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Abstract
Corner matching constitutes a fundamental vision prob-

lem that serves as a building block of several important ap-
plications. The common approach to dealing with this prob-
lem starts by ranking potential matches according to their
affinity, which is assessed with the aid of window-based in-
tensity similarity measures. Then, actual matches are es-
tablished by optimizing global criteria involving all poten-
tial matches. This paper puts forward a novel approach for
solving the corner matching problem that uses mutual in-
formation as a window similarity measure, combined with
graph matching techniques for determining a matching of
corners that is globally optimal. Experimental results illus-
trate the effectiveness of the approach.

1. Introduction
Image corners, that is points of localized image structure

which are formed at the boundaries of different brightness
image regions, constitute one of the most widely used types
of image features in computer vision. Determining the cor-
respondence between two sets of corners extracted from a
pair of views imaging the same scene, is a prerequisite to
a broad range of vision tasks, including, among others, dis-
crete motion estimation, feature-based stereo, object recog-
nition and localization, image registration and camera self-
calibration. The correspondence (or matching) problem, can
be defined as that of identifying features in each set having
distinct counterparts in the other set.

Most approaches in the literature for solving the cor-
respondence problem implicitly assume that the employed
images have a short baseline. In other words, it is assumed
that the camera displacement and the change in camera ori-
entation between images are small. Therefore, pixels lying
within small rectangular image windows (templates) cen-
tered on corresponding corners should have similar intensi-
ties and their disparities could be well approximated by the
same 2D translation. Considering two sets of corners de-
tected in the images to be matched, the affinity of potential
corner matches that satisfy a maximum disparity constraint
is quantified with the aid of local, window-based similarity

measures. Typically, the latter include metrics such as stan-
dard intensity cross-correlation, normalized (i.e. zero mean)
cross-correlation and sum of squared intensity differences.
Following the evaluation of the similarities corresponding
to potential pair matches, actual matches are determined us-
ing various schemes that involve more global criteria. For
example, Horaud and Skordas [5] identify maximal cliques
in a relational graph, Zhang [13] employs relaxation label-
ing, Pilu [9] relies upon the SVD of a proximity matrix,
Smith et al [11] propose a “winner takes all” strategy, Jung
and Lacroix [6] estimate an approximate affine transforma-
tion among matches and Maciel and Costeira [8] resort to
concave programming. In contrast to the above approaches,
when the corners to be matched originate from images ac-
quired from considerably different viewpoints, the assump-
tion of the same disparity and photometric characteristics
for all pixels in the neighborhoods of corresponding corners
is no longer valid. In such cases, changes in illumination
and perspective foreshortening effects should be more accu-
rately accounted for. One of the first approaches along this
line was that of Baumberg [1], who employs affine texture
invariants which explicitly take into account linear transfor-
mations of the image data. Purely geometric approaches ex-
ploiting scene constraints have also been proposed [7].

This paper proposes a novel method for solving the
short baseline corner matching problem that combines an
information theoretic local similarity measure and graph
matching techniques. More precisely, the strength of po-
tential matches is assessed by employing mutual informa-
tion, a random variables similarity measure that is well-
established in the medical image registration domain. Then,
corner matching is achieved through the solution of a maxi-
mum weight maximum cardinality flow problem on a graph
whose edges are weighted by the mutual information scores.
Using a state of the art graph algorithm, the associated flow
problem can be solved very efficiently. To the best of our
knowledge, the work reported here is the first to employ mu-
tual information as a window similarity measure for corner
matching. The rest of the paper is organized as follows. Sec-
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tion 2 introduces mutual information and provides a brief
discussion regarding its use for comparing image regions.
Section 3 defines the maximum weight maximum cardi-
nality graph matching problem. Section 4 builds upon the
two previous ones to describe the proposed corner match-
ing technique. Experimental results are provided in section
5 and section 6 concludes the paper.

