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Abstract

This paper addresses the problem of tracking the 3D pose of a camera in space, using
the images it acquires while moving freely in unmodeled, arbitrary environments. A novel
feature-based approach for camera tracking is proposed, intended to facilitate tracking in
on-line, time-critical applications such as video see-through augmented reality. In contrast
to several existing methods which are designed to operate in a batch, off-line mode,
assuming that the whole video sequence to be tracked is available before tracking com-
mences, the proposed method operates on images incrementally. At its core lies a fea-
ture-based 3D plane tracking technique, which permits the estimation of the
homographies induced by a virtual 3D plane between successive image pairs. Knowledge
of these homographies allows the corresponding projection matrices encoding camera
motion to be expressed in a common projective frame and, therefore, to be recovered
directly, without estimating 3D structure. Projective camera matrices are then upgraded
to Euclidean and used for recovering structure, which is in turn employed for refining
the projection matrices through local resectioning. The proposed approach is causal, is
tolerant to erroneous and missing feature matches, does not require modifications of
the environment and has computational requirements that permit a near real-time
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implementation. Extensive experimental results demonstrating the performance of the
approach on several image sequences are included.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Tracking the 3D position and orientation of a camera using the images it acquires
while moving freely in unmodeled, arbitrary environments is a very challenging
problem in visual motion analysis. Its difficulty primarily stems from the fact that
the only information that can be extracted from images concerns the observed 2D
motion of image points, which depends non-linearly both on the sought camera mo-
tion and the unknown 3D structure of the viewed scene. Thus, small errors in the
estimates of 2D motion can have a significant impact on the accuracy of the recov-
ered camera motion and 3D structure. In addition to its theoretical interest, camera
tracking has a wide spectrum of important practical applications ranging from
robotics and computer assisted surgery to augmented reality and the creation of spe-
cial effects in the post-production/film-making industry [1]. To provide the versatility
required by such applications, very demanding camera tracking requirements, both
in terms of accuracy and of speed, are imposed [2].

Despite the fact that successful camera tracking solutions have been engineered
for certain applications like virtual TV production [3], such custom technologies
are quite expensive, typically suffer from range limitations and call for special mod-
ifications of the environment (e.g., placement at known locations of artificial beacons
such as retroreflective markers, infrared LEDs, or current carrying coils), that render
them inapplicable for tracking in unprepared, unstructured scenes, large-scale envi-
ronments or archive footage. Being non-intrusive, passive, and capable of covering
large fields of view, vision-based approaches provide an attractive paradigm for deal-
ing with camera tracking. During the last 15 years, numerous research efforts have
focused on vision-based camera tracking within the framework of the more general
structure from motion problem [4]. Before briefly reviewing a few representative
ones, it is pointed out that our requirement for operation in unprepared environ-
ments excludes methods such as [5,6] that rely upon the presence of fiducial markers
or special calibration objects in the environment. Additionally, due to the problems
pertaining to the accurate estimation of optical flow when the interframe image mo-
tion is not infinitesimal, we have chosen to focus our attention to feature-based ap-
proaches only. For more details regarding direct, i.e., flow-based approaches, see [7]
and references therein.

Assuming a mostly rigid scene, vision-based camera tracking methods that avoid
relying on modifications of the environment exploit geometric constraints arising
from the automatic extraction and matching of appropriate 2D image features such
as corner points. Depending on their mode of operation, proposed approaches can
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be classified into two categories. The first category consists of methods designed for
off-line use on pre-recorded image sequences. Such methods simultaneously process
all image data in a batch mode and therefore are non-causal, employing both past
and future frames for deducing the camera motion corresponding to the current
frame. Viéville et al. [8], for instance, extract a set of point and line features from
an uncalibrated monocular image sequence and use it to recover structure and mo-
tion by formulating a large non-linear optimization problem that is solved by alter-
nating between structure and motion estimation. Sturm and Triggs [9] recover
projective shape and motion from multiple images of a scene by factoring a matrix
containing the images of all points in all views. The factorization method is inexact
since it relies on approximate estimates of ‘‘projective depths’’ of image points and
requires that all points are visible in all images. Cornelis et al. [10] describe a system
that relies on pairwise fundamental matrices for simultaneously recovering structure
and motion for augmented reality applications. Camera motions for all frames are
determined in a single final step using bundle adjustment.

Fitzgibbon and Zisserman [11] take a different direction and recover structure and
motion using a hierarchical bundle adjustment approach based on image triplets and
associated trifocal tensors. Rother and Carlsson [12] assume that a reference plane is
visible in all images and present a linear algorithm that simultaneously computes 3D
point structure and camera positions. The reconstruction and camera recovery is
achieved in a single step by finding the null-space of a matrix built from image data
using SVD. Kaucic et al. [13] propose a similar approach that employs image-to-im-
age homographies for linearizing the problem of estimating the camera motion.
Commercially available camera tracking software products such as BOUJOU, MATCH-

MOVER, 3D-EQUALIZER, and PFTRACK also fall into this category.1 Typically, batch tech-
niques share the use of global bundle adjustment as their last step. Global bundle
adjustment involves the solution of high-dimensional, non-linear optimization prob-
lems [14], therefore, and despite the use of careful implementations exploiting its
sparse structure, it is computationally demanding. This, plus the requirement of
operating on the whole sequence at once, makes batch methods inappropriate for
use in on-line, time-critical applications where camera tracking must proceed in par-
allel with image acquisition.

Methods operating in a continuous mode, in which images are processed incre-
mentally as acquired, constitute the second class of camera tracking techniques. Such
methods exploit the natural ordering of images and are causal, i.e., they rely only on
past frames for estimating the camera motion for the current image. An inherent
shortcoming of all incremental techniques is that they are strongly dependent on
an initial reconstruction encompassing a small subset of views. The work of Beards-
ley et al. [15], who estimate camera matrices from 3D structure that is recovered
incrementally, was one of the first to propose such an approach. In some cases, struc-
ture recovery is completely avoided. For example, Simon et al. [16] describe a camera
1 See http://www.2d3.com, http://www.realvis.com, http://www.3dequalizer.com, and http://www.
thepixelfarm.co.uk, respectively.

http://www.2d3.com
http://www.realvis.com
http://www.3dequalizer.com
http://www.thepixelfarm.co.uk
http://www.thepixelfarm.co.uk


262 M.I.A. Lourakis, A.A. Argyros / Computer Vision and Image Understanding 99 (2005) 259–290
tracking system that relies on continuous tracking of a 3D plane that is assumed to
be present in the scene. The plane is tracked by estimating pairwise planar homog-
raphies with the aid of tracked interest points. The major disadvantage of this tech-
nique is that it requires the tracked plane to be continuously visible and its image
segmented from the rest of the scene. Moreover, the tracking scheme employed re-
quires manual intervention to bootstrap and cannot incorporate information from
points off the plane or from more than two images. McLauchlan [17] presents a for-
mulation of sequential least-squares for structure and motion reconstruction that is
based on the variable state dimension filter (VSDF). An appealing characteristic of
this approach is that the VSDF is used both for obtaining an initial reconstruction in
batch mode and for recursively updating this reconstruction by incorporating new
data as they become available.

