Exploiting the Sparseness of Bundle Adjustment
for Efficient 3D Reconstruction*

Manolis I.A. Lourakis and Antonis A. Argyros

Institute of Computer Science, Foundation for Research and Technology - Hellas
Vassilika Vouton, P.O. Box 1385, GR 711 10, Heraklion, Crete, GREECE
{lourakis,argyros}@ics.forth.gr — http://www.ics.forth.gr/cvrl/

Abstract. Bundle adjustment amounts to a large, nonlinear least squares
optimization problem that is often used as the last step of feature-based
structure and motion estimation vision algorithms to obtain optimal es-
timates. Due to the very large number of parameters involved, a general
purpose implementation of a nonlinear least squares algorithm incurs
high computational and memory storage costs when applied to bun-
dle adjustment. Fortunately, the lack of interaction among certain sub-
groups of parameters results in the corresponding Jacobian exhibiting a
sparse block structure. In this paper we outline the mathematics of sba,
our publicly available software package for generic bundle adjustment
that exploits sparseness to achieve considerable computational savings.
In addition, we provide experimental results demonstrating that sba can
efficiently handle large bundle adjustment problems which would be in-
tractable with general purpose nonlinear least squares implementations.

1 Introduction

Three dimensional (3D) reconstruction is a problem whose solution is called for
by a wide spectrum of computer vision tasks. Generally speaking, 3D recon-
struction can be defined as the problem of using 2D measurements arising from
a set of images depicting the same scene from different viewpoints, aiming to
derive information related to the 3D scene geometry as well as the relative mo-
tion and the optical characteristics of the camera(s) employed to acquire these
images. Bundle Adjustment (BA) is almost invariably used as the last step of
every feature-based 3D reconstruction algorithm; see, for example, [1,4,15, 9] for
a few representative approaches. BA amounts to an optimization problem that is
solved by simultaneously refining the 3D structure and viewing parameters (i.e.,
camera pose and possibly intrinsic calibration and radial distortion), to obtain
a reconstruction which is optimal under certain assumptions regarding the noise
pertaining to the observed image features [17]: If the image error is zero-mean
Gaussian, then BA is the Maximum Likelihood Estimator. Its name refers to the
“bundles” of light rays originating from each 3D feature and converging on each
camera’s optical center, which are adjusted optimally with respect to both the
structure and viewing parameters. BA was originally conceived in the field of

* This work was partially supported by the EU FP6-507752 NoE MUSCLE and COOP-CT-2005-
017405 project RECOVER.

photogrammetry during 1950’s [2] and has increasingly been used by computer
vision researchers during recent years. An excellent overview of its application to
vision-based reconstruction is given in [17]. Apart from computer vision, BA can
also find applications in areas such as robotics, image-based computer graphics,
digital photogrammetry, remote sensing, etc.

BA boils down to minimizing the reprojection error between the observed
and predicted image points, which is expressed as the sum of squares of a large
number of nonlinear, real-valued functions. Thus, the minimization is achieved
using nonlinear least squares algorithms, from which Levenberg-Marquardt (LM)
has proven to be of the most successful due to its ease of implementation and its
use of an effective damping strategy that lends it the ability to converge quickly
from a wide range of initial guesses. By iteratively linearizing the function to
be minimized in the neighborhood of the current estimate, the LM algorithm
involves the solution of linear systems known as the normal equations. Consid-
ering that the normal equations are solved repeatedly in the course of the LM
algorithm and that each computation of the solution to a dense linear system
has complexity O(N?) in the number of unknown parameters, it is clear that
general purpose LM codes such as, for example, MINPACK’s LMDER routine
[11], are computationally very demanding when employed to minimize functions
depending on a large number of parameters. The situation is further compli-
cated by the fact that the size of the Jacobian of the objective function also
increases with the number of parameters. Thus, when performing operations in-
volving such a large Jacobian, special care has to be taken to avoid thrashing,
i.e., instead of performing useful computations, wasting most CPU cycles for
writing out virtual memory pages and reading them back in. Fortunately, when
solving minimization problems arising in BA, the normal equations matrix has
a sparse block structure owing to the lack of interaction among parameters for
different 3D points and cameras. Therefore, considerable computational benefits
can be gained by developing a tailored, sparse variant of the LM algorithm which
explicitly takes advantage of the normal equations zeroes pattern by avoiding
storing and operating on zero elements.

