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Bundle adjustment using the Levenberg-Marquardt minimization algorithm is al-
most invariably used as the last step of every feature-based structure and motion
estimation vision algorithm to obtain optimal 3D structure and viewing parameter es-
timates. However, due to the large number of unknowns contributing to the minimized
reprojection error, a general purpose implementation of the Levenberg-Marquardt
algorithm incurs high computational costs when applied to the problem of bundle
adjustment. Fortunately, the lack of interaction among parameters for different 3D
points and cameras in multiple view reconstruction results in the underlying normal
equations exhibiting a sparse block structure, which can be exploited to gain consid-
erable computational benefits. This paper presents the design and explains the use
of sba, a publicly available C/C++ software package for generic bundle adjustment
based on the sparse Levenberg-Marquardt algorithm.



The Design and Implementation of a Sparse Bundle Adjustment Package 1

1 Introduction

Bundle Adjustment (BA) is almost invariably used as the last step of every feature-
based multiview structure and motion estimation algorithm; see, for example,
[10, 3, 6, 21, 27]. BA was originally conceived in the field of photogrammetry [24]
and has increasingly been used by vision researchers during the last decade. An ex-
cellent overview of its application to vision-based reconstruction is given in [25]. BA
is a technique for simultaneously refining the 3D structure and viewing parameters
(i.e. camera pose and possibly intrinsic calibration and radial distortion), to obtain
a reconstruction which is optimal under certain assumptions regarding the noise per-
taining to the observed image features [25]: If the image error is zero-mean Gaussian,
then BA is the Maximum Likelihood Estimator. Its name refers to the “bundles” of
light rays originating from each 3D feature and converging on each camera centre,
which are adjusted optimally with respect to both structure and viewing parameters.

BA amounts to minimizing the reprojection error between the observed and pre-
dicted image points, which is expressed as the sum of squares of a number of non-
linear real-valued functions. Thus, the minimization is achieved using non-linear least
squares algorithms [4, 18], of which the Levenberg-Marquardt (LM) has proven to be
the most successful due to its use of an effective damping strategy that lends it the
ability to converge promptly from a wide range of initial guesses [11]. By iteratively
linearizing the function to be minimized in the neighborhood of the current estimate,
the LM algorithm involves the solution of linear systems known as the normal equa-
tions. Considering that the normal equations are solved repeatedly in the course of
the LM algorithm and that each computation of the solution to a dense linear system
has complexity O(N?3) in the number of parameters, it is clear that general purpose
implementations of the LM algorithm, such as MINPACK’s LMDER [19] or PORT3’s
DN2G ! [5] routines for example, are computationally very demanding when employed
to minimize functions depending on many parameters. Fortunately, when solving
minimization problems arising in BA, the normal equations matrix has a sparse block
structure owing to the lack of interaction among parameters for different 3D points
and cameras. Therefore, considerable computational benefits can be gained by devel-
oping a tailored sparse variant of the LM algorithm which explicitly takes advantage
of the normal equations zeroes pattern.

This paper presents the design and implementation in ANSI C of sba, a generic
sparse BA package which is distributed under the terms of the GNU General Pub-

lic License?

. sba is also usable from C++ and is generic in the sense that it grants
the user full control over the choice of parameters and functional relations describing
cameras, 3D structure and image projections. Therefore, it can support a wide range

of manifestations/parameterizations of the multiple view reconstruction problem such

!By keeping the terms due to the second derivative in the Hessian of e”e (see section 2), routine
DN2G actually implements a more general strategy compared to that of the classical Levenberg-
Marquardt and is often more appropriate for large residual problems.

%See http://www.gnu.org/copyleft/gpl.html
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as arbitrary projective cameras, partially or fully intrinsically calibrated cameras, ex-
terior orientation (i.e. pose) estimation from fixed 3D points, refinement of intrinsic
calibration parameters, etc. The authors have successfully employed sba for dealing
with the problem of camera tracking [14] in sequences involving a few thousands 3D
points whose image projections depended on a few hundreds camera parameters. The
sba package can be downloaded from http://www.ics.forth.gr/“lourakis/sba.
The rest of the paper is organized as follows. Section 2 briefly explains the conven-
tional, dense LM algorithm for solving non-linear least squares minimization problems.
Section 3 develops a sparse BA algorithm by adapting the LM to exploit the sparse
block structure of the normal equations. Technical details regarding the implementa-
tion and use of the sba package are given in section 4. A sample use case of sba is
presented in section 5 and the paper is concluded with a brief discussion in section 6.

2 The Levenberg-Marquardt Algorithm

The LM algorithm is an iterative technique that locates the minimum of a multivariate
function that is expressed as the sum of squares of non-linear real-valued functions
[13, 17]. It has become a standard technique for non-linear least-squares problems,
widely adopted in the field of computer vision. LM can be thought of as a combination
of steepest descent and the Gauss-Newton method. When the current solution is far
from the correct one, the algorithm behaves like a steepest descent method: slow, but
guaranteed to converge. When the current solution is close to the correct solution,
it becomes a Gauss-Newton method. For completeness purposes, a short description
of the LM algorithm based on the material in [16] is supplied next. Note, however,
that a detailed analysis of the LM algorithm is beyond the scope of this paper and
the interested reader is referred to [16, 20, 22] for more comprehensive treatments.