Avidan and Shashua [18] follow a direct approach for recovering a set of consis-
tent projective camera matrices without reconstructing the 3D scene. The main con-
tribution of [18] is a ‘‘threading’’ operation on two consecutive fundamental matrices
that uses the trifocal tensor as the connecting thread. Their method is based on
tracking a scene plane along an image sequence and provides, as a byproduct, the
homography matrices it induces between adjacent views. However, owing to the
use of constraints involving algebraic distances, the estimated homographies are
not statistically optimal. Besides, the experimental results provided mainly focus
on the performance of plane tracking rather than on the recovery of the underlying
Euclidean camera motion and its accuracy. After restricting the permissible camera
motions to pure rotations, Prince et al. [19] propose a camera tracking algorithm for
augmented reality applications. Regardless of its computational efficiency, however,
its applicability is severely limited by the restricted camera motion model it employs.
Employing calibrated images, Nistér [20] relies upon the use of special hardware
instructions (i.e., Intel�s MMX technology) for fast feature detection and matching
and suggests a novel solution to the five-point relative pose estimation problem that
is amenable to an efficient numerical implementation. This solution is used in a pre-
emptive RANSAC framework to achieve real-time structure and motion estimation.
By introducing probabilistic simultaneous localization and mapping (SLAM) tech-
niques in computer vision, Davison [21] has recently proposed an interesting ap-
proach to camera tracking. By employing a camera motion model and explicitly
modeling uncertainty, his method is capable of determining in real time the camera
position/orientation and recovering sparse 3D information regarding the environ-
ment. Still, the method depends on certain prior knowledge regarding the imaged
scene, requires manual intervention for bootstrapping, and employs image features
that are of limited viewpoint-invariance, thus restricting its application in small-scale
environments.

It is well known that the fundamental matrix, trifocal and quadrifocal tensor can
be used to directly recover the camera motion from two, three of four images, respec-
tively. When, however, the number of images exceeds four, the corresponding mul-
tiview tensors do not provide closed-form solutions regarding the camera motion.
Therefore, in the absence of any further information, most incremental camera
tracking algorithms resort to recovering the scene structure and using it repetitively
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to register together the motion parameters estimated from pairs, triplets, or quadru-
ples of successive images. This paper presents a novel feature-based approach to
camera tracking that alleviates the need for relying on scene structure to recover
an initial estimate of the camera motion. The method is based on tracking a 3D
plane through a homography ‘‘chaining’’ operation that is applied to triplets of con-
secutive images through a sliding time window and exploits the fact that all images of
a planar surface acquired by a rigidly moving observer depend upon the same 3D
geometry. Since the tracked plane is not required to be physically present in the
scene, a virtual one can be used instead. Plane tracking is achieved by tracking the
2D projections of points from all over the scene. By doing so, all information con-
veyed by matching points is taken into account, without the need for continuously
maintaining an image-based segmentation of the tracked plane. Missing and errone-
ous point matches are tolerated, the motion model estimated for the tracked plane is
exact and fully projective (i.e., a homography) and no camera calibration informa-
tion or 3D structure recovery is necessary.

Knowledge of the homographies induced by the virtual 3D plane between each
pair of successive images allows the corresponding projection matrices encoding cam-
era motion to be expressed in a common projective frame and therefore to be recov-
ered directly, without the need for retrieving structure. Then, 3D structure is
recovered from the projection matrices via triangulation and used for refining them
through local resectioning. Intended for use in close to on-line applications such as
video see-through augmented reality and vision-based control, the proposed method
is designed to operate in a continuous mode. The method follows a strategy similar to
[18]. However, it is based on much simpler constraints whose derivation is shorter and
does not involve either the trifocal tensor or tensorial notation. Obviating the unwiel-
dy, time consuming process of trifocal tensor estimation [22] has apparent computa-
tional implications for continuous camera tracking. Moreover, our method tracks 3D
planes by minimizing a geometrically meaningful criterion with respect to a set of four
free parameters, which, according to the subspace constraint of [23], is a theoretically
minimal one. Compared to [18,16] which estimate 12 and eight parameters, respec-
tively, the estimation of just four parameters is both faster and more accurate.

The rest of the paper is organized as follows. Section 2 explains the notation that
will be used throughout all equations and provides some background knowledge.
Section 3 describes plane tracking and Section 4 builds upon it for solving the prob-
lem of camera tracking. Since the tracked plane is not required to be physically pres-
ent in the scene, any virtual 3D plane suffices for the purposes of camera tracking.
Section 5 explains how can such a virtual plane be selected. Implementation issues
and sample experimental results are reported in Section 6. The paper is concluded
with a brief discussion in Section 7.
2. Notation and background

In the following, vectors and arrays appear in boldface and are represented using
projective (i.e., homogeneous) coordinates. 3D points are written in uppercase, while
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their image projections in lowercase (e.g., X and x). Transposition is denoted by T.
The symbol . denotes equality of vectors up to an arbitrary scale factor. The fun-
damental matrix and the epipole pair pertaining to two images are, respectively, de-
noted by F and e, e0. Also, H is used to designate the interimage homography
induced by a 3D plane. A detailed treatment of the application of projective geom-
etry to computer vision can be found in [4].

It is shown in [23] that the fundamental matrix and plane homographies are
tightly coupled. More specifically, the entire group of all possible homography matri-
ces between two images lies in a subspace of dimension 4, i.e., it is spanned by four
homography matrices. These four homography matrices are such that their respec-
tive planes do not all coincide with a single point. Shashua and Avidan show in
[24] that given the fundamental matrix F and the epipoles e and e0 in an image pair,
a suitable basis of four homography matrices H1, . . . ,H4, referred to as ‘‘primitive
homographies,’’ is defined as follows:

Hi ¼ ½�i��F; i ¼ 1; 2; 3 and H4 ¼ e0dT; ð1Þ

where �i are the identity vectors �1 = (1,0,0), �2 = (0,1,0) and �3 = (0,0,1), [Æ]· desig-
nates the skew symmetric matrix representing the vector cross product (i.e., for a vec-
tor a, [a]· is such that [a]·b = a · b, "b), and d is a vector such that dTe 6¼ 0. This last
requirement can, for example, be satisfied by defining vector d so that each of its ele-
ments has an absolute value of 1 and a sign identical to that of the corresponding
element of e. The first three homography matrices (i.e., H1, H2, and H3) are of rank
2 and span the subgroup of homography matrices whose underlying 3D planes con-
tain the center of projection O0 of the second camera. On the other hand, H4 by def-
inition corresponds to a 3D plane not coincident with O0 but going through the
center of projection O of the first camera, thus having rank 1. Knowledge of the four
primitive homographies allows any other homography H to be expressed as a linear
combination

H ¼
X4
i¼1

kiHi; ki 2 R: ð2Þ

Next, a result due to Shashua and Navab [25] that plays a central role in the devel-
opment of the proposed method is presented. Let P be an arbitrary 3D plane induc-
ing a homography H between two images. Let also X0 be a 3D point not on P
projecting to image points x0 and x0

0 and assume that H has been scaled to satisfy
the equation x0

0 ’ Hx0 þ e0. Then, for any 3D point X projecting onto x and x0, there
exists a scalar j such that

x0 ’ Hxþ je0: ð3Þ

Eq. (3) suggests that the position of projected points in the second image can be
decomposed into the sum of two terms, the first depending on the homography in-
duced by P and the second involving parallax due to the deviation of the actual 3D
structure from P. The scalar j in Eq. (3) depends on X but is invariant to the choice
of the second image and is termed as relative affine structure in [25]. Given x, x0, H,
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and e0, the term j corresponding to X can be computed by cross-multiplying both
sides of Eq. (3) with x0, which after some algebraic manipulation yields

j ¼ ðHx� x0ÞTðx0 � e0Þ
kx0 � e0k2

: ð4Þ
3. Chaining homographies for 3D plane tracking

Suppose that three consecutive images I1, I2, and I3 are available and that a planar
homography between I1 and I2 has been estimated. Considering the two pairs (I2, I1)
and (I2, I3) formed by the three images, a key observation is the fact that image I2 is
shared by both of these pairs. Hence, the relative affine structure defined when I2 as-
sumes the role of the first image in Eq. (3) is insensitive to the choice of the second
image (i.e., I1 or I3) completing the pair. This allows one to estimate the relative af-
fine structure from the pair (I1, I2) and the corresponding homography and then use
this estimate for computing the plane homography for the pair (I2, I3). This, in effect,
constitutes a chaining operation involving plane homographies. The process just out-
lined is explained in more detail in the following subsections.