The contribution of this paper is twofold. First, it describes a strategy for
efficiently dealing with the problem of BA and materializes it through the im-
plementation of a software package. Second, it demonstrates experimentally
the impact that the exploitation of the problem’s structure has on computa-
tional performance. The practical outcome of this work is sba, a generic sparse
BA package implemented in ANSI C. C was preferred over higher level pro-
gramming environments such as MATLAB owing to its far superior execution
performance and its wide availability in a diverse range of computer systems.
sba is also usable from C++ and is generic in the sense that it grants the
user full control over the choice of parameters and functional relations describ-
ing cameras, 3D structure and image projections. Therefore, it can support a
wide range of manifestations/parameterizations of the multiple view reconstruc-
tion problem such as metric or arbitrary projective/affine cameras, partially
or fully intrinsically calibrated cameras, exterior orientation (i.e., pose) esti-

mation from fixed 3D points, 3D reconstruction from extrinsically calibrated
images, refinement of intrinsic calibration parameters, etc. The sba package can
be downloaded in source form from http://www.ics.forth.gr/~lourakis/sba
and is distributed under the terms of the GNU General Public License (see
http://www.gnu.org/copyleft/gpl.html).

The rest of the paper is organized as follows. Section 2 briefly explains the
conventional, dense LM algorithm for solving nonlinear least squares minimiza-
tion problems. Section 3 develops a sparse BA algorithm by adapting the LM to
exploit the sparse block structure of the normal equations. Experimental results
from the application of the developed sba package on real problems are pre-
sented in section 4 and the paper is concluded with a brief discussion in section
5.

2 The Levenberg-Marquardt Algorithm

The LM algorithm is an iterative technique that finds a local minimum of a
multivariate function that is expressed as the sum of squares of nonlinear real-
valued functions. It has become a standard technique for nonlinear least-squares
problems, widely adopted in various disciplines for dealing with data-fitting ap-
plications. LM can be thought of as a combination of steepest descent and the
Gauss-Newton method. When the current solution is far from a local minimum,
the algorithm behaves like a steepest descent method: slow, but guaranteed to
converge. When the current solution is close to a local minimum, it becomes a
Gauss-Newton method and exhibits fast convergence. For the sake of complete-
ness, a short description of the LM algorithm based on the material in [10] is
supplied next. Note, however, that a detailed analysis of the LM algorithm is
beyond the scope of this paper and the interested reader is referred to [14,7,10]
for more extensive treatments.

In the following, vectors and arrays appear in boldface and 7 is used to denote
transposition. Also, ||.|| and ||.||« respectively denote the 2 and infinity norms.
Let f be an assumed functional relation which maps a parameter vector p € R™
to an estimated measurement vector X = f(p), X € R™. An initial parameter
estimate pg and a measured vector x are provided and it is desired to find the
vector pt that best satisfies the functional relation f locally, i.e., minimizes the
squared distance €’ e with € = x — % for all p within a sphere having a certain,
small radius. The basis of the LM algorithm is an affine approximation to f in
the neighborhood of p. For a small ||dp||, f is approximated by (see [3], p. 75)

f(p+dp) = f(p) +J0p, (1)

where J is the Jacobian of f. Like all nonlinear optimization methods, LM
is iterative: Initiated at the starting point pg, it produces a series of vectors
P1,P2, ..., that converge towards a local minimizer p* for f. Hence, at each
iteration, it is required to find the step dp that minimizes the quantity ||x —
fp+0p)|l = ||lx— f(p) — Jop|| = ||e—JTdp||- The sought d, is thus the solution
to a linear least-squares problem: the minimum is attained when Jép — € is

orthogonal to the column space of J. This leads to J7 (J&p — €) = 0, which yields
0p as the solution of the so-called normal equations:

JTI6, = J7e. 2)

Matrix JTJ in the above equation is the first order approximation to the Hessian
of 2eTe [14] and 6, is the Gauss-Newton step. Note also that J7e corresponds
to the steepest descent direction since the gradient of %eTe is —JTe. The LM
method actually solves a slight variation of Eq. (2), known as the augmented
normal equations

Nép =J7€, with N=J7T + pI, u> 0. (3)

The strategy of altering the diagonal elements of J7J is called damping and
w is referred to as the damping term. If the updated parameter vector p + dp
with d, computed from Eq. (3) leads to a reduction in the error €e, the update
is accepted and the process repeats with a decreased damping term. Otherwise,
the damping term is increased, the augmented normal equations are solved again
and the process iterates until a value of dp, that decreases the error is found. The
process of repeatedly solving Eq. (3) for different values of the damping term
until an acceptable update to the parameter vector is found corresponds to one
iteration of the LM algorithm.

In LM, the damping term is adjusted at each iteration to assure a reduction
in the error. If the damping is set to a large value, matrix N in Eq. (3) is nearly
diagonal and the LM update step dp is skewed towards the steepest descent
direction J”e. Moreover, the magnitude of &, is reduced in this case, ensuring
that excessively large Gauss-Newton steps are not taken. Damping also handles
situations where the Jacobian is rank deficient and J7J is therefore singular [3].
The damping term can be chosen so that matrix N in Eq. (3) is safely nonsingular
and, therefore, positive definite, thus ensuring that the Jp computed from it is a
descent direction. If the damping is small, the LM step approximates the Newton
minimizer of the local quadratic model m(dp) = 5¢’e — (JTe)Té, + 56131 I0p
of £€”e about p (cf. Eq. (2)), which is exact in the case of a fully linear problem
[7]. LM is adaptive because it controls its own damping: it raises the damping if
a step fails to reduce €”'¢; otherwise it reduces the damping. By doing so, LM is
capable of alternating between a slow descent approach when being far from the
minimum and a fast convergence when being at the minimum’s neighborhood.
An efficient updating strategy for the damping term that is also used in this
work is described in [13]. The LM algorithm terminates when at least one of the
following conditions is met:

The magnitude of the gradient drops below a threshold &;.

The relative change in the magnitude of dp drops below a threshold depend-
ing on a parameter €.

— The magnitude of the residual € drops below a threshold 3.

— A maximum number of iterations k;,q, is reached.

Input: A vector function f : R™ — R™ with n > m, a measurement vector x € R™ and an initial
parameters estimate pg € R™.
Output: A vector pT € R™ minimizing ||x — f(p)”2
Algorithm:
k :=0; v := 2; p := po;
A =3T3 ep:=x = f(p); =T ep;
stop:=(||glleo < €1); 1= T * max;=1,...,m(4Ai);
while (not stop) and (k < kmaaz)
k:=k+1;
repeat
| Solve (A + pul)ép = g; |
if (|[0p]] < e2(llpll + £2))
stop:=true;
else
Pnew =P+ ap?
p = (llepl|® = l1x = f(Prew)|1?)/ (5 (u6p + 8));
ifp>0
= Prew;
A =3T3 g :=x— f(p); g:= I ¢p;
stop:=(/|g|lec < €1);
RN max(%, 1-(2p—1)3%);v:=2;

else
pi=pxv; vi=2 %y
endif
endif
until (p > 0) or (stop)
stop:=(lep|| < €3);
endwhile
pti=p;

Fig. 1. Pseudocode for the Levenberg-Marquardt nonlinear least-squares algorithm; see text for
details. p is the gain ratio, defined by the ratio of the actual reduction in the error ||ep||? that
corresponds to a step dp and the reduction predicted for dp by the linear model of Eq. (1). The
sign of p determines whether J, is accepted or not. Furthermore, in the case of accepted steps, the
value of p controls the reduction in the damping term. The reason for enclosing a statement in a
rectangular box will be explained in section 3.

