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ABSTRACT

We present a computationally efficient method for estimat-
ing the trifocal tensor corresponding to three images ac-
quired by a freely moving camera. The proposed method
represents projective space through a “plane + parallax” de-
composition and employs a novel technique for estimating
the homographies induced by a virtual 3D plane between
successive image pairs. Knowledge of these homographies
allows the corresponding camera projection matrices to be
expressed in a common projective frame and, therefore, to
be recovered directly. The trifocal tensor can then be recov-
ered in a straightforward manner from the estimated pro-
jection matrices. Sample experimental results demonstrate
that the method performs considerably faster compared to a
state of the art method, without a serious loss in accuracy.

1. INTRODUCTION

The trifocal tensor encapsulates all geometric relations among
three images and arises as a relationship between corre-
sponding point and line features, independently of the scene
structure. For this reason, the trifocal tensor has been em-
ployed in a wide variety of vision tasks, including, among
others, projective and euclidean 3D reconstruction, camera
tracking, recognition by alignment, novel view synthesis
and object-based video compression. Owing to its wide ap-
plicability, the problem of estimating the tensor from cor-
responding image features in three views has received con-
siderable attention. Among the numerous relevant publica-
tions, the works of [1, 2] are the most representative ones.
In [1], Hartley proposes a linear algorithm that combines
corresponding points and lines in three views by exploiting
the fact that each point and line correspondence provides
respectively four and two linear equations in the elements
of the tensor. Torr and Zisserman [2] describe an iterative
non-linear algorithm for computing a Maximum Likelihood
Estimate (MLE) of the tensor. Chapter 15 of [3] describes
an algorithm which incorporates more recent developments
to the approach of [2] and represents the state of the art in
feature-based tensor estimation. As a general comment on
existing methods, linear ones perform faster and are sim-
pler to implement. However, owing to the fact that they
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minimize algebraic error terms with no physical meaning,
they are less accurate compared to non-linear methods. A
related shortcoming of linear methods is that they do not
enforce the nonlinear constraints that must be fulfilled by
a valid tensor. For these reasons, linear methods are typi-
cally employed for bootstrapping more elaborate but com-
putationally expensive non-linear ones.

In this work, a novel and fast feature-based approach
to trifocal tensor estimation is presented. Image motion
is expressed as the sum of a homographic transfer plus a
residual planar parallax vector and a “chaining” operation
is employed, which propagates across successive frames the
image-to-image homographies induced by a virtual 3D plane.
It is well-known that knowledge of a planar homography
and of the associated epipole permits the camera projection
matrices of the underlying image pair to be recovered di-
rectly up to an arbitrary projective transformation. In our
case, the homographies pertaining to the virtual plane are
estimated in such a way that all projection matrices recov-
ered from them are, by construction, defined up to the same
projective transformation. Such a set of consistent projec-
tion matrices yields the trifocal tensor in a straightforward,
direct manner. The rest of the paper is organized as follows.
Section 2 explains the notation that will be used and pro-
vides some background knowledge along with a means for
selecting a virtual 3D plane. Section 3 describes plane ho-
mography chaining and section 4 builds upon it for dealing
with the tensor estimation problem. Sample experimental
results are reported in section 5. The paper concludes with
a brief discussion in section 6.

2. NOTATION AND BACKGROUND

In the following, vectors and arrays appear in boldface and
are represented using projective (homogeneous) coordinates;
~ denotes equality up to an arbitrary scale factor. 3D points
are written in uppercase and their image projections in low-
ercase (e.g. X and x). F will designate the fundamental
matrix while e and e’ its associated epipoles.

As shown in [4], the fundamental matrix and plane ho-
mographies are tightly coupled. Specifically, the group of



all possible homography matrices between two images lies
in a subspace of dimension 4, i.e. it is spanned by 4 ho-
mography matrices. These homography matrices are such
that their respective planes do not all coincide with a single
point. Shashua and Avidan show in [5] that given the funda-
mental matrix F and the epipoles e and e inan image pair,
a suitable basis of 4 homography matrices Hy, ..., Hy, re-
ferred to as “primitive homographies”, is defined as follows:

H; = [¢]xF, i=1,2,3 and Hy=¢67, ()
where ¢; are the identity vectorse; = (1,0,0),e2 = (0,1,0)
and e3 = (0,0,1), [.]x designates the skew symmetric ma-
trix representing the vector cross product and d is a vector
such that §7e # 0. Knowledge of the 4 primitive homogra-
phies allows any other homography H to be expressed as a
linear combination H = 23:1 MNH;, A € R