3.1. Chaining homographies using linear estimation

Assume that N triplets of matching points ðxi; x
0
i; x

00
i Þ, i = 1, . . . ,N, are available

across the three images I1, I2, and I3, respectively, and that the homography U from
image I1 to I2 due to some 3D plane has been estimated. In the remainder of this sec-
tion, a procedure for estimating the plane homography V induced by this 3D plane
between images I2 and I3 will be described. V will be shown here to depend on nine
parameters; later on, Section 3.2 will demonstrate that four parameters suffice for
determining it.

Eq. (3) presupposes that the relative affine structure corresponding to a certain
point X0 is equal to one. Let us begin by explaining the role of X0 in the development
of Eq. (3). Recall that H and e0 are homogeneous entities, defined up to an arbitrary
scale factor. Therefore, by fixing H�s scale, X0 serves to establish a common relative
scale between H and e0. Notice, however, that in the case that H has not been scaled
with the aid of X0, Eq. (3) continues to hold for some j0 that is a scaled version of j
given by Eq. (4). In addition, in this case j is not invariant to the choice of the second
view. What remains invariant though, is the ratios of j�s computed from different
image pairs.

From the set of matching pairs ðxi; x
0
iÞ the epipolar geometry for images I1 and I2

and thus the epipole e in image I1 can be estimated. In a similar manner, the epipole
e00 in I3 for the camera motion corresponding to frames I2 and I3 can be estimated
from the set of matching pairs ðx0

i; x
00
i Þ. Recalling that the homography from image

I2 to I1 is simply U�1, for all point matches in those two images Eq. (3) becomes

xi ’ U�1x0
i þ jie: ð5Þ
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By employing Eq. (4), the ji can then be estimated as

ji ¼
ðU�1x0

i � xiÞTðxi � eÞ
kxi � ek2

: ð6Þ

Taking into account point matches in frames I2 and I3, Eq. (3) gives

x00
i ’ Vx0

i þ jie
00: ð7Þ

In order for Eq. (7) to hold for the ji given by Eq. (6), V and e00 in it have to be de-
fined up to the same scale factor. In other words, V�s scale is determined by the scale
of e00�s estimate. For this reason, V in Eq. (7) is no longer a homogeneous 3 · 3 ma-
trix but rather an ordinary, inhomogeneous one. Eq. (7) is thus a vector equation
linear in V, providing three linear constraints on the nine unknown elements of V.
Due to the presence of an arbitrary, unknown scale factor, only two of those three
constraints are linearly independent. Denoting the ith row of matrix V by vTi , writing
x00
i ¼ ðx00i ; y00i ; 1Þ

T and e00 ¼ ðe00x ; e00y ; e00z Þ
T, those two constraints can be explicitly

xpressed as2

vT3x
0
ix

00
i � vT1x

0
i ¼ jie00x � jie00z x

00
i ;

vT3x
0
iy

00
i � vT2x

0
i ¼ jie00y � jie00z y

00
i :

ð8Þ

Notice that Eqs. (8) do not require that the employed point matches have been iden-
tified as lying on the tracked plane or not. Therefore, they do not require that the
tracked plane has been segmented from the rest of the scene and are applicable even
in the case of tracking an out of view or a virtual plane (i.e., a plane not physically
present in the scene). Since vTj x

0
i ¼ x0T

i vj, Eqs. (8) can be written in matrix form as

�x0T
i 0T x0T

i x
00
i

0T �x0T
i x0T

i y
00
i

" # v1

v2

v3

2
64

3
75 ¼

jie00x � jie00z x
00
i

jie00y � jie00z y
00
i

" #
: ð9Þ

Thus, each triplet of corresponding points provides two equations in the elements of
V. By concatenating the equations arising from five triplet correspondences, a matrix
equation of the form Mv = b is generated, where M is a 10 · 9 matrix, v is a 9 · 1
vector equal to ðvT1 ; vT2 ; vT3 Þ

T, and b is a 10 · 1 vector. Omitting any row of matrix
M, yields a 9 · 9 system that may be solved using linear algebra techniques. In the
case that more than five triplet matches are available, Eq. (9) gives rise to an over-
constrained system from which V can be estimated in a least-squares manner.

According to the terminology of [4, Chapter 3], the estimation of V as described
up to this point is achieved with a direct linear transformation (DLT) algorithm. It is
well known that DLT algorithms are not invariant to similarity transformations of
the image but depend on the coordinate system in which image points are expressed.
To alleviate this and, at the same time, improve the condition number of the DLT
2 Notice that all available point matches are assumed to originate from actual image points (i.e.,
corners); no ideal points whose third coordinate is zero exist among them.
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constraints, therefore ameliorating the accuracy of results, the normalization tech-
nique of [26] is applied to matching points prior to feeding them to the DLT algo-
rithm. Independently for each image, this normalization consists in translating
image coordinates so that the centroid of points is brought to the origin of the coor-
dinate system, followed by an isotropic scaling that maps the average point to
(1,1,1)T. The normalizing transformation for image In is expressed by a 3 · 3 linear
transformation Ln. Notice that in this case, the normalized version �U ¼ L2UL�1

1 of U
must be employed in Eq. (6) along with the normalized points and epipole. The nor-
malized epipole can be recovered from the normalized fundamental matrix
�F ¼ L�T

2 FL�1
1 . After the application of DLT, the computed homography estimate

�V needs to be denormalized using L�1
3
�VL2.

In practice, the set of available matching point triplets is almost certain to contain
errors due to false matches and errors in the localization of image corners. Conse-
quently, in order to prevent such errors from corrupting the computed homography
estimate, the group of DLT constraints should be employed within a robust regres-
sion framework. In our case, the least median of squares (LMedS) [27] robust esti-
mator is employed to iteratively sample random sets of nine constraints, recover
an estimate of matrix V from each of them, and find the estimate that is consistent
with the majority of the available constraints. To ensure that those random sets arise
from points having a good spatial distribution over the image, random sampling is
based on the bucketing technique of [28]. Finally, V is recomputed using least
squares on the set of constraints having the largest support, i.e., the LMedS inliers.

3.2. Reducing the DOFs involved in homography chaining

In the following, the basic method of the previous section will be revised, aiming
to derive a model having fewer, therefore easier to estimate, degrees of freedom (i.e.,
free variables). As already mentioned, the entire group of all possible homography
matrices between two images lies in a subspace of dimension four, spanned by the
primitive homographies of Eq. (1). According to Eq. (2), knowledge of those homog-
raphies allows any other homography H to be expressed as a linear combination
encompassing four scalars ki. This implies that when the primitive homographies
for frames I2 and I3 have been computed, the rows vTi of matrix V in Eqs. (8) depend
on four rather than nine parameters. The process described in Section 3.1 can be
slightly modified to estimate the coefficients ki making up V instead of directly esti-
mating the latter. In other words, the linear estimation process that has been de-
scribed above can be performed with four rather than nine unknowns. This
reduction in the dimensionality of the problem is very important since fewer degrees
of freedom (DOFs) entail less computation time for the homography and typically
more accurate estimates. Fewer DOFs involve the solution of smaller systems and
require less iterations (i.e., samples taken) to find a solution with a given confidence
level when embedded within random sampling schemes such as LMedS or RANSAC
[29]. It was found experimentally that the execution time for plane tracking using the
formulation involving the ki is by an order of magnitude shorter than that required
when estimating V directly.
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3.3. Non-linear refinement of the estimated homography

The procedure outlined in Sections 3.1 and 3.2 for estimating the tracked plane
homography from an overdetermined set of linear constraints minimizes an algebraic
error term with no physical meaning. Therefore, this homography estimate can be
improved by refining it using a non-linear minimization process that involves a geo-
metric criterion. Letting d (x,y) represent the Euclidean distance between the inho-
mogeneous points represented by x and y, the non-linear refinement minimizes the
following sum of squared distances

XN
i¼1

dðx00
i ;Vx

0
i þ jie

00Þ2 þ d x0
i;V

�1x00
i �

kx00
i k

kVx0
i þ jie00k

jiV
�1e00

� �2
 !

