oints in the left and the right images of the stereo
air, then mR is constrained to lie on the epipolar line

R, defined35 as lR � FmL. Similarly, mL is con-
trained to lie on the epipolar line lL, defined as lL �
TmR �see Fig. 3�. The AS module employs the epi-
olar constraint to relate the SCRs of the images of a
tereo pair. As in the case of the AT module, we
enote by SL

t and SR
t the sets of SCRs that have been

etected at time t in the left and right images of the
tereo pair, respectively. Moreover, SL

t�i� and
R

t� j� denote specific SCRs with indices i and j de-
ected at time t, 1 � i � NL

t and 1 � j � NR
t. A

istance measure DS�SL
t�i�, SR

t� j�	 is defined be-
ween two SCRs, SL

t�i� and SR
t� j�, as

S�SL
t�i�, SR

t� j�	 �

max
d�FmL
t�i�, mR

t� j�	,

d�FTmR
t� j�, mL

t�i�	�. (9)

n Eq. �9�, mL
t�i� and mR

t� j� are the centroids of SCRs
t�i� and S t� j�, respectively, and d�l, p� denotes the
L R
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3

uclidean distance of point p from line l. SCR SL
t�i�

atches SCR SR
t� j�, where

j � arg min
1�k�NRt


DS�SL
t�i�, SR

t�k�	�. (10)

ymmetrically, SCR SR
t� j� matches SCR SL

t�i�,
here

i � arg min
1�k�NLt


DS�SR
t� j�, SL

t�k�	�. (11)

wo SCRs, SL
t�i� and SR

t� j�, are assumed to corre-
pond to each other if SL

t�i� matches SR
t� j�, SR

t� j�
atches SL

t�i�, and DS�SL
t�i�, SR

t� j�	 � TS, where TS
s a threshold that depends on the accuracy of the
stimated epipolar geometry. Note that by defini-
ion this distance is symmetric; i.e., DS�SL

t�i�, SR
t� j�	

DS�SR
t� j�, SL

t�i�	.
For all corresponding SCRs, the label of the SCR in

he left image propagates to the corresponding SCR
n the right stereo image. All SCRs that have not
een paired are excluded from further consideration
n the subsequent process of 3D position estimation.
uch SCRs typically correspond to skin-colored ob-

ects that are visible only in one of the two cameras of
he stereo pair.

The method for matching SCRs described above
ecomes unstable if the epipolar geometry is not ac-
urately computed. In this case the threshold TS
as to be set conservatively to quite a large value,
hich leaves room for errors in matching the SCRs.
or this reason, 3D position information from previ-
us time instances can be used, if available. More
pecifically, when distances DS�SL

t�i�, SR
t� j�	 are

omputed, the 3D position of the SCR that results
rom the assumption that SL

t�i� actually corresponds
o SR

t� j� is computed. If the resultant 3D position is
nvalid �in the sense that this position either is not
lausible or differs substantially from the SCR’s 3D
osition in the previous time step�, a penalty term is
dded to the corresponding distance measure to guar-

ig. 3. Graphic illustration of the epipolar geometry of a stereo
air. Epipolar plane CLMCR intersects the two image planes
long epipolar lines lL and lR.
72 APPLIED OPTICS � Vol. 43, No. 2 � 10 January 2004
ntee that SL
t�i� and SR

t� j� will not be considered to
orrespond.

In general, the information on camera position and
rientation that is computed from the encoders of the
tereoscopic system is not reliable enough to permit
n accurate estimation of the epipolar geometry of
he stereo pair. For instance, experiments carried
ut with prerecorded image sequences indicated that
he average distance of image points from their esti-
ated epipolar lines was of the order of 15 pixels.
he later error, in turn, affects the robustness of the
S module. To overcome this problem we apply AS
nly to SCRs that appear in the field of view for the
rst time. As soon as this is achieved, the AT mod-
le, which is more robust than the AS module, prop-
gates the correct SCR labels in both images of the
tereo pair, as is exemplified in Fig. 4. It should be
entioned at this point that a more accurate, image-

ased estimation of the stereo system’s epipolar ge-
metry41 �as opposed to the currently employed
ncoder-based estimation� will considerably improve
he robustness of the AS module. Still, such meth-
ds incur a significant computational overhead that
s undesirable in the context of the SCRT system.