In the following, vectors and arrays appear in boldface and T is used to denote
transposition. Also, ||.|| and [|.||«c denote the 2 and infinity norms respectively. Let
f be an assumed functional relation which maps a parameter vector p € R™ to an
estimated measurement vector x = f(p), X € R™. An initial parameter estimate
po and a measured vector x are provided and it is desired to find the vector p*
that best satisfies the functional relation f, i.e. minimizes the squared distance €’'e
with ¢ = x — x. The basis of the LM algorithm is a linear approximation to f in
the neighborhood of p. For a small ||0p||, a Taylor series expansion leads to the
approximation

f(p+dp) = f(p) + Jdp, (1)

where J is the Jacobian matrix %(pp). Like all non-linear optimization methods,

LM is iterative: Initiated at the starting point pg, the method produces a series of
vectors pi, P2, .., that converge towards a local minimizer p™ for f. Hence, at each
step, it is required to find the dp that minimizes the quantity ||x — f(p + dp)|| =
l|x — f(p) — Jbop|| = |le — Jdp||. The sought 6, is thus the solution to a linear
least-squares problem: the minimum is attained when Jd, — € is orthogonal to the
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column space of J. This leads to JT(Jd, — €) = 0, which yields J,, as the solution of
the so-called normal equations [7]:

J735, =" (2)

The LM method actually solves a slight variation of Eq. (2), known as the augmented
normal equations

Nop = J'e, (3)

where the off-diagonal elements of N are identical to the corresponding elements of
JTJ and the diagonal elements are given by Nj; = p + [JTJ] . for some p > 0. The
strategy of altering the diagonal elements of J”'J is called damping and p is referred
to as the damping term. If the updated parameter vector p + dp with 6, computed
from Eq. (3) leads to a reduction in the error €, the update is accepted and the process
repeats with a decreased damping term. Otherwise, the damping term is increased,
the augmented normal equations are solved again and the process iterates until a
value of o, that decreases error is found. The process of repeatedly solving Eq. (3)
for different values of the damping term until an acceptable update to the parameter
vector is found corresponds to one iteration of the LM algorithm.

In LM, the damping term is adjusted at each iteration to assure a reduction in
the error e. If the damping is set to a large value, matrix N in Eq. (3) is nearly
diagonal and the LM update step d is near the steepest descent direction. Moreover,
the magnitude of 0 is reduced in this case. Damping also handles situations where
the Jacobian is rank deficient and J7J is therefore singular [12]. In this way, LM
can defensively navigate a region of the parameter space in which the model is highly
nonlinear. If the damping is small, the LM step approximates the exact quadratic
step appropriate for a fully linear problem. LM is adaptive because it controls its own
damping: it raises the damping if a step fails to reduce €; otherwise it reduces the
damping. In this way LM is capable to alternate between a slow descent approach
when being far from the minimum and a fast convergence when being at the minimum’s
neighborhood [12]. The LM algorithm terminates when at least one of the following
conditions is met:

e The magnitude of the gradient of — €', i.e. J”¢ in the right hand side of Eq. (2),
drops below a threshold ¢;

e The relative change in the magnitude of ¢, drops below a threshold e
e A maximum number of iterations ky,,, is completed

If a covariance matrix 3y for the measured vector x is available, it can be incorporated
into the LM algorithm by minimizing the squared ¥y !'-norm e/ I, e instead of the
Euclidean €”'e. Accordingly, the minimum is found by solving a weighted least squares
problem defined by the weighted normal equations

J'2 136, =372 e (4)
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The rest of the algorithm remains unchanged. The complete LM algorithm is shown
in pseudocode in Fig. 1. It is derived by slight modification of algorithm 3.16 in page
27 of [16]; more details regarding the LM algorithm can be found there. Indicative
values for the user-defined parameters are 7 = 1073, & = g5 = 10715, ke =
100. A free C/C++ implementation of this dense LM algorithm can be found at
http://www.ics.forth.gr/ lourakis/levmar.

Input: A vector function f : R™ — R"™ with n > m, a measurement vector x € R"
and an initial parameters estimate py € R™.

Output: A vector p™ € R™ minimizing ||x — f(p)||?.
Algorithm:
k:=0;v:=2; p:=po;
A=J13; ¢, :=x— f(p); g := I ep;
stop:=(||glloo < £1); 1 = 7+ maxi_1,._m(Ai);
while (not stop) and (k < kpaq)
k=k+1;
repeat
Solve (A + uI)dp = g;
T < el
stop:=true;
else
Pnew ;=P + 5p;
p = ([lep]|* = l1x = f(Pnew) 1)/ (35 (1Ip + 8));
ifp>0
P = Pnew;

A=J31T¢,:=x—f(p); g:=Tep;

stop:=(||8]loc < £1);
= pxmax(3,1— (2p — 1)3); v =2
else
W= px v Vi=2%x;
endif
endif
until (p > 0) or (stop)

endwhile

Figure 1: Levenberg-Marquardt non-linear least squares algorithm; see text and [16,
20] for details. The reason for enclosing a statement in a rectangular box will be
explained in section 3.
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3 Sparse Bundle Adjustment

This section shows how can a sparse variant of the LM algorithm presented in section
2 be developed to deal efficiently with the problem of bundle adjustment. The de-
velopments and notation that follow are to a large extent based on the presentation
regarding sparse bundle adjustment in [9]. To begin, assume that n 3D points are
seen in m views and let x;; be the projection of the i-th point on image j. Bundle
adjustment amounts to refining a set of initial camera and structure parameter esti-
mates for finding the set of parameters that most accurately predict the locations of
the observed n points in the set of the m available images. More formally, assume
that each camera j is parameterized by a vector a; and each 3D point ¢ by a vector
b;. For notational simplicity it is also assumed that all points are visible in all images.
This assumption, however, is not necessary and, as will later be made clear, points
may in general be visible in any subset of the m views. BA minimizes the reprojection
error with respect to all 3D point and camera parameters, specifically

min > d(Q(aj, bi), xij)?, (5)

where Q(aj, b;) is the predicted projection of point ¢ on image j and d(x, y) denotes
the Euclidean distance between the inhomogeneous image points represented by x and
y. It is clear from (5) that BA is by definition tolerant to missing image projections
and, in contrast to algebraic approaches, minimizes a physically meaningful criterion.
Observe that through Q(), the definition in (5) is general enough to accommodate
any camera and structure parameterization. Note also that if x and A are respectively
the dimensions of each a; and b;, the total number of minimization parameters in (5)
equals mk + nA and is therefore large even for moderately sized BA problems.