ð10Þ

with respect to the four coefficients making up V as a linear combination of the prim-
itive homographies of Eq. (1). This criterion involves the symmetric transfer error
between actual and transferred points in the two images and is minimized by apply-
ing the Levenberg–Marquardt iterative algorithm as implemented by MINPACK�s
LMDER routine [30], initialized with the least-squares estimate computed from the
LMedS inliers. To safeguard against point mismatches, the non-linear refinement
is performed using only the point features that correspond to inliers of the LMedS
homography estimate. The complete algorithm for homography chaining after
incorporating the non-linear refinement step is summarized in pseudocode in Fig. 1.

Having presented the basic three-frame chaining operation, it is straightforward
to extend it to handle a sequence of more than three views. For example, in order
to track the plane in a new image I4, the homography V computed in the previous
step between frames I2 and I3 becomes the new U for the triplet I2, I3, and I4. Note
also that the epipolar geometry of frames I2 and I3 has been computed during the
previous iteration, therefore only the epipolar geometry between frames I3, and I4
needs to be estimated during this step. A final remark concerning the extension of
the chaining operation to more than three frames is that the estimation of V can
benefit from point trajectories that are longer than three frames: If, for example, a
four-frame point trajectory is available for images I1, I2, I3, and I4, the constraints
generated by the triplet I1, I3, and I4 can be combined with those arising from I2,
I3, and I4. This variant of chaining from multiple triplets can be carried out by
maintaining a small moving window of past frames.
4. Camera tracking

The homographies of a tracked plane that are estimated as described in the pre-
ceding section can serve as the input to batch, plane-based reconstruction methods
such as [12,13]. In this section, the successive plane homographies serve as the basis
of a faster, more straightforward incremental reconstruction scheme. The symbols
Hi,j and ei,j will be used to denote, respectively, the tracked plane homography
and the epipole in Ij for the image pair Ii and Ij. Let H1,2 be the homography induced
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by some plane between the first two images; Section 5 discusses plane selection in
more detail. Assume also that using the method outlined in Section 3, plane homog-
raphyH2,3 has been estimated from the matching triplets among images I1, I2, and I3.
Recalling that these homographies are, by computation, scale compatible with the
corresponding epipoles, Eq. (3) yields the image projections of a 3D point X as
x . H2,1x

0 + je2,1 and x00 . H2,3x
0 + je2,3, implying that X . [x0T,j]T. Therefore, a

set of consistent (i.e., defined up to the same projective transformation) projective
camera matrices in canonical form for the three views is given by [4,18]

P1 ¼ H2;1 j e2;1½ �; P2 ¼ I j 0½ �; P3 ¼ H2;3 j e2;3½ �; ð11Þ
where I denotes the 3 · 3 identity matrix. Since it is customary to have the world�s
coordinate frame aligned with the initial camera location, application of an appro-
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priate 3D projective mapping can transform Eqs. (11) so that P1 becomes equal to
[I j 0]. Indeed, right multiplication of the camera matrix [A j b] by the 4 · 4 matrix
M given by

M ¼ A�1

0T
�A�1b

1

�����
" #

; ð12Þ

makes the former equal to [I j 0]. Therefore, to make P1 equal to [I j 0], the projection
matrices in Eq. (11) should be right multiplied by the matrix given by Eq. (12) for
A = H2,1 and b = e2,1, which, taking into account that H�1

j;i ej;i ¼ ei;j and H2,3

H1,2 = H1,3, yields after some algebraic manipulation

P1 ¼ I j 0½ �; P2 ¼ H1;2 j e1;2½ �; P3 ¼ H1;3 j e1;3½ �: ð13Þ
Suppose now that by employing the plane tracker for the image triplet I2, I3, and I4, the
homographyH3,4 induced by the tracked plane has been estimated. IfP3 were equal to
[I j 0], a projection matrix for I4 consistent with the projection matrices of the previous
three images would simply be [H3,4 j e3,4]. Here, the former should be right multiplied
by the matrix given by Eq. (12) for A = H1,3 and b = e1,3, to account for the fact that
the employed coordinate system coincides with that of I1. Thus, P4 is equal to [H3,4

H1,3 jH3,4 e1,3 + e3,4], which in turn is simplified to [H1,4 j e1,4]. Clearly, the procedure
for obtaining P4 just described can be generalized to incorporate the projection matrix
Pn corresponding to any image In with n > 4. Thus, Pn is given by a recursive formula
involving homographies and epipoles defined in successive images, namely

Pn ¼ Hn�1;nPn�1 þ 0 j en�1;n½ �; with Pn�1 ¼ H1;n�1 j e1;n�1½ �: ð14Þ
The camera projection matrices recovered with the aid of the homographies induced
by a tracked plane are defined in a projective coordinate frame. Hence, the camera
intrinsic calibration parameters are necessary for upgrading those projective camera
matrices to Euclidean. In order to increase stability and, at the same time, relieve the
camera tracker from the computational burden associated with their estimation, the
camera intrinsics are assumed here to be constant and known, either as a result of a
self-calibration algorithm or of an off-line, grid-based calibration method [31]. The
matrix of the intrinsic calibration parameters has the following well-known form [4]:

K ¼
au �au cot h u0
0 av= sin h v0
0 0 1

2
64

3
75: ð15Þ

The parameters au and av correspond to the focal distances in pixels along the axes of
the image, h is the angle between the two image axes, �aucoth is the camera skew,
and (u0,v0) are the coordinates of the image principal point. Given K, a projective
camera matrix can be upgraded to Euclidean by right multiplication with the 4 · 4
matrix defined as

Heuc ¼
K

�pTK

0

1

����
� �

; ð16Þ
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where p is such that the coordinates of the plane at infinity in the projective recon-
struction are given by [pT,1]T. Following this, the 3D translation and rotation cor-
responding to the Euclidean camera matrix can be estimated with RQ
decomposition [4].

Hitherto, knowledge of the plane homographies has permitted the direct recovery
of a set of consistent projective camera matrices, without the need for 3D structure
estimation and resectioning. A sparse representation of 3D scene structure in the
form of a point cloud can be built-up incrementally as new image triplets become
available. More specifically, when the camera matrices for a new image triplet have
been estimated, the 3D coordinates of points that became visible in the new triplet
can be recovered with the aid of a triangulation algorithm [32]. The main problem
that needs to be addressed by all triangulation algorithms is the fact that errors in
the estimates of camera matrices as well as mislocalized image corners result in mak-
ing skew the back-projected 3D lines defined by the camera optical centers and the
corresponding image projections. This work employs a triangulation method that ex-
ploits the knowledge of the camera intrinsic parameters to express two back-pro-
jected 3D lines in an Euclidean coordinate frame in which the notion of length
becomes meaningful. Then, a 3D point is reconstructed as the midpoint of the min-
imal length straight line segment whose endpoints lie on the skew back-projected
lines [33]. Since an image triplet gives rise to three different image pairs, the recon-
structed point is taken here to be the median of the three 3D points reconstructed
from the triplets� image pairs. To avoid reconstructing points arising from triplets
(x,x0,x00) involving spurious matches, the projection matrices of Eq. (11) are used
to compute the corresponding trifocal tensor using a closed-form formula. More spe-
cifically, given the canonical projection matrices of Eq. (13), the corresponding trifo-
cal tensor in matrix notation is made up from the set of matrices {T1,T2,T3}, where

Tk ¼ Hk
1;2e

T
1;3 � e1;2H

k
1;3

T
; k ¼ 1; . . . ; 3 ð17Þ

and Hk
i;j denotes the kth column of matrix Hi,j [4]. Then, using point matches x, x0

from the first two views along with the tensor computed with Eq. (17) permits the
elimination of point triplets whose transferred third image point lies at a distance
further than a certain threshold from the point x00. 3D points are often visible in
more than three successive frames which give rise to more than one image triplets.
Each time a 3D point that has been reconstructed from one or more previous triplets
is seen in a new triplet, an estimate of its Euclidean coordinates is recovered from the
new triplet. Then, this estimate is used to refine the existing one through recursive
median filtering [34].