. Centroid Matching: CM Module

he matching of SCRs in the left and right images of
stereo pair leads to a rough correspondence be-

ween SCR centroids. This property can be used
irectly for deriving the 3D positions of SCRs. How-
ver, centroids are computed by the SCD module
rom the mean x and y coordinates of each SCR.
herefore it is not guaranteed that the left and right
entroids of a SCR will correspond to the same 3D
oint. To refine this rough, initial correspondence
e employ a correlation-based matching algorithm.
et mL and mR denote the centroids of a SCR in the

eft and the right images, respectively, of a stereo
air. Then a model template WM around mL and a
earch window W around m are defined. W is

ig. 4. Two methods of achieving the propagation of labels of
CRs both in time and between two stereo views. �a� The AS
odule is used to match SCRs of the left and the right images of

he stereo pair at each point in time. The AT module is used to
ropagate labels in time in the image sequence of the left camera
nly. �b� The AS module is used to match SCRs only when a new
CR appears in the field of view. Separate AT modules are then
sed to propagate the SCR labels in time independently for the left
nd the right image sequences. As the AT module is typically
ore robust than the AS module, the second approach is adopted.
S R M
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laced over all possible positions in WS, and a corre-
ation measure � is computed. The location mR� in

S where correlation measure � is maximized ��MAX�
s considered the refined right centroid of the specific
CR. We repeat the process symmetrically, by de-
ning a model template around mR and a search
indow around mL. If this search gives rise to a

orrelation score greater than �MAX for some point
L� in the left image, then we consider the �mL�, mR�

air of centroid correspondences instead of the �mL,
R�� pair. This centroid refinement process is re-

eated for all pairs of corresponding SCRs. Note
hat if epipolar geometry has been computed accu-
ately enough, search bands defined along epipolar
ines can be used instead of search regions. Corre-
ation measure � used in the CM module is inspired
y the work of Hirschmüller42 on dense stereo match-
ng. Model template WM is divided into five overlap-
ing subwindows, a central �WC�, an upper-left
WUL�, an upper-right �WUR�, a bottom-left �WBL�, and

bottom-right �WBR�. These five windows overlap
s shown in Fig. 5. All subwindows have dimen-
ions of 3 � 3 pixels, resulting in a 5 � 5 pixel model
emplate. Inasmuch as in the work of Hirschmül-
er42 a rectified stereo pair is assumed, search tem-
lates are essentially one dimensional. In our case,
he dimensions of the search window are 25 � 25
ixels.
At each placement of model template WM in search
indow WS, five correlation values, �C, �UL, �UR,
BL, and �BR, are independently computed. These
alues measure the correlation of each subwindow
ith the corresponding part in the search window.
hen we can compute correlation value � for this
lacement by adding the values of the two best sur-
ounding correlation windows, �max1 and �max2, to
hat of the middle window:

� � �C � �max1 � �max2. (12)

n fact, in this approach a small central window is
sed, and the correlation decision is supported by

our nearby windows. This formulation enables the
efinement process to cope well with depth disconti-

ig. 5. Configuration of overlapping windows used in the corre-
ation method proposed by Hirschmüller.42
uities and occluded and revealed regions that intro-
uce errors when standard correlation is employed
etween the model window and the corresponding
art of the search window. It should be noted that
epth discontinuities and occlusions are common in
his particular SCR tracking process, in which the
CRs are typically small image regions, closer to the
ameras than to their immediate surroundings.