BA can be cast as a non-linear minimization problem as follows. A parameter
vector P € RM is defined by all parameters describing the m projection matrices
and the n 3D points in Eq. (5), namely P = (a;”,...,a,",...,b;7,....b,)T. A
measurement vector X € RY is made up of the measured image point coordinates
across all cameras:

T T T T T \T
X:(Xll yroesXimoy X215 X2m oy ooy Xl Xnm ) : (6)

Let Py be an initial parameter estimate and Xx the covariance matrix corresponding
to the measured vector X (in the absence of any further knowledge, it is assumed that
Y x is the identity matrix). For each parameter vector, an estimated measurement
vector X is generated by a functional relation X = f(P), defined by

X = (%i1' o Riml s Rotl s Koml s ey Rnttae ey Kl )L (7)
with %x;; = Q(aj,bi).

Thus, BA corresponds to minimizing the squared Mahalanobis distance eTEile,
¢ = X — X over P. Evidently, this minimization problem can be solved by using
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the LM non-linear least squares algorithm to iteratively solve the weighted normal
equations
IT23136 = IT=3 e, (8)

where J is the Jacobian of f and § is the sought update to the parameter vector
P. As will shortly be demonstrated, the normal equations in Eq. (8) have a regular
sparse block structure that results from the lack of interaction between parameters
of different cameras and different 3D points. To keep the demonstration manageable,
a case with small n and m is worked out in detail; however, as will later become
apparent, the results are straightforward to generalize to arbitrary numbers of 3D
points and cameras.

Assume that n = 4 points are visible in m = 3 views. The measurement vector is
X = (xiT, xi27, xi37, xa17, x0T, %037, x51 T, x307, xg37, xa1 T, xaoT, xa3”)T.
The parameter vector is given by P = (a; 7, ayT, a3, biT, byT, by”, by’)7. Notice
that 55 = 0, V j # k and 5{ =0, Vi # k. Let Aj; and B;; denote %’:; and 53
respectively. The LM updating vector d can be partitioned into camera and structure
parameters as (5aT, 5bT)T and further as (5alT,5a2T,5aST,5b1T,5b2T,5b3T,5b4T)T.

The remainder of this section is devoted to elaborating a scheme for efficiently solving

the normal equations arising in LM minimization by taking advantage of their sparse
structure.

Taking into account the notation for the derivatives introduced in the previous
paragraph, the Jacobian J is given by

Ay 0 0 B 0 0 0
0 Ao, O Bp 0 0 0
0 0 A;3 Bz O 0 0
Asyy O 0 0 By O 0
0 Ax»p O 0 By O 0
B_X _ 0 0 A3y 0 By O 0 )
oP Ajs 0 0 0 0 B;s; O
0 As;p O 0 0 Bsy; O
0 0 A33 0 0 B33 0
Ay 0 0 0 0 0 By
0 Ap O 0 0 0 Byp
0 0 A, O 0 0 By

Eq. (9) clearly reveals the sparse nature of the matrix J. It is due to J’s sparseness
that the normal equations are themselves sparse. Let the covariance matrix for the
complete measurement vector be the block diagonal matrix

EX = diag(lel’ EXIZ’ Exl?)’ EXQI’ 2X227 2X23, EXSI’ 2X327 2X33’ 2){41, 2X42’ 2){43)'

(10)
Substituting J and Bx' from Egs. (9) and (10), the matrix product in the left hand
side of Eq. (8) becomes

TR-340 — FORTH-ICS, Aug. 2004 3 Sparse Bundle Adjustment
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4
§ : Tg—1 -1 -1 -1 —1
Ai” Ey An 0 0 AnTE B Ao T Boy A31T2x31B31 ALTE ] Ba
i=1
4
2 : Tg-1 -1 -1 -1 -1
Y Az By A 0 A TEL Bio Az e Boo AT, Bas A TEL) By
i=1
4
§ : Ty -1 —1 -1 -1 -1
0 0 AT By Aig ATEL B3 AT Bog AT Bag AT Bag
i=1
3
-1 -1 -1 E : Tg-1
By "= A Bi2TE L A Bi3TS  Ag Bij” By ; By Y 0 Y
j=1
3
-1 —1 —1 Tg—1
By TE;) An By TE;) Agn BasTEL L Ags 0 E Bo; TR ) Boj 0 0
j=1
3
-1 -1 -1 Tg-1
B3 TS5, As B3 TS5, Asgs B33 TS5, Ass 0 Y E Bgj” By, Baj Y
j=1
3
Ty-1 Ty-1 Ts—1 Te-1
By ] An ByuTs]] A By TE ] Aus 0 0 0 E By; "L By
j=1

(11)

4 3
Denoting Y A" Tl Ay, Y By B Bij and Ay S By; by Uy, V; and W
i=1 j=1
respectively, the above matrix can be written in shorthand form as

U, 0 0 Wi Wy W3 Wy
0 U, 0 Wi Wi Wi Wy
0 0 Us Wiz Wy W3 Wy
Wil W’ wiT o ovyoo 0 0o |. (12)

Wyl Wyl Wyl 0 Vy 0 0
Waul WiT Wil 0 0 V3 0
Wal Wil Wil oo 0 0 Vy

Also, using Egs. (9) and (10), the right hand side of Eq. (8) can be expanded as

4
E : T —1

A B e
i=1

T—1
E B By e | (13)

TR-340 — FORTH-ICS, Aug. 2004 3 Sparse Bundle Adjustment
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4 3
Denoting Z AijTE;é €;; and Z Bz-jTE;é €ij by €a; and ey, respectively, vector (13)

=1

can be abbreviated to

Substituting the expressions for J7"Ex'e and J7E3'e from (12)

T T T T T T
(eal y€as ;€az ;€b; ,€by ;€bs ,€by

J=1

normal equations (8) become

U, 0 0 Wi Wy
0 U, 0 Wiz Wy
0 0 U3 W13 W23
Wi W Wit vy 0
Wl Wyl Wy’ 0 Vo
Wil W' Wi 0 0
T T T
Wyt Wy Wy 0 0
Denoting

Vi 0 0
vi 00 0 Vi o

0 U; o0 |, Vi= 2
0 0 Vi

0 0 U

0 0 0

Wi
Wis
W3
0
0

Wy
Wy
W3
0
0

T)T.