2. Mutual Information
Mutual information (MI) is an information theoretic sim-

ilarity measure assessing the dependence of one random
variable on another. MI has been extensively used in the
area of multimodal medical image registration yielding very
good results; a recent relevant survey can be found in [10].
MI is defined with the aid of Shannon entropies, without the
need for knowing the exact functional form of the random
variables to be compared. Specifically, let ���� and ���� be
the probability distribution functions pertaining to two ran-
dom variables � and � respectively. The mutual informa-
tion � corresponding to the two random variables is defined
as

���� �� � ���� � ���� � ���� ��� (1)

where ���� and ���� are the marginal entropies derived
from the probability distribution functions corresponding to
� and �, i.e.
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Moreover, ���� �� is the joint entropy derived from the
joint distribution function ���� �� as
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Intuitively, maximizing MI is equivalent to minimizing the
joint entropy relative to the marginal ones. MI can thus be
thought of as a measure of how well one random variable
explains the other, i.e. a measure of the amount of informa-
tion � contains about � and vice versa. When comparing
digital images using MI, the intensities of pixels within im-
age regions are treated as random variables whose proba-
bility density functions are either approximated using dis-
crete gray level histograms or estimated using Parzen win-
dow techniques. MI is maximized at the optimal alignment
of image regions, for which the amount of information they
contain about each other is maximal. Rather than being re-
stricted to comparing image regions related with a single
2D translation, MI can be adapted to handle regions under-
going more complex (e.g. affine) 2D transformations [10].

A known problem with MI is that it is computed on
overlapping parts of images and is therefore sensitive to
both the amount and content of overlap. To overcome this,
Studholme et al [12] have proposed a normalized measure

of MI that is less sensitive to changes in overlap:

	
���� �� �
���� � ����

���� ��
� (2)

3. The Maximum Weight Maximum Cardi-
nality Graph Matching Problem

Owing to the fact that the task of corner matching will
be formulated in section 4 as a maximum weight maximum
cardinality graph matching problem, this section introduces
the latter and discusses how can a publicly available soft-
ware package be extended in order to deal with it.

Corner matching can be thought of as an application of
the linear assignment problem. In the classical assignment
problem, the goal is to find an optimal, one-to-one assign-
ment of agents to tasks which ensures that all tasks are com-
pleted. The objective might be to minimize the total time
to complete a set of tasks, to maximize profit, or to min-
imize the cost of the assignments. The assignment prob-
lem is a particular instance of a broader class of combina-
torial optimization problems that can be reduced to a max-
imum weight maximum cardinality bipartite graph match-
ing problem. A graph � � �� � �� is called bipartite if the
set of vertices � can be divided into two disjoint subsets
such that no edge from � connects vertices in the same set.
A matching in a graph � is a subset � of � such that no
two edges share a common vertex. A maximum cardinality
matching is a matching with a maximum number of edges.
If the edges of the graph have an associated weight, then a
maximum weight matching is a matching such that the sum
of the weights of the edges in the matching is maximum. A
maximum weight maximum cardinality matching is thus a
maximum cardinality matching with maximum weight [2].

Since a maximum weight maximum cardinality match-
ing problem can in turn be cast as a maximum weight flow
problem, the notions of flow networks and flows are intro-
duced next. A flow network is a directed graph � having
two distinct nodes � (the “source”) and � (the “sink”). A
non-negative function ��	�� specifies for each edge 
 of �
its capacity ��	�
�, that is the maximum amount of flow
that can pass from 
. A flow in a network is a real func-
tion defined on edges and satisfying the capacity constraint,
i.e. the flow over an edge must not exceed its capacity, and
the flow conservation constraint, i.e., the flow out of � must
be the same as the flow into �. In a maximum weight flow
problem, the goal is to convey a given amount of flow from
� through the network to �, in such a way that the sum of
the weights of the employed edges is maximum. To solve
the maximum weight maximum cardinality matching prob-
lem for a bipartite graph �, a corresponding flow network
�

�

� ��
�

� �
�

� is defined as follows: Let � and � be new
vertices not in � and �

�

� � � ��� ��. If the vertices of
� are partitioned as � � 	 � 
, the edges �

�

of �
�

are
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given by �
�

� ���� �� � � � �� � ���� �� � � � �� � �
� ��� ��� �� � �� � ���� �� � � � ��. Each edge in �

�

is
assigned unit capacity. Edges that originate from the source
or terminate at the sink are assigned zero weight. The re-
maining edges are assigned the weight of their correspond-
ing edge in the bipartite graph. With the previous definitions
plus a supply and demand of � flow units at � and � respec-
tively, a maximum weight flow through �

�

corresponds to
a maximum weight matching for � [2]. The cardinality of
this matching is equal to �, which is the amount of flow of-
fered to �

�

at its source.
A maximum weight flow problem can be easily trans-

formed to a minimum weight (i.e. minimum cost) one by
negating edge weights. A high performance, freely available
code for the minimum cost flow problem is CS2, employ-
ing a scaling push-relabel algorithm and developed in C by
Goldberg [3]. Apart from providing a solution to the min-
imum cost flow problem, CS2 is also capable of providing
negative answers to cases that are unsolvable due to the flow
supply at � exceeding the network’s capacity. To cope with
the maximum weight maximum cardinality matching prob-
lem, this last feature of CS2 can be exploited to extend it ap-
propriately. Notice that if the maximum weight flow prob-
lem of cardinality � is unsolvable, the same holds true for
all such problems having cardinality �

�

� �. Hence, the
maximum cardinality of a solution to the maximum weight
flow problem can be determined by embedding CS2 in a bi-
nary search framework, as follows. Let� be an upper bound
for the maximum cardinality of a solution to the maximum
weight flow problem1. Since a trivial lower bound for the
sought cardinality is 0, if the maximum weight flow prob-
lem of cardinality �

�
is solvable, then the maximum cardi-

nality must be in the range ��
�
� 	� � 
, otherwise it has to

lie within ��� �

�
� 	
. CS2 is thus applied recursively us-

ing a flow supply equal to the midpoint of the current ca-
pacity range. The process stops when the current capacity
lower bound exceeds or becomes equal to the upper one.

4. The Proposed Corner Matching Method
Conventional applications of MI for medical image reg-

istration aim at estimating a single, global 2D transforma-
tion relating the images to be registered. Therefore, they are
based on estimating MI for large patches or even for the
whole image frames. However, when dealing with corner
matching, there exists no single 2D transformation relating
all corresponding corners between the two images. Conse-
quently, in this case MI needs to be estimated locally using
small image windows centered on image corners.

The proposed method starts by detecting corners in both
images. In our implementation, the Harris corner detector
[4] has been employed. Most uses of matched corners do

1 � can, for example, be selected as the smallest of the cardinalities of
the two corner sets to be matched.

not benefit from large numbers of corners that are concen-
trated in the same image region. Aiming at making the de-
tected corners more evenly distributed in images, the lat-
ter are divided into tiles using a �	 � grid and the 	 most
prominent corners are detected in each tile. Since the size
of image windows used for computing MI is small, the
corresponding discrete histograms for 8 bit grayscale im-
ages are likely to be sparse, having little statistical meaning.
To avoid this contingency, the graylevels of window pix-
els are requantized using fewer than 256 intensity bins (64
in our implementation). In certain cases, it is also benefi-
cial to smooth image windows prior to requantization using
a 
	 
 Gaussian filter. After the image window preprocess-
ing operations have been completed, potential matches are
determined and their affinity is assessed. More specifically,
for each corner from the first image, all second image cor-
ners that are such that their underlying disparity is less than
one third of the smallest image dimension, qualify as its po-
tential matches. The similarity score of each pair of poten-
tial corner matches is computed from the corresponding im-
age windows as their normalized MI defined by Eq. (2). The
similarity score for potential corner matches exceeding this
disparity threshold is taken to be equal to zero. Addition-
ally, the similarity score of all pairs of potential matches
whose NMI score is lower than a certain threshold is reset
to zero. This is due to the fact that mismatched corners are
expected to have lower NMI compared to correct ones, and
therefore their number can be reduced by thresholding the
NMI scores. Apart from reducing the mismatched corners,
thresholding also reduces the number of potential matches,
thus reducing the size of the whole matching problem.