. Three-Dimensional Reconstruction of the Positions of
kin-Colored Regions: 3DR Module

he refined centroid correspondence of the SCRs are
ed to a 3DR module, which computes the 3D position
f each SCR. Two different reconstruction methods
ave been considered.
In the first method40 the 3D position �X, Y, Z� of a

oint P, given its projections mL and mR in the left
nd the right images of a stereo pair, are computed as

Z � �
�mR � eR��mR � H
mL�

�mR � H
mL�2 ,

X � Z�AL
�1�0�	mL,

Y � Z�AL
�1�1�	mL. (13)

n Eqs. �13�, mL and mR are homogeneous vectors and
R and H
 are defined as in Eqs. �7� and �8�, respec-
ively. Moreover, �AL

�1�r�	 denotes the vector that
orresponds to the rth row of the inverse of the in-
rinsic calibration-parameter matrix of the left cam-
ra. Equation �13� gives the 3D position �X, Y, Z� of
oint P with respect to the coordinate system of the
eft camera. The 3D position of this point with re-
pect to the world-centered coordinate system can
asily be computed through a rigid 3D transforma-
ion involving the position of the left camera with
espect to the world-centered coordinate system.

In the second method the 3D position of a point is
omputed as the intersection of two 3D lines. More
pecifically, a 3D line is defined by 3D points CL and

L, where CL is the optical center of the left camera
nd ML is the 3D position of the centroid of a SCR on
he left image. Similarly, a second 3D line is defined
y 3D points CR and MR, where CR is the optical
enter of the right camera and MR is the 3D position
f the centroid of the corresponding SCR in the right
mage. In the case of perfect, noiseless measure-

ents these two lines should intersect at the desired
D point. However, noise in the corresponding im-
ge coordinates mL and mR as well as inaccuracies in
he calibration parameters will almost certainly re-
ult in these two lines’ being skewed. Then the 3D
ocation P of the SCR is43

P � 1⁄2 �CL � �̂L sL � CR � �̂R sR�, (14)

here

sL �
det�MR � ML�̂R�LR�

��LR�2
, sR �

det�MR � ML�̂L�LR�

��LR�2
,

(15)
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ˆL �
ML � CL

�ML � CL�
, �̂R �

MR � CR

�MR � CR�
, �LR � �L � �R.

(16)

f the 3D lines actually intersect, then P in Eq. �14� is
heir point of intersection. If the 3D lines are
kewed, then P is the midpoint of the minimum-
ength line segment whose endpoints lie on the two
D lines. Points CL, ML, CR, and MR can be easily
omputed from the known 3D positions and orienta-
ions of the cameras with respect to the world-
entered coordinate system and the knowledge of the
efined centroids of corresponding SCRs.

The first reconstruction method is based on accu-
ately computed epipolar geometry between the cam-
ras of the stereo pair and on the availability of point
atches that satisfy this epipolar geometry. If the
rst condition is satisfied and the second is not, there
xist methods34 to refine the point matches so as to
nforce that refined matches satisfy the prescribed
pipolar geometry. If, however, the epipolar geom-
try has not been accurately computed, the 3D recon-
truction is inaccurate even for perfect matches. In
he context of the SCRT system, the second method
rovides more-accurate 3D reconstruction results
han the first reconstruction approach and, therefore,
as been adopted in the 3DR module.

. Temporal Smoothing: TS Module

he temporal smoothing �TS� module performs tem-
oral filtering of the derived 3D position of each SCR,
ased on the assumption that the 3D trajectory of a
CR is smooth as a function of time. The current

mplementation considers 3D positions Pt�2, Pt�1,
nd Pt of a SCR as they were computed in the last
hree time instances, t � 2, t � 1, and t, and reports
D position P, defined as a weighted average of these
easurements:

P � 0.6Pt � 0.3Pt�1 � 0.1Pt�2. (17)

eights are appropriately adapted whenever 3D po-
ition measurements in time instances t � 2 or t � 1
re not available.