By trading some speed for increased accuracy in camera tracking, structure infor-
mation can be used in a local resectioning framework for evenly distributing the
camera tracking error among consecutive images belonging to the same sliding time
window. Assume that a narrow window of the image points matched among the W
most recent frames numbered n � W + 1, . . . ,n is maintained, with n being the most
recent frame. Also, suppose that M Euclidean 3D points Xj, j = 1, . . . ,M are visible
in some of these W frames and let Ri and ti be the estimates of camera orientation
and position for frame i, i = n � W + 1, . . . ,n. Then, each Euclidean projection
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matrix Pi is equal to K [Ri j ti]. Local resectioning amounts to refining all motion
parameters Ri and ti so that the sum of squared image distances between reprojected
and detected, actual image points is minimized, namely

min
Ri ;ti

Xn
i¼maxðn�Wþ1;1Þ

X
j

dðPiXj; x
i
jÞ

2 with Pi ¼ K½Ri j ti�; ð18Þ

where d (x,y) denotes the Euclidean distance between the inhomogeneous image
points represented by x and y, and xi

j is the detected projection of point j in image
i, i 2 {n � W + 1, . . . ,n}. Rotation matrices Ri are parametrized using quaternions.
The gauge issue [14] (i.e., the choice of the coordinate system for expressing the
reconstruction) is resolved by fixing the projection matrix of the first frame equal
to K [I j 0] and not altering it during the minimization. To keep the computational
overhead of the minimization low, observe that Eq. (18) is minimized with respect
to the 3D motion only and not with respect to the 3D structure as well, as is the case
with bundle adjustment. The minimization of Eq. (18) is performed with the aid of a
non-linear least-squares algorithm [35] that is initialized with the motion parameters
computed directly from the estimates of the camera matrices obtained with the aid of
the tracked plane homographies. Finally, since the projective camera matrix for In
will be needed for determining the camera motion of subsequent frames, it is recom-
puted as the product of the Euclidean camera matrix amounting to the refined cam-
era motion by the inverse of matrix Heuc from Eq. (16). The complete algorithm for
camera tracking using the homographies of a tracked plane is listed in pseudocode in
Fig. 2.
5. Using a quasi-metric virtual plane

As explained in Section 4, camera tracking requires a 3D plane to be tracked over
an image sequence. Although planes abound in man-made environments and fully
automatic methods exist for detecting them [36], it would be preferable if the pro-
posed method did not rely on the assumption of a physical 3D plane being present
in the scene. To achieve this, recall that in order for plane tracking to commence, the
homography induced by the tracked plane between the first two frames of the se-
quence must be available. Apart from this requirement, however, no other informa-
tion regarding the plane must be supplied. The tracked plane can actually be a
virtual one, i.e., not corresponding to a physical 3D plane present in the scene. All
that is needed is that the plane�s homography is compatible with the underlying epi-
polar geometry. The rest of this section describes how can such a virtual plane be
selected.

Let xi, x
0
i, i = 1, . . . ,N be a set of matching point pairs in the first two frames. The

virtual plane can be chosen so that it closely approximates the set of available point
matches. In other words, the virtual plane is situated ‘‘in-between’’ the 3D space
points giving rise to the set of available point matches. Assuming that the epipolar
geometry corresponding to the two images has been estimated, we therefore seek



Fig. 2. Camera tracking based on tracked plane homographies; see Section 4 for details.
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the planar homography H for which the contribution of the parallax term in Eq. (3)
is as little as possible. As it has been explained in Section 2, any planar homography
defined between two images can be expressed as a linear combination of the four
primitive homographies of Eq. (1). The sought H is thus computed from the coeffi-
cients lj, j = 1, . . . , 4 minimizing
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X4
j¼1

ðljHjÞxi ’ x0
i; i ¼ 1; . . . ;N : ð19Þ

Each of the available point matches provides two independent linear constraints for
the lj, therefore N P 2 matches yield an overdetermined system from which the lj
can be estimated using robust least squares. The LMedS robust estimator is again
employed to find the set of lj corresponding to the homography minimizing Eq.
(19) for at least 70% of the available matches; the estimated lj are then refined by
applying least squares to the constraints corresponding to the LMedS inliers. The
plane computed in this manner is referred to as ‘‘quasi-metric’’ in [24] and gives rise
to a projective reconstruction of space that is characterized by a small amount of
projective distortion.
6. Implementation and experimental results

In the following, Section 6.1 provides some details regarding the practical imple-
mentation of the proposed camera tracking technique. Since the performance of
plane tracking is crucial for the overall performance of camera tracking, Section
6.2 presents experimental results demonstrating its effectiveness. Quantitative and
qualitative experimental validation results regarding the complete camera tracking
system are reported in Sections 6.3 and 6.4, respectively.

6.1. Implementation issues

A prototype of the proposed camera tracking method has been implemented in C.
Linear algebra numerical operations were carried out using LAPACK [37]. Corre-
sponding image points that are required as input are determined between pairs of
consecutive images as follows. First, the Harris interest operator [38] is employed
to extract corner features with subpixel accuracy from each image. Then, the similar-
ity of corners located within a maximum disparity search window is assessed using
the zero-mean normalized cross-correlation of image templates and a set of prelimin-
ary matches is established by solving an assignment problem on a flow graph [39].
Preliminary matches are used to robustly estimate the fundamental matrix with
the seven-point algorithm [28]. Following this, final corner matches are determined
by employing guided matching based on the estimated epipolar geometry [28]. Even-
tually, the median flow filter algorithm of [38] is employed to cope with the fact that
guided matching can produce mismatches that accidentally agree with the epipolar
geometry. This algorithm has proven to be very effective in removing many of the
outliers contained in the set of pairwise matches. The image triplet matches are
drawn from the two underlying sets of successive pair matches. Epipoles are com-
puted by finding the kernels of the estimated fundamental matrices. A technique that
directly derives the epipoles from point matches [40] has also been evaluated and was
found to produce similar results. The computational overhead incurred by the
LMedS estimator can be reduced by noting that the computation of the median of



M.I.A. Lourakis, A.A. Argyros / Computer Vision and Image Understanding 99 (2005) 259–290 275
the squared residuals that is needed at each iteration can be attained without resort-
ing to sorting them. Instead, an algorithm that finds the kth largest out of n numbers
can be employed [41]. This algorithm has a time complexity of O(n), which is lower
than the O(n logn) complexity of the best serial sorting algorithm.

At this point, it should be noted that the estimation of epipolar geometry in a
video sequence whose consecutive frames are very close together is ill-conditioned.
Therefore, the previously outlined corner matching algorithm implicitly assumes
that the baseline of the images to be matched is not negligible. Additionally, it
is well known that such a baseline permits more accurate reconstruction. On
the other hand, the baseline cannot be increased too much, since in that case
the number of corners that can be successfully matched between images becomes
very small. Thus, when the image sequence to be tracked is characterized by small
interframe motion, one has to select appropriate keyframes, i.e., frames in the im-
age sequence that are sufficiently apart in time from each other, so that sufficient
translational camera motion exists between them and their effective baseline is
suitable. Despite that automatic methods such as [42,43] exist for determining key-
frames, in this work we have chosen to time subsample the image sequence by a
factor of k, i.e., use every kth frame for computing camera motion. Note that key-
framing is necessary only when applying the proposed method to pre-recorded,
video-rate benchmark sequences. When performing on-line tracking, the latency
of the camera tracker provides enough time for the camera to translate sufficiently
between images. In the case that the camera motion needs to be estimated for
frames among the keyframes, this can be achieved using a pose estimation proce-
dure based on resectioning using the 3D structure computed from keyframes
[44,11].