Wi
Wi
Wis

(14)

and (14), the

W3,
W3
Wiss

Wy
Wy
Wy

where * designates the augmentation of diagonal elements, allows the augmented nor-

mal equations to be further compacted to

U*
WT

Left multiplication of Eq. (17) by the block matrix

results in

(

(U* -W Vvt wT

WT

v (

I —-wv!

0

v (

5a> B
o)

I

6a> B (ea—WV*_1 €b
o/

)

(o)

€b

(17)

(18)

(19)

Noting that the top right block of the left hand matrix is zero, §, can be determined

from the top half of the above equations, which is

(U — WV W) = — WV g,

(20)

Having solved for d,, dp can then be computed by backsubstitution into the bottom
half of Eq. (19), which yields

V* 6 = ep — W §,.

TR-340 — FORTH-ICS, Aug. 2004

(21)

3 Sparse Bundle Adjustment



The Design and Implementation of a Sparse Bundle Adjustment Package 9

Substituting U*, W and V* from Eq. (16), the matrix within parentheses in the left
hand side of Eq. (20) equals

u; o
0 U}
o o

vt 0 0
Wi W21 Wz Wy o vi—l o
—| Wiz W2z W3y Wy o 20 1
Wiz W23z Wgzz Wyg 3
0 0 [
Letting Y;; = W;;Vi~!, (22) becomes
4 4
T T
- YaWi =Y YaWi
T T
-Y YpWi — > YWy
i=1 1=1
T T
=Y YisWy =Y Yis Wi
i=1 =1

Also, the right hand side of Eq. (20) equals

4
> Y e,
i=1
4
ea— | D Yioen,
i=1
4
> Y3 e,
i=1

0 W11T
0 Wy T
0 Wiz T
Vz—l W41T

4

- Z Yzlsz
=1
4

=Y YW

=1

— > YW

=1

Combining (23) and (24), d5 can be computed by solving the system

4
=Y YaWy"

=1

-3 YW, "
i=1
4

= YW
i=1

4
=3 YaWyp"
i=1

— > YW

=1

1
= YWy
i=1

Left multiplication of Eq. (21) by V* yields 4y, as

V*l

4
=Y YaWis"
=1 5a1
- YW Oay | =
1214 5a3
— > YisWis"
i=1
Gbl Z WIJT 5aj )
] 1
ebz Z WZJT 5aj )
] 1
(€by — ZngT 0a;)
] 1
(epy — ZW4]T 0a;)
j=1

4
—> Y e,
i=1
4
—> Y e,
i=1
4
—> Y3 e,
i=1

Wi,
Wi,
Wi,
Wis

(23)

(26)

At this point it should be evident that the solution of the normal equations that

was illustrated above can be directly generalized to arbitrary n and m. Note that

TR-340 — FORTH-ICS, Aug. 2004
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if a point k does not appear in an image [ then Ag; = 0 and Bg; = 0. Index ¢ in
the summations appearing in the definitions of U; and €a; runs through all points
appearing in the specified camera j. Similarly, index j in the definitions of V; and ey,
runs through all cameras to which the given point ¢ projects on. Fig. 2 summarizes
the general procedure for solving the sparse normal equations involved in the LM
algorithm3. This procedure can be embedded into the LM algorithm of section 2
at the point indicated by the rectangular box in Fig. 1, leading to a sparse bundle
adjustment algorithm.

Input: The current parameter vector partitioned into m camera parameter vectors
a; and n 3D point parameter vectors b;, a function Q employing the a; and b;
to compute the predicted projections X;; of the i-th point on the j-th image, the
observed image point locations x;; and a damping term p for LM.

Output: The solution é to the normal equations involved in LM-based bundle

adjustment.

Algorithm:
Compute the derivative matrices A;; := %—’;@ = &S;'j"&), B;j = %ii = &E{;iﬂ)
and the error vectors €;; := x;; — X;j,
where i and j assume values in {1,...,n} and {1,...,m} respectively.

Compute the following auxiliary variables:
Uj = ZAUTE;;AU V,; = ZBZ']'TE;;,BU Wz‘j = Az'jTE_l‘Bij

Xij
€a; 1= i AZ-jTE;; €ij  €b; i= ]X:BijTE;ii_ €ij
i J
Augment U; and V; by adding p to their diagonals to yield Uj and V.
Compute Y;; := WUV;“I.

Compute 5 from S (6a,”,0a, " s...,0a, ) = (e17, e, ..., e")7,
where S is a matrix consisting of m x m blocks; block jk is defined by
Sk = 5ij;‘- — ZYijWikT, where §;;, is Kronecker’s delta

i

and
€; = eaj — ZYZ']' €b;-
)

Compute each dp,; from the equation dp; = V;‘fl (éb;, — Z WijT day)-
J
Form 6§ as (6a”, 0p7)".

Figure 2: Algorithm for solving the sparse normal equations arising in generic bundle
adjustment; see text for details.

3The original presentation in [9] contains a few typographic errors, which have been corrected in
the description included here.