Next, a result due to Shashua and Navab [6] that plays
a central role in the development of the proposed method
is presented. Let II be an arbitrary 3D plane inducing a
homography H between two images. Let also X be a 3D
point not on II projecting to image points xy and XIO and
assume that H has been scaled to satisfy the equation x;) ~
Hx, + € . Then, for any 3D point X projecting onto x and
x , there exists a scalar & such that

x ~Hx + ke . 2)

Equation (2) dictates that the position of projected points in
the second image can be decomposed into the sum of two
terms, the first depending on the homography induced by
IT and the second involving parallax due to the deviation
of the actual 3D structure from II. The term & in Eq. (2)
depends on X but is invariant to the choice of the second
image and is termed as relative affine structure in [6]. Recall
that H and e are homogeneous entities, defined up to an
arbitrary scale factor. Therefore, by fixing H’s scale, the
role of point X in the derivation of Eq. (2) is to establish a
common relative scale between H and e Notice, however,
that in the case that H has not been scaled with the aid of
Xy, Eq. (2) continues to hold for some k that is a scaled
version of that corresponding to the scaled H. Given x, x,
H and e, the term & corresponding to X can be computed
by cross-multiplying both sides of Eq. (2) with x', which
after some algebraic manipulation yields
N /
K:(HXX)I() (’xxe)_ 3)
[Ix" x e'||?

A final point in this section that will be needed in sub-
sequent developments concerns the selection of a virtual
3D plane and its homography from a set of matching point
pairs (x;, x;), i = 1,...,N in two frames. The vir-
tual plane can be chosen so that it approximates the set
of available point matches as much as possible. In other
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words, the virtual plane is selected to lie “in-between” the
3D points giving rise to the set of available point matches.
Assuming that the epipolar geometry corresponding to the
two images has been estimated, we therefore seek the pla-
nar homography U for which the contribution of the par-
allax term in Eq. (2) is minimal. As previously explained,
any planar homography defined between two images can
be expressed as the linear combination of the four primi-
tive homographies of Eq. (1). The sought U is thus com-
puted from the coefficients 5, 7 = 1,...,4 minimizing
E;%:l(ﬂj H;) x; ~ x;, i = 1,...,N. This mini-
mization is performed using the Least Median of Squares
(LMedS) robust estimator and gives rise to a plane that is
referred to as “quasi-metric” in [5].

3. RELATING HOMOGRAPHIES AMONG IMAGES

I

Assume that N triplets of matching points (x;, X;, X; ),
i =1,..., N, are available across three consecutive images
I, Ir and I3 respectively and that the homography U of the
quasi-metric plane II, for images /; and I» has been esti-
mated as explained in the previous section '. This section
describes a procedure for estimating the plane homography
V induced by II,; between images I» and I3, without seg-
menting the point triplets into planar and non-planar ones or
projectively reconstructing 3D points.

The epipolar geometry for images I; and I» and thus
the epipole e in image I; can be estimated from the set of
matching pairs (x;, x;). Similarly, the epipole € " in I
for the camera motion corresponding to frames I» and I3
can be estimated from the set of pairs (x;, x; ). Since the
homography from image I to I; is simply U~!, Eq. (2)
for all point matches in those two images becomes x; ~
U_lx; + k;e. By employing Eq. (3), k; can then be esti-
mated as

oo (U'x; x ;)T (x; ¥ )
;=

“

Consider now the two image pairs (I3, I7) and (I3, I3) formed
by the three images. Since image I is shared by both pairs,
the relative affine structure defined when I becomes the
first image in Eq. (2) is insensitive to the choice of the sec-
ond image (i.e. I; or I3) completing the pair. Therefore,
applying Eq. (2) to point matches in frames I and I3 yields

[Ix; x e[

x; ~ Vx; + /<;,~el I, 4)

2

where the k; are given by Eq. (4). In order for Eq. (5)
to hold for those k;, the scale of V in it has to be com-
patible with that of e . For this reason, V in Eq. (5) is
no longer a homogeneous 3 x 3 matrix but rather an or-
dinary, inhomogeneous one. Equation (5) is thus a vec-
tor equation linear in V, providing three linear constraints

! As will soon become clear, subsequent developments are valid for any

homography compatible with the epipolar geometry of frames /1 and I,
not just for that of the quasi-metric plane.