The current implementation of the plane tracker performs chaining based on con-
straints arising from only three frames at a time. Possible camera lens imperfections
(e.g., radial distortion) are neglected. The intrinsic camera parameters in Eq. (15)
were determined by using the auto-calibration method described in [31]. This method
exploits constraints arising from a simplified version of the Kruppa equations that is
derived with the aid of SVD of pairwise fundamental matrices [45]. Throughout all
experiments, the plane homography between the first two images that is necessary for
bootstrapping plane tracking was determined as described in Section 5. The triangu-
lation technique described in Section 4 was found experimentally to perform better
compared to the three view triangulation method of Avidan and Shashua [24], which
involves a modification of the corners� image coordinates that ensures that the trifo-
cal constraints are satisfied exactly. The size of the sliding window W in Eq. (18) is
set to 7 frames and the minimization is carried out using the NL2SOL algorithm [35], as
implemented by the DN2G routine in the PORT3 library from Bell Labs. Compared to
the Levenberg–Marquardt algorithm as implemented by the LMDER routine [30],
NL2SOL was found in this case to converge faster while producing results of similar
accuracy. The NLSCON non-linear least-squares routine [46] has also been evaluated
and yielded results slightly worse than those of DN2G. The jacobians of Eqs. (10)
and (18) that are necessary for the non-linear minimizations have been computed
analytically with the aid of MAPLE�s symbolic differentiation facilities. Analytical
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differentiation was preferred over numerical one owing to its better performance and
convergence characteristics.

6.2. Plane tracking experiments

This section presents results from three experiments that demonstrate the perfor-
mance of plane tracking, which constitutes a key component of the proposed meth-
od. To aid in the visual interpretation of results, 3D planes that are physically
present in the scene have been employed in all experiments. The spatial extend of
the employed planes has been defined manually using a polyline in the first frame.
Following this, the plane homography between the first two images that is necessary
for bootstrapping plane tracking (i.e., U in Section 3.1) is estimated from the point
matches lying within the specified polyline. Alternatively, plane tracking could have
been bootstrapped by applying to the first pair of images an automatic plane detec-
tion algorithm such as [36].

The first experiment was performed on the well-known ‘‘basement’’ indoors image
sequence, two frames of which (namely 0 and 8) are shown in Figs. 3A and B. This
Fig. 3. (A,B) Two views of a basement (courtesy of the Oxford Visual Geometry Group). The two
polylines in (A) delineate the planar regions tracked over the whole sequence. (C) Right wall warped and
stitched with (B), (D) floor warped towards and stitched with (B); see text for explanation.
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sequence consists of 11 512 · 512 frames acquired by a camera mounted on a mobile
robot as it approached the scene while smoothly turning left. The plane correspond-
ing to the right corridor wall was tracked from frame 0 to frame 8 using the proposed
method. Then, by employing the estimated homography, the right wall from frame 0
was warped towards frame 8. Fig. 3C shows the warped wall stitched with frame 8. A
second plane, namely the one corresponding to the floor, was also tracked between
frames 0 and 8. Fig. 3D shows the result of warping the floor plane from frame 0
towards frame 8 and stitching them together. As it is clear from the results, the accu-
racy of the homographies estimated using the proposed method is satisfactory in
both cases. Excluding the time required to detect and match corners between succes-
sive frames, the average running times for tracking the wall and floor planes in the
whole sequence were, respectively, 50 and 53 ms per frame on an Intel P4 at 2.5 GHz
laptop.

To quantitatively evaluate the performance of plane tracking, the floor plane was
tracked from frame 0 to frame 10 and then back to frame 0, reversing the order of
intermediate frames. This effectively simulates a camera trajectory that is closed, i.e.,
ends at the location where it started. Composing the pairwise homographies esti-
mated by the plane tracker, the floor�s homography from the first frame through
the last and back to the first can be estimated. Ideally, this homography should be
equal to the identity matrix. In practice, the deviation in the position of floor points
transferred using this homography from their actual locations in the first frame indi-
cates the accuracy of plane tracking. The root mean square (RMS) error correspond-
ing to the 91 transferred floor points was found to be 19.3 pixels, corresponding to
an average RMS error of 0.91 pixels for each of the 21 frames involved in tracking.
However, since certain floor points correspond to mismatches or poorly localized
corners, a more appropriate error measure is given by the root median square
(RMedS) error, which was found to be equal to 8.47 pixels or on average 0.40 pixels
per tracked frame.

The second experiment employs another well-known image sequence, the first and
last frames of which are shown in Figs. 4A and B. The sequence depicts the Arenberg
castle in Belgium and consists of 22 768 · 576 frames acquired with a handheld cam-
era. Using the proposed method and the image frames between those in Figs. 4A and
B, the 3D plane defined by the rightmost wall (see Fig. 4A) was tracked throughout
the sequence. Fig. 4C illustrates the result of warping the first frame towards the last
using the estimated homography. To aid in the evaluation of this result, Fig. 4D
shows it superimposed on Fig. 4B, using different color channels for each image.
As can be clearly seen, image warping according to the estimated homography suc-
cessfully registers the plane�s image in Fig. 4A with that in Fig. 4B. In this case, the
average running time for plane tracking was 66 ms per frame. The plane of the right
wall was again tracked from the first to the last frame and back (for a total of 43
frames) and the RMS and RMedS errors in this case were 31.7 and 18.3 pixels,
amounting to average errors of 0.73 and 0.43 pixels per frame, respectively.

The third experiment employs a sequence depicting the remains of a roman tavern
(thermopolium) in ancient Pompeii. This sequence is quite shaky, due to the fact that
it was shot with a camcorder as the operator walked approaching the tavern. It



Fig. 4. (A,B) First and last images from the Arenberg castle sequence (courtesy of the University of
Leuven VISICS Group), (C) first image warped towards the second using the estimated homography;
notice the distortion due to parallax on the left part of the image and (D) warped image in (C)
superimposed on (B).
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consists of 80 720 · 576 frames, the first and last of which are shown in Figs. 5A and
B, respectively. In this experiment, keyframes were determined by time subsampling
the original sequence by four and the plane defined by the front face of the fore-
ground fountain was tracked up to the last frame. Fig. 5C shows the warped plane
from the first plane stitched with the last. The average running time for plane track-
ing was 52 ms per frame. The RMS and RMedS errors computed after tracking the
plane of the fountain front face back and forth (39 frames total) were 50.3 and 34.1
pixels, respectively, corresponding to average errors of 1.28 and 0.87 pixels per
frame, respectively.

6.3. Quantitative camera tracking experiments

In order to quantitatively assess the accuracy of the proposed camera tracking
method, it is necessary to employ image sequences for which the camera motion
can be accurately determined with independent means. This motion can then be
compared with the one estimated by the proposed method. In this work, we have
chosen to base our comparison on the motion estimates obtained through two dif-
ferent approaches, namely grid-based calibration and 3D reconstruction with the
aid of a state of the art structure and motion estimation system.

More specifically, the first quantitative experiment employs a 27 frame,
1280 · 960 sequence of a calibration object consisting of two planes as shown in
Fig. 6A. Using Bouguet�s MATLAB calibration toolkit [47], the extrinsic calibration



Fig. 5. (A,B) First and last frames from a clip imaging the remains of a Pompeian tavern, (C) fountain
front face warped and stitched with (B).
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(i.e., camera pose) parameters were determined for each image. The pose of every
image was then computed relative to that of the first one, thus effectively aligning
the employed world coordinate system with the latter. Following this, the proposed
method was applied to the image corners that were extracted during calibration as
the intersections of line segments fitted to the chessboard pattern. Fig. 6B illustrates
the corresponding VRML 3D model that was recovered. For each image, the camera
positional and angular errors were computed by comparing the camera positions and
orientations obtained from calibration with those obtained from the proposed meth-
od. The overall scene scale missing from our reconstruction was inferred from
knowledge of the physical dimensions of the squares in the calibration pattern.
Denoting by (Rc, tc) the camera pose obtained from calibration and by ðR̂; t̂Þ the pose
estimated by the proposed method, the positional error was computed as ktc � t̂k.
The angular error was computed as

arccosð1
2
½traceðR�1

c R̂Þ � 1�Þ; ð20Þ

and corresponds to the amount of rotation about a unit vector that transfers Rc to R̂.
Figs. 6C and D show plots of the positional and angular errors, measured in milli-
meters and degrees, respectively. Clearly, the camera poses computed by the pro-
posed method are very accurate, with the positional and rotational errors
remaining below 11 mm and 0.5�.