TR-340 — FORTH-ICS, Aug. 2004 3 Sparse Bundle Adjustment



The Design and Implementation of a Sparse Bundle Adjustment Package 11

4 Implementation Details

This section provides details regarding the practical implementation of the sparse
bundle adjustment algorithm sketched in sections 2 and 3. The primary emphases of
the design were on flexibility and performance efficiency. To cater for different user
needs, expert and simple drivers to sparse bundle adjustment have been developed.
The expert drivers, discussed in section 4.1, are aimed at the highest performance
but require that the user understands and conforms to certain rules regarding the
internal representation of the data objects involved in sparse bundle adjustment. On
the other hand, the simple drivers presented in section 4.2, are designed for the less
knowledgeable user who is willing to trade some potential loss in performance for
increased ease of use.

4.1 Expert Drivers

Let us begin by considering the matrices A and B consisting respectively of the blocks
A;; and B;; defined in the algorithm of Fig. 2. Note that if a point ¢ does not appear
in image j, then A;; = B;; = 0, which implies that A and B are sparse. For instance,
referring to the sample problem with n = 4 and m = 3 outlined in section 3, assuming
that point 1 is not visible in image 3 and points 2, 3, 4 are not visible in image 1
implies that A3 = Aoy = A3y = Ay = 0. Hence, the corresponding A in block form
is as shown in the left part of (27); B has a similar structure.

A1 Ap O 0 1 -1
0 Ayy Aog -1 2 3
0 Ajsr Ass ’ -1 4 5 ( )
0 Ay Ays -1 6 7

While storing all zero elements of A and B is acceptable for moderately sized BA
problems, it becomes inefficient in terms of memory use when the numbers of 3D
points and cameras are large. To save memory, A is stored by placing its non-zero
blocks A;; one after the other in a contiguous memory buffer and a matrix 7 is set
up whose (7, j) element contains the index (i.e. offset) & of the block in the memory
buffer that has been allocated to A;;. Matrix 7 for the sample A is shown in the
right part of (27). Indices stored in Z conform to the C convention and start from 0.
Elements equal to -1 indicate that the corresponding A;; is zero and therefore does
not need to be stored. Clearly, 7 is itself a sparse matrix and special techniques can
be used for storing it.

In order to reduce the memory requirements of large sparse matrices, researchers
in numerical linear algebra have devised various memory storage schemes. Those
schemes allocate a contiguous memory segment for storing the non-zero matrix ele-
ments along with some additional information for knowing where the stored elements
fit into the full matrix. In the context of this work, we have chosen to represent sparse
matrices using the Compressed Row Storage (CRS) format [2] which is described
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next. CRS makes no assumptions regarding the sparsity structure of the matrix and
does not store any unnecessary elements. It employs contiguous memory locations
to store the following vectors: the val vector which stores the values of the non-
zero matrix elements in row-major order, the colidx vector that stores the column
indices of the elements in the val vector and the rowptr vector which stores the lo-
cations in the val vector that start a row. In other words, if val[k]=a[i] [j] then
colidx[k]=j and rowptr[i] <= k < rowptr[i+1]. To simplify algorithms operat-
ing on CRS structures, rowptr by convention contains an extra element at its end,
equal to the number of non-zero array elements. As an example, the CRS vectors for
the 4 x 3 matrix Z with 8 non-zero elements defined above, are shown below. Again,
array indices conform to the C convention and start from 0:

val : (0,1,2,3,4,5,6,7)
colidx: (0,1,1,2,1,2,1,2)
rowptr : 0,2,4,6,8)

Thus, the sba routines store A by keeping its non-zero A;; blocks in a contiguous
memory buffer and using a CRS structure to store Z. B is stored in a similar manner,
and since B;; is zero whenever A;; is zero, Z can be reused to provide the mapping
between block pair indices (4, j) for the B;; and the corresponding contiguous memory
block indices. Note also that blocks W;; and Y;; defined in the algorithm of Fig. 2 are
zero if either of A;;, B;; is zero. Therefore, the matrices W and Y consisting of blocks
W;; and Y;; are also sparse and can be stored in memory as explained for A and B,
again using the same Z to hold the indices mapping. The storage strategy employed
for matrices A, B, W and Y makes efficient use of the processor’s cache since the
elements of non-zero blocks are kept in consecutive memory locations which are very
likely to fit in a single cache block. Also, note that if point ¢ does not appear in image
7, then elements x;; and X;; are missing from X and X in Egs. (6) and (7) respectively.
The CRS structure holding 7 is once again employed to provide the mapping between
X;j, X;; and their actual storage locations in X, X. File sba_crsm. c in the sba package
provides several routines for manipulating CRS sparse matrices. The CRS format is
represented in C/C++ by a structure with the following declaration:
struct sba_crsm{

int nr, nc;  /x #rows, #columns for the sparse matrix x/

int nnz; /x number of non-zero array elements %/

int *val; [« storage for non-zero array elements. size: nnz */

int xcolidx;  /* column indices of non-zero elements. size: nnz %/

int xrowptr; /x locations in val that start a row. size: nr+1 and rowptr[nr/=nnz. %/
b

Sparse BA is implemented in sba by the expert function sba motstr _levmar x().
The prototype of sba_motstr_levmar x() from sba.h is
int sba_motstr_levmar_x(const int n, const int m, const int mcon, char xvmask, double xp,

const int cnp, const int pnp, double *x, const int mnp,

void (xfunc)(double *p, struct sba_crsm xidxij, int *wkl, int *wk2, double xhx, void xadata),
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void (xfjac)(double p, struct sba_crsm *idxij, int *wk1, int xwk2, double xjac, void xadata),

void xadata, int itmax, int verbose, double opts[3], double info[10]);