. Sample Results

n this section we provide representative results of
he application of the SCRT system to sequences of
tereo images. All experiments reported here as
ell as several others that are not included because of

pace limitations were conducted by employing the
ame set of parameters in the different SCRT mod-
les.
Experiments with two stereoscopic sequences, each

f which has been acquired by a different stereoscopic
ystem, are reported here. More specifically, the
rst sequence �Sequence1_head� was acquired by the
tereo head shown in Fig. 1, and the second sequence
Sequence2_arm� was captured by a different set of
ameras mounted upon a robotic arm. Despite the
act that in both experiments there are four cameras,
ach with different color response characteristics, a
74 APPLIED OPTICS � Vol. 43, No. 2 � 10 January 2004
ingle training set has been established and SCD has
een based on the same set of probabilities derived
hrough Eq. �1� for the images of all four cameras.
he initial, seed training set contained 40 images �10

rom each camera� and was later refined in a semi-
utomatic way �as described in Subsection 2.B� by
se of 160 additional images �40 from each camera�.
Sequence1_head shows a human operator manip-

lating a CD player �the operator opens the tray,
icks up a CD, places it in the tray, and closes the
ray�. The stereoscopic system does not move in this
xperiment. The full sequence consists of 146 left
nd 146 right frames. Figure 6 �top to bottom, left to
ight� shows characteristic snapshots from the track-
ng results obtained. Every tenth frame is shown in
his figure. For purposes of illustration, each SCR
ppears as a color blob superimposed upon the right
mage of the stereo pair. A cross marks the centroid
f each SCR. Moreover, an ellipse derived from the
tatistics of each SCR is shown surrounding each
olor blob. It can be seen that the system identifies
hree SCRs, namely, the head of the human operator,
he skin-colored arm of the armchair, and the hand of
he human operator. It can be verified that the la-
eling of the SCRs is consistent throughout the whole
equence, which means that SCRs are correctly
racked both in time and between the images of the
tereo pair.
Figure 7 shows the 3D trajectories computed by the

ystem for the three tracked SCRs. The upper facet
f the CD player has also been reconstructed to serve
s a reference. The trajectory of the operator’s hand
ppears to be qualitatively correct. In this sequence
he arm of the armchair does not move, and the head
f the operator moves slightly. To measure the sta-
ility of the derived 3D coordinates we computed the
D bounding box of all estimated 3D positions for
ach SCR. For the static arm of the armchair, the
imensions of this bounding box are 1.2 cm � 1.5
m � 1.6 cm, close to zero, as expected.

In the Sequence2_arm a human operator again
anipulates a CD player. In this sequence the cam-

ras move in time. The sequence consists of 134 left
nd 134 right frames. Figure 8 �top to bottom, left to
ight� shows characteristic snapshots from the track-
ng results. Every tenth frame is again shown in
his figure. It can be seen that the system identifies
wo SCRs, which correspond to the head of the hu-
an operator and to the hand of the human operator.

t can be verified that the labeling of the SCRs is
onsistent throughout the whole experiment, which
mplies that SCRs are correctly tracked both in time
nd between the images of the stereo pair. Figure 9
hows the 3D trajectory computed by the system for
he hand of the operator. Note that, despite the mo-
ion of the cameras, the hand’s trajectory appears
mooth, which serves as an indication that only small
ange errors, which are due to SCD detection, cen-
roid estimation, and camera motion estimation, are
ntroduced.

Videos related to the above experimental results
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an be retrieved at http:��www.ics.forth.gr�cvrl�
emos.html.