If a covariance matrix X for the measured vector x is available, it can be incor-
porated into the LM algorithm by minimizing the squared X, !-norm e/'3_le
instead of the Euclidean norm €”e. Accordingly, the minimum is found by solv-
ing a weighted least squares problem defined by the augmented weighted normal
equations

ATZMT + pl)op = IJTE e (4)

The rest of the algorithm remains unchanged. It is noted that the initial damping
factor is chosen equal to the product of a parameter 7 with the maximum element
of JTJ in the main diagonal. The complete LM algorithm is shown in pseudocode
in Fig. 1; more details regarding it can be found in [10]. Indicative values for the
user-defined parameters are 7 = 1073, 61 =9 = €3 = 1072, ko = 100.

At this point, it should be mentioned that rather than directly controlling
the damping parameter p in Eq. (3), modern implementations of the Levenberg-
Marquardt algorithm such as [11], seek a nearly exact solution for y using New-
ton’s root finding algorithm in a trust-region framework [12]. This approach,
however, requires expensive repetitive Cholesky factorizations of the augmented
approximate Hessian and, therefore, is not well-suited to solving large-scale prob-
lems such as those arising in the context of BA.

3 Sparse Bundle Adjustment

This section shows how a sparse variant of the LM algorithm presented in section
2 can be developed to deal efficiently with the problem of bundle adjustment. The
developments that follow are along the lines of the presentation regarding sparse
bundle adjustment in Appendix 4 of [5]. To begin, assume that n 3D points
are seen in m views and let x;; be the projection of the i-th point on image
j. Bundle adjustment is equivalent to jointly refining a set of initial camera
and structure parameter estimates for finding the set of parameters that most
accurately predict the locations of the observed n points in the set of the m
available images. More formally, assume that each camera j is parameterized by
a vector a; and each 3D point ¢ by a vector b;. For notational simplicity it is
also assumed that all points are visible in all images. This assumption, however,
is not necessary and, as will soon be made clear, points may in general be visible
in any subset of the m views. BA minimizes the reprojection error with respect
to all 3D point and camera parameters, specifically

mn Z d(Q(a;,bi), xi5)?, ()

where Q(a;,b;) is the predicted projection of point ¢ on image j and d(x, y)
denotes the Euclidean distance between the image points represented by the
inhomogeneous vectors x and y. It is clear from (5) that BA is by definition
tolerant to missing image projections and, in contrast to algebraic approaches for
multiview reconstruction, minimizes a physically meaningful criterion. Observe
that through Q(), the definition in (5) is general enough to accommodate any
camera and structure parameterization. Note also that if £ and A are respectively
the dimensions of each a; and b;, the total number of minimization parameters
in (5) equals mk + nX and is therefore large even for BA problems defined for
rather short sequences. For example, in the case of projective reconstruction,
k = 12 and A = 3 and, therefore, a moderately sized BA problem defined by,
say, 1000 points projecting on each of 30 images involves 3360 variables.

BA can be cast as a nonlinear minimization problem as follows. A parameter
vector P € RM is defined by all parameters describing the m projection matrices
and the n 3D points in Eq. (5), namely P = (a;7,...,a,,7,..., b7, ..., b,)T,
A measurement vector X € R is made up of the measured image point coor-
dinates across all cameras:

_ T T T T T T\T
X.—(Xll ;---:le 7X21 7---ax2m 7“‘7X’n1 ,...,Xnm) : (6)

Let Py be an initial parameter estimate and Xx the covariance matrix corre-
sponding to the measured vector X (in the absence of any further knowledge, it
is assumed that Xx is the identity matrix). For each parameter vector, an esti-
mated measurement vector X is generated by a functional relation X = f(P),
defined by

2 s T s T o T s T s T S T\T
X:(Xll s Xim 5 X21 5---5X2m 5 -0y Xpl -5 Xnm)) (7)

with iij = Q(aj,bi).