In case of successful termination, the function returns the number of iterations
required for the minimization (> 0), otherwise -1. The current implementation as-
sumes that 3x, the covariance matrix of the measurement vector, is equal to the
identity matrix. The linear system of Eq. (25) is solved with the aid of LU factoriza-
tion, implemented using appropriate LAPACK [1] routines. For experimenting with
other approaches, sba also includes implementations of LAPACK-based linear system
solvers employing QR and SVD decomposition. LAPACK can be substituted by any
equivalent vendor library (e.g. ESSL, MKL, NAG, etc) that conforms to the API
described in the LAPACK User’s Guide. When the number of cameras involved in
bundle adjustment is very large, solving Eq. (25) with any of the LAPACK-based
solvers will be less efficient compared to employing a solver based on the conjugate
gradients (CG) method. Thus, sba incorporates an iterative linear systems solver
that is based on conjugate gradients with jacobi or SSOR preconditioning [23, 2].
sba motstr_levmar x() implements a forward communication mechanism; its argu-
ments are explained one by one in the following, where I and O denote input and
output arguments respectively:

n : The number of 3D points. (I)
m : The number of cameras (i.e. images). (I)

mcon : The number of cameras (starting from the first) whose parameters should not
be modified. All A;; with j < mcon are assumed to be zero. This is, for example,
useful when the world’s coordinate frame is aligned with that of the first camera,
therefore the (projective) first camera matrix should be kept fixed to [I | 0]. (I)

vmask : Point visibility mask: vmask[(i-1)*m+j-1]=1 if point ¢ is visible in image
J, 0 otherwise. Note that in the preceding presentation points and images are
numbered as 1,2, ..., whereas C array indices start from 0, thus the -1’s in the
expression (i-1)*m+j-1. The size of vmask is nxm. (I)

p : Oninput, the initial parameter vector Pg = (a;7,...,a,,7,...,b;7,..., b, )T,
where a; are the parameters of image j and b; are the parameters of point i.
On output, the estimated minimizer. Its size is mxcnp + n*pnp. (I/0)

cnp : The number of parameters defining a single camera. For example, a Euclidean
camera parameterized using an angle-axis representation for rotation depends
on 6 parameters (3 rotational + 3 translational). If quaternions are used for
the rotations, the number of parameters increases to 7 (i.e. 4 + 3). A fully
projective camera can be parameterized with 11 or, including the scale factor,
with 12 parameters. (I)

pnp : The number of parameters defining a single 3D point: e.g. 3 for Euclidean
points, 4 for projective, etc. (I)
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x : The measurement vector X consisting of all image projections in the order
(xu T, xm Xt L, XD )T For every point 4 that is not visible in
image j (see vmask above), the corresponding x;; is missing from x. Its maximum

size is n*m*mnp. (I)
mnp : The number of parameters defining an image point (typically 2). (I)

func : The function computing the estimated measurement vector. Given an estimate

of the parameters vector P in p, computes X in hx by evaluating the parame-

terizing function Q() of (5) for all points and cameras. The measurement vector

should be returned as (iuT, KL Rl ,ﬁ:an)T. Argument idxij
is built up by sba motstr_levmar x() according to the information contained
in its vmask argument. It specifies which points are visible in each image and
provides the mapping between every X;; and its mnp-sized storage location in hx.
Arguments wkl and wk2 are arrays of size max(n, m) that have been allocated
by the caller and can be used as working memory for the routines manipulating
the idxij structure. Argument adata is identical to the so named argument of

sba motstr_levmar x (), pointing to possibly additional data (see below). (I)

fjac : The function evaluating in jac the sparse Jacobian J at p. J is made up of
the derivatives of the parameterizing function Q() and should be returned as
(AH,... ,Alm,... ,Anl,... ,Anm,BH,... ,Blm,... ,Bnl,... ,Bnm), whereAij =
% and B;; = %ﬁi’bi). Each of the A;; (resp. Bj;) blocks is made up
of mn]p*cnp (resp. mnp*pnp) elements and is stored in a row-major order, occu-
pying a distinct storage block in jac. The A;; are stored in a segment at the
beginning of the jac array whereas the B;; are placed in a second segment that
starts right after the first one. Both segments consist of idxij->nnz nonzero
blocks. The exact offset of each A;; and B;; into its corresponding segment is
determined through the idxij argument. The contents of idxij also specify
which of the A;; and B;; are missing. Arguments wk1l and wk2 again point to
working memory allocated by the caller. If the user specifies a NULL value for
fjac, the Jacobian is approximated using finite differences on data provided by
successive invocations of func (see function sba_fdjac_x() for the correspond-
ing code). However, the approximation of the Jacobian requires mxcnp+n*pnp+1
calls to func, each of which estimates the image projections of all points in all
cameras. Clearly, while this approach might be acceptable for initial testing and
debugging, it is not efficient computationally. Therefore, when execution time
is a concern, the jacobian should be computed analytically by a user-supplied
function. (I)

adata : Pointer to possibly additional data, passed uninterpreted to func, fjac. It is
intended to help avoid direct use of globals in the routines func and fjac.
For example, a structure containing pointers to appropriate data structures
can be set up and a pointer to it can be passed as the value of adata to
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sba_motstr_levmar_x (), which then passes it uninterpreted to each call of the

user-supplied routines. This argument can be set to NULL if not needed. (I)

itmax : Maximum number of Levenberg-Marquardt iterations (k,q. in the algorithm
of Fig. 1). (I)

verbose : Verbosity level. A value of zero specifies silent operation, larger values corre-

spond to increasing verbosity levels. (I)

opts : Minimization options 7,e1,e9 for the Levenberg-Marquardt algorithm (see

Fig.

1). Respectively the scale factor for the initial damping term and the

stopping tolerance thresholds. (I)

info : Information regarding the outcome of the minimization. It can be set to NULL
if not needed. (O)

info[0]

info[1-4]

info[5]
info[6]

info[7]
info[8]
info[9]

: |lepo||?, i-e. the error at the initial parameters estimate. Note that
info[0] divided by the total number of image point measurements (i.e.
the number of non-zeros in vmask) corresponds to the initial mean squared
reprojection error.