. Properties of the Skin-Colored Region Tracker’s
omputational Performance

everal tests aimed at assessing the functionality
nd the performance of a prototype implementation
f the SCRT system have been carried out. Both
ff-line experiments �involving prerecorded image se-
uences� and on-line experiments were conducted.
t turns out that one cycle of operations of the SCRT
ystem takes approximately 75 ms to process 640 �
80 images on an Intel P4 processor at 1.8 GHz run-
ing Linux. The cycle includes all SCRT system

unctionality plus reading a stereo pair of 640 � 480
mages from the hard disk. Approximately 40% of
he cycle time is spent on image input–output, 40%
n SCD, and the rest on the remaining modules.
he SCRT system may be modified to operate on
ubsampled versions of the original images. More

Fig. 6. Tracking results for Sequence1_head. Each SCR appear
recisely, if the input images are subsampled by a
actor of 2 �i.e., if 320 � 240 images are employed�, the
CRT cycle time drops to 35 ms. The reason why
he performance gain is not directly proportional to
he reduction in input data �i.e., a factor of 4� is that
CRT always imports full-resolution images, which
re then subsampled appropriately. Therefore, ac-
uisition time is constant and independent of the
perational image resolution. As an illustration of
his claim, we measured image input–output and
ubsampling to account for almost 80% of the cycle
ime in the case of half-image resolution.

An important observation is that the SCR tra-
ectories computed in full image resolution closely
esemble the SCR trajectories computed at half-
esolution. To illustrate this finding, we applied the
CRT system to Sequence1_head at both full and half
esolution and computed the average distance be-
ween the reconstructed 3D positions of the hand in
hese two cases. This distance was of the order of 6

color blob superimposed upon the right image of the stereo pair.
s as a
10 January 2004 � Vol. 43, No. 2 � APPLIED OPTICS 375
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ig. 7. 3D trajectories of the SCRs tracked in the experiment of
ig. 6. The top-left and middle-left isolated spots correspond to

he motion of the operator’s head and of the armchair’s arm, re-
pectively. The trajectory in the center of the image corresponds
o the hand trajectory. The upper facet of the CD player has also
een reconstructed, to serve as a reference.
Fig. 8. Tracking results for Sequence2_arm. Each SCR appears as a color blob superimposed upon the right image of the stereo pair.
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ig. 9. 3D trajectory of the hand detected in the experiment of
ig. 8. The small straight-line segment that appears at the right
orresponds to the tray of the CD player.
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m, thus demonstrating that a significant speedup
an be obtained with little sacrifice of accuracy.
till, a rate of 13 Hz �for full resolution images� or 28
z �for half-resolution images� is considered suffi-

ient for purposes of the SCRT.

. Discussion

n this paper, a skin-colored region tracker system
as been described. The SCRT is capable of detect-

ng and tracking multiple SCRs in scenes viewed by
moving stereoscopic system in which each camera

an move independently. The computational perfor-
ance of the SCRT system is near real time when

perating in full-resolution 640 � 480 images and can
e considerably improved by subsampling the input
mages by a factor of two. In this case, the SCRT
ystem operates in real time, without noticeable deg-
adation of the quality of the computed 3D trajecto-
ies.

Ongoing research activities are focused on improv-
ng the robustness of the SCRT system in the case of
verlapping SCRs. Tracking of each new SCR based
n Kalman filtering18 is expected to improve the ca-
ability of the SCRT system to handle occluded SCRs.
Currently, SCRs correspond to any skin-colored re-

ion in the employed images; moreover, each SCR is
epresented as a point in 3D space. However, in
any cases it is desirable to focus attention on the

ctivities of human hands, and it would also be de-
irable to provide information regarding the 3D po-
ition of each hand and the 3D positions of the
ngertips. Another avenue of research aims at pro-
iding specialized hand models that will turn a SCRT
ystem into a 3D hand tracker.
Finally, current research and development activi-

ies are targeted toward integrating vision-based
amera tracking techniques44 with the SCRT system.
e expect that vision-based camera tracking will

ubstantially improve the estimation of camera posi-
ion and orientation, which will in turn improve ac-
uracy in estimating the 3D position of a SCR.
dditionally, this will alleviate the current depen-
ence of SCRT on specialized equipment needed for
ontinual monitoring of the position and orientation
f the two cameras of a stereo rig.
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