The two sets of corners detected in the images define the
vertices of a bipartite graph whose edges correspond to po-
tential match pairs having a nonzero similarity score. Edge
weights are determined from the NMI scores pertaining
to the corresponding potential matching pairs. Evidently,
a solution of the maximum weight maximum cardinality
problem for this graph gives rise to a solution of the cor-
ner matching problem that maximizes both the total num-
ber of matched corners and the global similarity of the se-
lected matches. To solve this optimization problem, the pro-
cedure outlined in section 3 is employed to transform the
constructed bipartite graph into a flow network. The sup-
ply of incoming flow to this network, which determines the
maximum cardinality of the corresponding matching prob-
lem, is determined using CS2 coupled with the previously
explained binary search scheme. When dealing with appli-
cations where a certain, fixed number of matched corners
� is desired, corner matching amounts to solving only one
instance of the maximum weight graph matching problem.
Thus, corner matching can be achieved by a variant of the
proposed method which involves a single execution of CS2
on the flow graph with an input flow of � units. It is also
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Figure 1. The first two images from the Aren-
berg castle sequence (courtesy U. Leuven/VISICS).

worth pointing out that the procedure just described for de-
termining pair matches using graph matching techniques
can be applied regardless of the exact similarity measure
used for ranking potential pair matches.

5. Experimental Results
Due to space limitations, this section reports experiments

conducted with a single image pair only. Qualitatively simi-
lar results were obtained when using other image pairs. Cor-
ners have been detected with subpixel accuracy using the
Harris operator. Using bilinear interpolation, subpixel inten-
sity information has also been computed for the �����win-
dows used for comparing the detected corners. To reduce
the computational overhead for calculating NMI, lookup ta-
bles have been employed to precompute the logarithms in-
volved in Eq. (2) for all possible discrete probability val-
ues. The experiment reported here was performed with the
aid of the first two images of the well-known “castle” se-
quence, shown in Fig. 1. Around 600 corners were detected
in each image and, after eliminating potential matches with
a NMI score less than 1.15, 391 matches were established
by the proposed method. Those matches were employed to
robustly estimate the fundamental matrix corresponding to
the two images, using the algorithm described in [14]. The
root median square (RMedS) distance of points in the sec-
ond image from their corresponding epipolar lines deter-
mined by the estimated fundamental matrix was 0.36 pixels,
indicating that the majority of matched corners were indeed
correct ones. Although space limitations prevent us from
presenting quantitative timing results, we have found exper-
imentaly that using CS2 for determining actual matches re-
quires a few hundred milliseconds, thus being substantially
faster than our optimized implementation of the relaxation
labeling technique of [13]. Next, the performance of NMI
as a window similarity measure was compared to that of
two other measures, namely normalized cross-correlation
(NCC) and sum of squared differences (SSD). To achieve
this, NMI, NCC and SSD where in turn used to assess the
similarity of potential matches and then the graph match-
ing technique of section 4 was employed to determine the
actual matches for each measure; no other parameters were
changed among runs. Furthermore, to avoid fiddling with
dissimilar similarity thresholds and at the same time ensure
that the same number of corner matches was determined for

each measure, the fixed cardinality variant of the proposed
graph matching technique with a supply of 300 was em-
ployed. Thus, the solutions to three graph matching prob-
lems provided the 300 best matches according to each simi-
larity measure. Then, the matches common to all three runs
were determined and were found to be 247. The perfor-
mance of each similarity metric is measured using the frac-
tion of mismatches it generates. To avoid the tedious proce-
dure of manually classifying matches into correct and erro-
neous ones, the 247 common matches were used to estimate
the underlying fundamental matrix with [14]. Then, this es-
timate was used to label as mismatches the matches whose
distance from their corresponding epipolar lines in the sec-
ond image was larger than one pixel. NMI was found to pro-
duce 37 mismatches, i.e. 12.3% of the total matches, NCC
36 (12%) and SSD 31 (10.3%). These results indicate that
NMI performs very similar to NCC/SSD and agree with the
findings of [11] which reports that SSD outperforms NCC.
However, before drawing definitive conclusions regarding
the performance of NMI relative to NCC/SSD, further com-
parative experiments should be conducted.

6. Conclusions
This paper has presented a novel approach to the prob-

lem of corner matching. This approach is based on the use
of mutual information and has demonstrated the feasibility
of using the former as an intensity window similarity mea-
sure. Additionally, this paper has explained the reduction of
the corner matching problem into a maximum weight max-
imum cardinality problem for which a solution can be ob-
tained in a rigorous and efficient manner. Experimental re-
sults have demonstrated the effectiveness of the approach.
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