: (el 13  €p]|sos ||5p||2,u/mgx([JTJ}kk)), all computed at the final p.
Analogously to info[0], info[1] divided by the number of image point
measurements yields the final mean squared reprojection error.

: Total number of iterations.

: Reason for terminating:

1 : stopped by small ||J(p)” €p]|co-

2 : stopped by small ||dp]|.

3 : stopped by itmax.

4 : The matrix of the augmented normal equations is singular, minimiza-

tion should be restarted from the current solution with an increased
damping term.

: Total number of func evaluations.
: Total number of fjac evaluations.

: Total number of times that the augmented normal equations were solved.

This is always larger that the number of iterations, since during a single
LM iteration, several damping factors might be tried, each requiring the
solution of the corresponding augmented normal equations (see again the
innermost loop of the algorithm in Fig. 1).

Remark that all information pertaining to the BA is selectable by the user of

sba motstr _levmar x(): Any number of cameras and 3D points may be specified,

each described by as many parameters as the user sees fit. The exact parameteri-

zation of motion and structure is defined by supplying appropriate func and fjac
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routines. Therefore, the user has complete freedom on the evaluation of the estimated
measurement vector and its jacobian. The user also has the ability to specify the
visibility of point projections on an image basis.
Additionally, sba offers the expert function sba_mot_levmar _x() that minimizes
the reprojection error with respect to the camera viewing parameters only. In other
words, all 3D structure parameters are kept constant (therefore all B;;=0) and only
the camera motion/calibration parameters are modified. Strictly speaking, this func-
tion does not perform BA. Nevertheless, it is very useful when dealing with camera
resectioning, i.e. the problem of estimating the camera matrix from the 2D image
projections of a set of 3D points that are assumed fixed and precisely known [15, 10].
The prototype of sba_mot_levmar x() is the following:
int sba_mot_levmar_x(const int n, const int m, const int mcon, char xvmask, double *p,
const int cnp, double *x, const int mnp,
void (*func)(double *p, struct sba_crsm xidxij, int *wkl, int *wk2, double xhx, void *adata),
void (*fjac)(double *p, struct sba_crsm xidxij, int *wkl, int *wk2, double *jac, void *adata),
void *adata, int itmax, int verbose, double opts[3], double info[10]);
Function sba mot_levmar x() implements the algorithm resulting from that in
Fig. 2 after setting B;; = V; = W;; = Y;; = 0. Notice that in this case, the
augmented normal equations of Eq. (17) are simplified to a set of linear systems
U7 0a; = €a;, which can be solved with either any of the LAPACK-based LU, QR or
SVD solvers or the CG iterative solver. Furthermore, taking into account that the
matrices U} are symmetric, the previous systems can also be solved with the aid of
Cholesky or Bunch-Kaufman factorization; such solvers are also included in sba. Since
the arguments of sba_mot_levmar x() have the same meaning as their counterparts
in sba_motstr_levmar x(), no further explanation is given here.
Finally, sba includes the expert function sba_str_levmar x() which is in a sense
the inverse of sbamot_levmar x(). More specifically, sba_str_levmar_x() keeps the
camera viewing parameters unchanged and minimizes the reprojection error with re-
spect to the scene structure parameters only. This function is, for example, useful
when reconstructing 3D points seen in a set of extrinsically calibrated images. Func-
tion sba_str_levmar_x () implements the algorithm resulting from that in Fig. 2 after
setting A;; = U; = W;; = Y;; = 0 and its prototype is as follows:
int sba_str_levmar_x(const int n, const int m, char xvmask, double xp,
const int pnp, double xx, const int mnp,
void (*func)(double *p, struct sba_crsm xidxij, int *wkl, int *wk2, double xhx, void *adata),
void (*fjac)(double *p, struct sba_crsm xidxij, int *wkl, int *wk2, double *jac, void *adata),
void *adata, int itmax, int verbose, double opts[3], double info[10]);
Again, the arguments of sba str levmar x() have the same meaning as their
counterparts in sba_ motstr_levmar x().
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4.2 Simple Drivers

To wusers that are not willing to spent much time understanding its in-
ner workings, sba offers three simple drivers, namely sba motstr_levmar(),
sba_mot_levmar() and sba_str_levmar(), that are wrappers around the expert
drivers sba_motstr_levmar x(), sbamot_levmar x() and sba_str_levmar x() re-
spectively. They differ from the later in that instead of accepting arguments for
estimating the whole measurement vector and its sparse jacobian (i.e. func and fjac),
they should be provided with routines to estimate a single image projection and its
jacobian (i.e. proj and projac). The measurement vector and its sparse jacobian are
then estimated by repeatedly invoking proj and projac for all points and cameras.
Thus, at the cost of the potentially extra overhead induced by the higher function call
count, the simple drivers free the user from worrying about how is the measurement
vector and its sparse jacobian laid out in memory internally.