The second experiment compares the results obtained by applying the proposed
method to the basement sequence of Fig. 3 against those produced on the same



Fig. 6. (A) A frame of a sequence depicting a calibration object consisting of two planes, (B) view of the
3D reconstruction and the camera trajectory, and (C,D) the positional and angular errors (in millimeters
and degrees, respectively) of the camera trajectory computed by the proposed method. The 3D camera
locations are indicated in (B) with red pyramids whose apexes are located on the camera optical centers;
the green curve connecting the optical centers corresponds to the recovered camera trajectory whereas the
white dots illustrate the reconstructed 3D points cloud. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this paper.)
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sequence by a well-established tensor-based batch approach, namely Oxford�s Visual
Geometry Group (VGG) structure and motion recovery system [11,48]. Note that
the forward translational motion of this particular sequence results in the angle be-
tween the triangulating 3D lines being small which, in turn, hinders accurate struc-
ture recovery. The comparison was performed on the basis of the Euclidean
reconstruction data for the basement sequence that are publicly provided by
VGG3 in the form of projection matrices, 3D points, and corresponding image pro-
jections. Application of RQ decomposition to VGG�s projection matrices revealed
that the camera intrinsic calibration parameters pertaining to the reconstruction var-
ied slightly from frame to frame and, most importantly, had considerable non-zero
skew. Since our camera calibration method assumes zero skew intrinsic parameters
that remain fixed throughout the whole sequence, a fair evaluation called for mod-
ifying VGG�s reconstruction prior to the comparison, as follows.
3 See http://www.robots.ox.ac.uk/~vgg/data.html.

http://www.robots.ox.ac.uk/~vgg/data.html
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First, the non-zero skew was eliminated by transforming each frame�s 2D coordi-
nates through multiplication with a matrix

B ¼
1 au=av cos h 0

0 sin h 0

0 0 1

2
64

3
75; ð21Þ

where au, av, and h are as defined for Eq. (15). Note that this is equivalent to left mul-
tiplying each projection matrix Pi = Ki [Ri j ti] by B, which yields a zero skew intrinsic
calibration matrix BKi and leaves the motion parameters Ri and ti unchanged. Fol-
lowing the unskewing of image coordinates, the intrinsic calibration parameters of
all frames were fixed to those corresponding to the first frame after unskewing. As
expected, assuming fixed intrinsic parameters for all frames resulted in the existing
reconstruction being less accurate in terms of the average reprojection error per
frame: The latter indeed increased to 34.9 pixels. To account for the new, fixed intrin-
sics, VGG�s reconstruction served as the starting point for an Euclidean bundle
adjustment processing step. This step was implemented with the aid of our sba

package [49], which was employed to simultaneously refine the 3D structure and
camera motion parameters while keeping the intrinsic parameters of all images con-
stant and known. Bundle adjustment resulted in a small average reprojection error of
0.45 pixels per frame, which indicated that the refined reconstruction was consistent
with the constraint of all images having identical intrinsic calibration parameters.
Since camera translation is recovered up to an unknown scale factor which is differ-
ent for the two camera trajectories to be compared, we have chosen to treat transla-
tion vectors as directions and measure their difference with their angular separation.
The difference between two rotations was again measured using Eq. (20). Figs. 7A
and B show graphs of the positional and angular difference between the camera tra-
jectory estimated by our method and that corresponding to VGG�s refined recon-
struction. Inspection of both graphs indicates that the two trajectories are very
similar.
Fig. 7. The positional (A) and angular (B) differences in degrees between the camera trajectory computed
for the basement sequence by the proposed method and that corresponding to VGG�s refined
reconstruction.
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6.4. Using camera tracking for scene augmentation

As it must be evident from Section 6.3, rigorous quantitative evaluation of the
performance of camera tracking for an arbitrary image sequence is difficult due to
the fact that ground truth for the camera motion is usually unavailable. Therefore,
in the case of sequences for which the true camera motion is not precisely known, we
have chosen to indirectly evaluate camera tracking from the quality of sequences
resulting from matchmoving, that is augmenting the original ones with artificial
3D objects. Accurately estimated camera trajectories should result in the artificial
objects exhibiting low drift and jitter in the augmented sequences. To achieve aug-
mentation, the estimated camera trajectories were exported to the 3DSMax graphics
package [50] using MaxScript and then the augmented sequences were generated
with the aid of 3DSMax�s rendering engine that used the original sequence as a back-
ground. The initial alignment of the world coordinate systems employed by the cam-
era tracker and 3DSMax was achieved interactively, by manually rotating and
translating them until they lined up. The placement of the artificial graphical objects
into the scene was guided by the structure information also provided by the camera
tracker. Representative results from five of the conducted experiments are given in
this section. These experiments rely on image sequences acquired using a variety
of cameras undergoing different types of 3D motion. Sample augmented sequences
can be found at http://www.ics.forth.gr/~lourakis/camtrack/.

The first experiment was performed on the well-known ‘‘MOVI house’’ image se-
quence, consisting of 119 512 · 512 frames acquired by a fixed camera as a model
house on a turntable made a full revolution around its vertical axis. This is equiva-
lent to the camera making a complete circular orbit around the house. Apart from
giving rise to a geometrically regular camera trajectory, this sequence is also charac-
terized by smooth interframe motion. The first frame of the sequence is shown in Fig.
8A, while Figs. 8B and C illustrate different views of the VRML 3D model recovered
using the proposed method on keyframes corresponding to odd numbered frames
(59 in total). As can be seen from Fig. 8B, the estimated trajectory is very close to
being a circle. Fig. 9 shows snapshots of the original sequence after augmenting it
Fig. 8. (A) The first frame from the ‘‘house’’ sequence (courtesy of the INRIA MOVI Group), (B,C) top
and side views of the 3D reconstruction and the camera trajectory. Note that the camera trajectory is very
close to being a full circle.

http://www.ics.forth.gr/~lourakis/camtrack/


Fig. 9. Snapshots of the augmented ‘‘house’’ sequence corresponding to frames 0, 4, 8, 12, 16, and 20,
respectively.
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with the addition of a palm tree. As can be verified from the accompanying videos,
the augmenting object has been convincingly merged with the original sequence.

The second experiment employs the ‘‘cooks’’ sequence, also resulting from a geo-
metrically simple camera movement and whose first and last frames are shown in
Figs. 10A and B. This sequence is recorded using Digital Air�s TimeTrack camera,4

that is made up of an array of lenses that simultaneously photograph a scene from
different viewpoints. If the entire set of images recorded by all lenses at a specific time
instant is played back as a sequence, a viewer has the impression of a camera that
appears to move relative to a subject which appears stopped in time. The particular
camera model used for shooting the ‘‘cooks’’ sequence had 80 lenses configured in a
66� arc spanning 3 m with a 2.6 m radius and produced images of dimension
720 · 480. In a sense, a TimeTrack camera provides sequences that are analogous
to those using a fixed camera and a turntable, without, however, the limitations of
the latter technique. Different views of the VRML 3D model recovered by the pro-
posed method using as keyframes every third frame of the original sequence (27
frames in total) are shown in Figs. 10C and D. The recovered camera trajectory is
indeed a circular arc. Fig. 11 illustrates the result of augmenting the original se-
quence by placing an artificial kettle on top of the stove.