Thus, BA corresponds to minimizing the squared Eil—norm (i.e., Maha-
lanobis distance) eTE)Ele, e = X — X over P. Evidently, this minimization
problem can be solved by employing the LM nonlinear least squares algorithm,
which calls for repeatedly solving the augmented weighted normal equations

IT2T + pl)d = IT e, (8)

where J is the Jacobian of f and ¢ is the sought update to the parameter vec-
tor P. As demonstrated below, the normal equations in Eq. (8) have a regular
sparse block structure that results from the lack of interaction between param-
eters of different cameras and different 3D points. To keep the demonstration
manageable, a case with small n and m is worked out in detail; however, as will
later become apparent, the results are straightforward to generalize to arbitrary
numbers of 3D points and cameras.

Assume that n = 4 points are visible in m = 3 views. The measurement vector
isX = (X11T, X12T7 X13T, X21T, X22T, X23T, X31T, X32T, X33T, X41T, X42T, X43
The parameter vector is given by P = (a; 7, a,7, a3”, by?, by?, byT, b, T,
Notice that 552 = 0, V j # k and 5 = 0, Vi # k. Let A;; and By

day,

T)T_

iij aﬁij

denote %aj and iy respectively. The LM updating vector § can be parti-

tioned into camera and structure parameters as (éaT, 6bT)T and further as
(Bay "0y 0as L 3 0by L, Oby -, 0by L5 0b,)T The remainder of this section is de-
voted to elaborating a scheme for efficiently solving the normal equations arising
in LM minimization by taking advantage of their sparse structure.

Taking into account the notation for the derivatives introduced in the previ-
ous paragraph, the Jacobian J is given by

Au 0 0 By 0 0 0O
0 A, 0 By 0 0 0
0 0 A3 By 0 0 0
A,y 0 0 0 By 0 0
0 A, 0 0 By 0 0
X | 0 0 Ay 0 By 0 0)
P |Ay 0O 0 0 0 By 0
0 A 0 0 0 Byp 0
0 0 A3 0 0 By 0
Au 0 0 0 0 0 By
0 Az 0 0 0 0 By
0 0 A 0 0 0 By

Eq. (9) clearly reveals the sparse nature of the matrix J. It is due to J’s sparseness
that the normal equations are themselves sparse. Let the covariance matrix for
the complete measurement vector be the block diagonal matrix

2X = diag(lela Exlza Exlsa 2]3(217 2X227 2)X231 2]3(317 Exsza 2]X331 23‘417(2))(427 2X43)'
10

U* =

Substituting J and £y from Egs. (9), (10) and denoting

4 3
U]‘ = Z A”TE; Ai]‘, Vz = Z Bisz;ilj Bij, WQEAZJTE;}J Bij; (11)
=1 j=1

the matrix product in the left hand side of Eq. (8) becomes

U, 0 0 Wi Wy Wi Wy
0 U, 0 Wiz Wi Wi Wy
0 0 Us Wiz Wi Wiz Wy
JTg)_(lJ = W11T W12T W13T Vi 0 0 0 . (12)

Wal Wal Wyl 0 V. 0 0
Wil Wi! Wil 0 0 V3 0
Wal Wl Wit o 0 0 A\

Also, using Egs. (9) and (10), the right hand side of Eq. (8) can be expanded as

4 4 3 3 T
Z T —1 Z T —1 Z T—1 Z T —1
Ail Zxﬂe“, ceey AiS Exis €33, Blj Exlj €15y « ooy B4j 2x4j €45 .
i=1 i=1 j=1 j=1

(13)
Letting

4 3
€a; = ZA”TE;i €ij> €b; = Z B,’sz;ilj €ij) (14)
i=1 j=1
vector (13) can be abbreviated to