on the nine unknown elements of V. Due to the presence
of an arbitrary, unknown scale factor, only two of those
three constraints are linearly independent. Denoting the ¢-
th row of matrix V by v7, writing x,” = (z; ,y; ,1)7
ande = (e, , e;l, e.')T, those two constraints can be

explicitly expressed as 2

I rrorr

T 7 17 T 1 _ . )
ViX,x; —ViX; = Kie, —kie, T;
T 1 11 T ! _ 11 11 11
V3Xy; —VaX; = Ki€y — ki€, Y; . (6)

It is important to note that Eqs. (6) do not discriminate among
planar and non-planar points, therefore they do not require
that the employed plane has been segmented from the rest
of the scene. Concatenating the equations arising from five
triplet correspondences, a matrix equation of the form Mv =

T T T)T'

b results, where M is a 10x9 matrixand v = (v , v5 , V3
Omitting any row of M, yields a linear system with 9 un-
knowns that may be solved using linear algebra. In the case
that more than five triplet matches are available, an over-
constrained system results from which V can be estimated
in a least squares manner.

As described up to this point, the estimation of V is
achieved with a Direct Linear Transformation (DLT) algo-
rithm [3], ch. 3. Since DLT algorithms are not invariant to
similarity transformations of the point image coordinates,
the accuracy of the estimation can be improved by apply-
ing the normalization technique of [7] to matching points
prior to feeding them to the DLT algorithm. Independently
for each image ¢, this normalization corresponds to a linear
transformation L;, consisting of a translation followed by
an isotropic scaling that maps the average image point to
(1,1,1)T. Notice that in this case, the normalized versions
of the homography and epipole must be employed in Eq. (4)
and the homography estimate V computed with DLT needs
to be denormalized using L3 ™'V Ls.

To prevent errors due to false matches and mislocaliza-
tion of image corners from corrupting the computed homog-
raphy estimate, the set of DLT constraints are considered in
arobust regression framework. The LMedS estimator is em-
ployed to iteratively sample random sets of nine constraints,
recover an estimate of matrix V from each of them and find
the estimate that is consistent with the majority of the avail-
able constraints. Finally, the set of constraints having the
largest support (i.e. the inliers) is employed to recompute
V with least squares.

Since the DLT constraints minimize an algebraic error
term with no physical meaning, the estimate computed by
LMedS is refined by a non-linear minimization process that
involves a geometric criterion. Letting d(x, y) represent
the Euclidean distance between the inhomogeneous points

ZNotice that all available point matches are assumed to originate from
actual image points (i.e. corners); no ideal points whose third coordinate is
zero exist among them.
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represented by x and y, the non-linear refinement mini-
mizes the following sum of squared distances

17
1L

—_ K
V) + rie’ ||

Z (d(x; I,Vx;—i-mel I)2 + d(x;,V_lx; '
’ @
with respect to V. This criterion involves the mean sym-

metric transfer error between actual and transferred points

in the two images and is minimized by applying the Levenberg-

Marquardt iterative algorithm as implemented by MINPACK’s

LMDER routine, initialized with the estimate provided by

LMedS. To safeguard against point mismatches, the non-

linear refinement is performed using only the point features

that correspond to inliers of the LMedS estimate.

It has already been mentioned that the entire group of
all possible homography matrices between two images lies
in a subspace spanned by the 4 primitive homographies of
Eq. (1). This implies that given the primitive homographies
for frames I and I3, the rows vz-T of matrix V in Egs. (6)
depend on four rather than nine parameters. Therefore, the
process described above can be slightly modified to esti-
mate the coefficients A; making up V instead of directly
estimating the latter. In other words, both the linear and the
non-linear estimation processes can be performed with four
rather than nine unknowns. It was experimentally found that
the execution time for estimating V using the formulation
involving ); is by an order of magnitude shorter from that
required when estimating it directly.

4. PARALLAX-BASED TENSOR ESTIMATION

In this section, H; ; and e; ; will be used to denote respec-
tively the virtual plane homography and the epipole in I;
for the image pair I; and I;. Assume also that Hy; has
been supplied and, using the method outlined in section 3,
the plane homography H> 3 has been estimated from the
matching triplets among images I, I and I3. Recalling
that these homographies are, by computation, scale com-
patible with the corresponding epipoles, Eq. (2) yields the
image projections of a 3D point X as x ~ H2’1x' + Kkeg

" 1 . . T T
and x =~ Hjy3x + key 3, implying that X ~ [x , /-c} .
Therefore, a consistent set of projective camera matrices in
canonical form for the three views is given by [3]:

P, =[H:|e1], Po=[I]0], P3=[Hy3|ez3], (8

where I denotes the 3 x 3 identity matrix. Since it is custom-
ary to express the camera matrices relative to the first image
1, application of an appropriate 3D projective mapping can
transform Eqs.(8) so that Py becomes equal to [I | 0]. In-
deed, right multiplication of the camera matrix [A | b] by
the 4 x 4 matrix Q given by

A1 -A~'b
Q= ‘4 . ©)



Fig. 1. The first frames from (a) the Arenberg castle
sequence, (b) the basement sequence and (c) the house
sequence (courtesies resp. of the University of Leuven
VISICS Group, Oxford University Visual Geometry Group
and INRIA MOVI Group).

makes the former equal to [I | 0]. Therefore, to make P;
equal to [I | 0], the projection matrices in Eq. (8) should be
right multiplied by the matrix given by Eq.(9) for A = Hy ;
and b = ey ;, which, taking into account that H!

7, €50 =
€;,5 and H2,3 H1,2 = H1,3, ylelds

P, =[I|0], Po=[Hi> e, Ps=[Hi3|ers].(10)

These last equations correspond to a tensor parameteri-
zation that is not minimal, but nevertheless consistent: Given
the canonical projection matrices of Egs. (10), the corre-
sponding trifocal tensor in matrix notation is made up from
the set of matrices { Ty, T2, T3}, where Tj, = H’iz elT,3 -

e, H’f’3T, k=1...3and Hfj denotes the k-th column
of matrix Hj ; [3].

5. EXPERIMENTAL RESULTS

This section provides experimental results regarding the per-
formance of the proposed tensor estimation algorithm. The
point features that are required as input have been extracted
and matched automatically. Using those matches, the epipoles
were computed by finding the kernels of the fundamental
matrices estimated using [8].

The first experiment was performed on the first three
frames of the well-known “castle” sequence, the first of
which is shown in Fig. 1(a). The 203 corners that were
matched across the three frames were employed to estimate
the tensor using the proposed method. To assess the accu-
racy of the resulting estimate, the latter was used to transfer
matching corner pairs from the first two images to the third
and the related root mean square (RMS) error was calcu-
lated. This error was found to be equal to 8.43 pixels. How-
ever, since certain points correspond to mismatches and thus
violate the trifocal constraints, a more appropriate error mea-
sure is given by the root median square (RMedS) error, which
was found to be equal to 0.69 pixels. For comparison, the
RMS and RMedS errors corresponding to the tensor com-
puted with the aid of the XcVv? program, were equal to 7.95

3Xcv is distributed with the VXL libraries and includes an im-
plementation of Oxford’s VGG tensor estimator [2, 3]; see also
http://vxl.sourceforge.net
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and 0.66 pixels, respectively. The running time, however,
of the proposed method was 130 ms on an Intel P4@]1.8
GHz, a very small fraction of XCV’s execution time that
was in the order of 15 sec. Both running times exclude the
time required to detect and match corners between images.
The second experiment employed the first three frames of
the “basement” sequence, the first of which is shown in
Fig. 1(b). 240 corners were matched among the three frames
and the RMS and RMedS errors were 57.4 and 0.79 pix-
els for the proposed method and 49.6 and 0.62 for XcV.
Running times were 105 ms for the proposed method and
around 20 sec for XCV. The third experiment was based on
the “house” sequence, the first frame of which is shown in
Fig. 1(c). 258 corners were matched among the three frames
and the RMS and RMedS errors were 0.77 and 0.35 for the
proposed method and 0.83 and 0.39 for XCVv. Running time
for the proposed method was 148 ms and roughly 15 sec for
Xcv.

6. CONCLUSIONS

This paper has presented a computationally efficient method
for estimating the trifocal tensor corresponding to three im-
ages. Although not statistically optimal in the MLE sense,
the proposed method provides results of satisfactory accu-
racy and is fast enough to be employed in time-sensitive vi-
sion applications. The method relies on the computation of
the homographies of a virtual plane, a task involving the es-
timation of a quadruple of plane parameters that is achieved
using a combination of linear and non-linear optimization
techniques operating on sets of corner matches. Due to its
low dimensionality, this estimation problem can be solved
efficiently, making the proposed method amenable to a fast
implementation on commodity hardware. This is in contrast
to conventional tensor estimation methods, which attempt to
estimate at least 18 degrees of freedom simultaneously and
are therefore more computationally demanding.
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