The prototype of sba_motstr_levmar() is
int sba_motstr_levmar(const int n, const int m, const int mcon, char xvmask, double x*p,

const int cnp, const int pnp, double *x, const int mnp,

void (xproj)(int j, int i, double *aj, double xbi, double *xij, void xadata),

void (xprojac)(int j, int i, double *aj, double *bi, double xAij, double xBij, void *adata),

void xadata, int itmax, int verbose, double opts[3], double info[10]);

that of sba_mot_levmar ()
int sba_mot_levmar(const int n, const int m, const int mcon, char xvmask, double x*p,

const int cnp, double xx, const int mnp,

void (*proj)(int j, int i, double xaj, double *xij, void xadata),

void (*projac)(int j, int i, double *aj, double *Aij, void xadata),

void *adata, int itmax, int verbose, double opts[3], double info[10]);

and that of sba_str_levmar()
int sba_str_levmar(const int n, const int m, char xvmask, double *p,

const int pnp, double *x, const int mnp,

void (*proj)(int j, int i, double xbi, double *xij, void *adata),

void (xprojac)(int j, int i, double *bi, double *Bij, void xadata),

void *adata, int itmax, int verbose, double opts[3], double info[10]);

In all cases, the function pointed to by proj is assumed to estimate in xij the
projection in image j of the point i. Arguments aj and bi are respectively the
parameters of the j-th camera and i-th point. In other words, proj implements the
parameterizing function Q(). Similarly, projac is assumed to compute in Aij and

3an;_’bi) and 3Q§9abji’bi), i.e. the jacobians with respect to aj and

Bij the functions
bi of the projection of point i in image j. If projac is NULL, the jacobians are
approximated through the finite differentiation of proj. Note that the computation
of this finite approximation is more efficient than the one in the case of the expert
drivers. This is because the knowledge of Q() permits the explicit computation of
only the finite differences which actually depend on the differentiating parameters.
Both proj and projac are called only for points i which are visible in image j. The
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remaining arguments to the three functions are identical to their homonymous ones
in sba_motstr_levmar x(), sbamot_levmar x() and sba_str_levmar x().

5 A Sample Use Case

An example of using the developed BA routines is presented in this section. The
example concerns the use of sba for Euclidean bundle adjustment. More specifically,
it is assumed that a set of FKuclidean 3D points are seen in a number of images
acquired by an intrinsically calibrated moving camera. It is also assumed that the
image projections of each Euclidean 3D point have been identified and that initial
estimates of the 3D point structure and camera motions are available. The remainder
of this section describes the application of sba for refining those motion and structure
estimates.

The employed world coordinate frame is taken to be aligned with the initial camera
location. All subsequent camera motions are defined relative to the initial location,
through the combination of a 3D rotation and a 3D translation. A 3D rotation by
an angle @ about a unit vector u = (uy,us,u3)’ is represented by the quaternion
R = (cos(g), w1 sin(g), U sin(g), us sin(g)) [26]. A 3D translation is defined by a
vector t. A 3D point is represented by its Euclidean coordinate vector M. Thus,
the parameters of each camera j and point i are a; = (Rj,t;7)" and b, = M;,
respectively. With the previous definitions, the predicted projection of point 7 on
image j is

Q(aj,b;) =K (R; N; R; ' + t), (28)
where K is the 3 x 3 intrinsic camera calibration matrix and N; = (0, M;T) is the
vector quaternion corresponding to the 3D point M;. The expression R; N; R;l
corresponds to point M; rotated by an angle 6; about unit vector u;, as specified
by the quaternion R;. Source file eucsbademo.c accompanying the sba package im-
plements routines for evaluating the estimated measurement vector and its jacobian
with respect to all camera and 3D point parameters. These can serve as the func
and fjac arguments of the expert drivers sba_XXX_levmar_x()*. The computation
of the measurement vector’s jacobian relies on a routine for computing the jacobian
of function Q() in Eq. (28), whose code was generated automatically using MAPLE’s
symbolic differentiation facilities®. Additional arguments of sba_XXX_levmar_x() as-
sume the following values: mcon=1, cnp=7, pnp=3, mnp=2. Notice that setting mcon
equal to 1 allows the projection matrix of the first camera to be kept constant during
bundle adjustment, equal to K [I3.3 | 0].

File eucsbademo.c also provides a demo program illustrating the use of both
the expert (i.e. sbamotstr_levmar x() and sbamot_levmar x()) and the simple

XXX stands for motstr or mot.
% Alternatively, the source code for computing the jacobian of Q() could have been coded by hand
or generated by an automatic differentiation package such as [8].
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(i.e. sbamotstr_levmar() and sba_mot_levmar()) sparse BA driver routines for Eu-
clidean BA. In all cases, the initial estimates of the camera parameters are read from
a text file that has a separate line for every camera, each line containing 7 motion
parameters (4 for rotation and 3 for translation). The initial point structure estimates
and their image projections are also read from a text file. Each line of this file cor-
responds to a single 3D point and its image projections and has the format X Y Z
nframes frameO x0 yO framel x1 yl1 ..., where X Y Z are the points’ Euclidean
3D coordinates, nframes is the total number of frames (i.e. images) in which the
points’ projections have been identified and each of the nframes subsequent triplets
of the form frame x y specifies that the 3D point in question projects to pixel x y in
frame frame. For instance, the line

100.0 200.0 300.0 3 2 270.0 114.1 4 234.2 321.7 5 173.6 425.8

refers to 3D point (100.0, 200.0, 300.0) projecting to the 3 points (270.0, 114.1),
(234.2, 321.7) and (173.6, 425.8) in images 2, 4 and 5 respectively. Notice that this
format allows the image projections of a 3D point to be specified for any subset of
the available images. Both camera and 3D point indices start from 0. One particular
BA problem that is included as a test case involves 54 cameras and 5207 3D points
that give rise to 24609 image projections. The corresponding minimization problem
depends upon 15999 variables and was solved in about 13 sec on a Intel P4@1.8 GHz
running Linux. Without a sparse implementation of BA, a problem of this size would
simply be intractable. More details regarding this application of sba can be found by
studying the relevant supplied source code and the comments annotating it.

6 Conclusions

This paper has presented the mathematical theory behind an LM-based sparse bundle
adjustment algorithm and has resolved the technical/practical issues pertaining to its
implementation in C. The outcome of this work is a generic sparse BA package called
sba that has successfully demonstrated its ability to deal efficiently with very large
BA problems. The package has been made freely available in the hope to be useful
to the computer vision community. To the best of our knowledge, sba is the first and
currently the only such software package to be placed in the public domain.
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