The third experiment refers to the 22 frame Arenberg castle sequence. This se-
quence is of dimensions 768 · 576 and is characterized by considerable lighting vari-
ations, relatively large interframe translational motion and epipoles being located
outside the images. Fig. 12 shows several frames of the original sequence augmented
with a helicopter. A top view of the VRML 3D model that was recovered, showing
4 See http://www.virtualcamera.com for more details.

http://www.virtualcamera.com


Fig. 10. (A,B) The first and last frames of the ‘‘cooks’’ sequence (courtesy of Dayton Taylor/Digital Air),
(C,D) top and side views of the 3D reconstruction and the camera trajectory. Observe that the recovered
trajectory is indeed a circular arc.

Fig. 11. Snapshots of the augmented ‘‘cooks’’ sequence corresponding to frames 0, 5, 10, 15, 20, and 26,
respectively.
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Fig. 12. The ‘‘castle’’ sequence (courtesy of the University of Leuven VISICS Group). Snapshots of the
augmented sequence corresponding to frames 0, 4, 8, 12, 16, and 20.
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also the the camera locations and trajectory, is illustrated in Fig. 15A. Evidently, the
right angles between walls have been correctly recovered.

The fourth experiment employs another well-known outdoors sequence, namely
the one showing the ruins of the Agora in the Sagalassos archaeological site. The
imaged scene contains two dominant planes, relative to which the camera moves
laterally. This sequence has been shot using a camcorder and consists of 126
720 · 576 frames with very small interframe motion. Using time subsampling by a
factor of 5, 26 keyframes were determined. Fig. 13 shows snapshots after augmenting
Fig. 13. The ‘‘sagalassos’’ sequence (courtesy of the University of Leuven VISICS Group). Snapshots of
the augmented sequence corresponding to frames 0, 25, 50, 75, 100, and 125, respectively.
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the original sequence with a virtual Roman standing on the wall. A side view of the
recovered VRML 3D model is also illustrated in Fig. 15B.

The fifth and last experiment is based on the 46 frame ‘‘desk’’ sequence, sparsely
sampled in time and depicting the top of an office desk. This sequence is comprised
of 640 · 480 images that were acquired while tracking a firewire webcam undergoing
complex motion: At the beginning, the camera moves laterally with a right to left
direction, then moves laterally from left to right, then right to left again, then moves
away from the desk, then it starts approaching the desk while moving upwards, and
finally ends its trajectory by moving downwards vertically. Due to its motion pat-
tern, this sequence is characterized by large changes in the field of view (for example,
the book on the left moves out of the field of view in frame 6 and reappears in frame
10) that make corner matching difficult. Figs. 15D and E show a side and a top view,
respectively, of the VRML model corresponding to the recovered camera trajectory
and 3D structure. Camera tracking results were used to augment the original se-
quence with a virtual spider climbing on the book�s front cover. Selected snapshots
from the augmented sequence are illustrated in Fig. 14.

Table 1 summarizes some performance statistics gathered from the application of
the proposed technique on the five test sequences. Specifically, the first two columns
correspond to the mean and standard deviation of the total running time per frame,
the next two to the mean and standard deviation of the time required for corner
matching per frame, the fifth column to the average number of matched corners
per image triplet, and the last column to the average number of matched corners
per image pair. Execution times were measured on an Intel P4 at 2.5 GHz laptop.
As can be clearly seen in the first and third columns of Table 1, about 80% of the
execution time is spent for detecting and matching image corners. The refinement
of Eq. (18) accounts for most of the remaining 20% of the cycle time. A second
Fig. 14. The ‘‘desk’’ sequence depicting an office desk. Snapshots of the augmented sequence
corresponding to frames 0, 4, 15, 29, 35, and 40, respectively.



Table 1
Execution statistics for the experiments: mean and standard deviation of the total running time per frame,
mean and standard deviation of the matching time required per frame, average number of matched corners
per triplet, and average number of matched corners per pair

Sequence Cycle time (ms) Matching time (ms) # Matches

Mean SD Mean SD Triplet Pair

‘‘movi’’ 485.05 95.54 397.89 32.38 127.96 197.70
‘‘cooks’’ 946.89 184.81 748.79 18.93 354.05 486.49
‘‘castle’’ 1173.2 268.88 938.95 15.91 373.65 483.43
‘‘sagalassos’’ 987.062 261.95 750.41 29.60 331.31 481.94
‘‘desk’’ 681.20 130.33 536.69 59.24 211.23 330.22

Fig. 15. Sample views of different VRML 3D reconstructions corresponding to (A) ‘‘castle’’ top, (B)
‘‘sagalassos’’ side, and (C,D) ‘‘desk’’ side and top.
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observation that can be made based on the tabulated data is that matching a few
hundred image corners across each triplet suffices for camera tracking.
7. Conclusions

This paper has presented a method for automatic camera tracking across an im-
age sequence acquired without modifying the imaged environment. The method is
based on tracking a virtual 3D plane, a task involving the estimation of a quadruple
of plane parameters that is achieved using a combination of linear and non-linear
optimization techniques operating on sets of corner matches. Knowledge of the
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homographies induced by the same 3D plane across the whole sequence permits the
direct recovery of the camera projection matrices and thus of the Euclidean camera
3D motion, which is later refined through a local resectioning process. The proposed
method is causal, tolerant to missing and erroneous data and has reasonable compu-
tational requirements, permitting an efficient implementation on commodity hard-
ware. Although not statistically optimal in the MLE sense, the tracking results
obtained with the proposed method are of very satisfactory accuracy for various
types of imaged scenes and camera motions. Experimental results have also empha-
sized the implications of corner matching, both in terms of accuracy of the tracking
results and of contribution to the total execution time.

Future work will focus on directions aiming to further increase the performance
and robustness of the camera tracker. Considering that the task of corner detec-
tion and matching is characterized by data parallel computations (e.g., correlations)
and that its execution dominates the cycle time, substantial speedups could be gained
by adopting a SIMD computation model, implemented either on current high-perfor-
mance programmable graphics chips [51] or using extended instruction sets such as
MMX and SSE. The preceding discussion in Section 4 has assumed that the same
virtual plane is being tracked throughout the entire image sequence. This assumption
might cause problems when tracking extended sequences for which the tracked virtual
plane moves far away from the currently visible scene 3D points. To remedy this, a
new virtual plane can occasionally be selected as described in Section 5 and then
tracking can be handed off from the employed plane to the new one. An issue that
has not been addressed in this paper concerns the detection and handling of degener-
ate cases in which the imaged scene is entirely planar or the underlying camera motion
is purely rotational. Since in such cases the fundamental matrix cannot be estimated
uniquely, camera motion recovery should be based on resectioning rather than on
homography chaining. Some work related to the detection of degenerate cases is
reported by Pollefeys et al. [52]. Another issue pertains to incorporating drift count-
er-measures that prevent the former from accumulating over long sequences [53].
References

[1] G. Welch, E. Foxlin, Motion tracking: no silver bullet, but a respectable arsenal, IEEE Comput.
Graph. Appl. 22 (6) (2002) 24–38.

[2] R. Azuma, Tracking requirements for augmented reality, Commun. ACM 36 (7) (1993) 50–51.
[3] G. Thomas, J. Jin, T. Niblett, C. Urquhart, A versatile camera position measurement system for

virtual reality TV production, in: Proc. Internat. Broadcasting Convention (IBC�97), 1997, pp. 284–
289.

[4] R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press,
Cambridge, 2000.

[5] K. Kutulakos, J. Vallino, Calibration-free augmented reality, IEEE Trans. Vis. Comput. Graph. 4 (1)
(1998) 1–20.

[6] D. Koller, G. Klinker, E. Rose, D. Breen, R. Whitaker, M. Tuceryan, Real-time vision-based camera
tracking for augmented reality applications, in: Proc. VRST�97, 1997, pp. 87–94.

[7] M. Lourakis, Egomotion estimation using quadruples of collinear image points, in: Proc. ECCV�00,
vol. 2, 2000, pp. 834–848.



M.I.A. Lourakis, A.A. Argyros / Computer Vision and Image Understanding 99 (2005) 259–290 289
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