T T T T T T T\T
(681 y€ay ;€az ;€by ;€ba >€bz ;€by) . (15)

Substituting the expressions for JTX3'J and JTXy'e from (12) and (15),
the normal equations (8) become

U, 0 0 Wi Wy Wi Wy 0a, €a,

0 U, 0 Wi, Wi Wi Wy Oas €ay

0 0 Us Wiz Wy Wiz Wy Oas €as

W11T W12T W13T V1 0 0 0 5];,1 = €b,
W21T W22T W23T 0 V2 0 0 5];,2 €b,y
W31T W32T W33T 0 0 V3 0 5];,3 6];,3
Wal Wl wg? o 0 0 V4 Oby, €by,

(16)
Denoting

vV 0 0 0
ui o 0 01 Vi 0 0 Wi Wy Wy

0 Us o0 |,V¥= o o v: o |'W=[Wiz Wn Wi
0 0 U 0 0o 03 e Wiz Wi Wiy
where * designates the augmentation of diagonal elements, allows the augmented
normal equations to be further compacted to

(VIJ’*T ‘va> (§2)=(Z:) (18)

Left multiplication of Eq. (18) by the block matrix

()

results in

U -WV<!WT o ba) _ (€a—WV* g (20)
WT v* (513 - €b ’

Noting that the top right block of the left hand matrix is zero, the dependence
of the camera parameters on the structure parameters has been eliminated in
Eq. (20), therefore d, can be determined from its top half, which is

(U - WV T W g, =ea — WV g (21)

Matrix S = U* = W V* ! WT is the Schur complement of V* in the left hand
side matrix of Eq. (18). Since the Schur complement of a symmetric positive def-
inite matrix is itself symmetric and positive definite [16], the system of Eq. (21)
can be efficiently solved using the Cholesky factorization of S. Having solved
for é,, 6p can then be computed by back substitution into the bottom half of
Eq. (20), which yields

V* 6p = e, — W' 4. (22)

The choice of solving first for §, and then for Jp, is justified by the fact that
the total number of camera parameters is in general much less compared to the
total number of structure parameters. Therefore, Eq. (21) involves the solution
of smaller systems that can be carried out with considerably fewer computations.
Following the computation of d, from Eq.(21), left multiplication of Eq. (22) by
V*~1 yields dp as

3 3 T
§T = (v;l (6, = > Wi 6a;), -, Vil (eny — > Wyy" 5aj)> . (23)
j=1 j=1

At this point, it should be evident that the approach for solving the normal
equations that was illustrated above can be directly generalized to arbitrary n
and m. Note that if a point £ does not appear in an image [then Ay = 0
and By, = 0. Hence, index ¢ in the summations appearing in the definitions
of U; and €,; (see Egs. (11) and (14)) runs through all points appearing in
the specified camera j. Similarly, index j in the definitions of V; and ey, runs
through all cameras to which the given point ¢ is projected. The procedure for
solving the sparse normal equations that was outlined above can be embedded
in the LM algorithm of section 2 at the point indicated by the rectangular
box in Fig. 1, leading to a sparse bundle adjustment algorithm. This algorithm
has been implemented by the sba package, which relies on LAPACK for linear
algebra calculations. A user’s guide for sba can be found in [8].

4 Application of sba to Euclidean BA

As has already been mentioned, sba can facilitate the solution of a wide range of
reconstruction-related vision problems. This section concerns the use of sba for
Euclidean BA, a task which is a key ingredient for dealing with the problem of
camera tracking. Camera tracking refers to using solely visual input for estimat-
ing the 3D position and orientation of a freely moving camera. The authors have
routinely employed sba in this context for dealing with camera tracking prob-
lems involving a few thousands 3D points whose image projections depended on
a few hundreds camera parameters. More specifically, it is assumed that a set
of Euclidean 3D points are seen in a number of images acquired by an intrinsi-
cally calibrated moving camera. It is also assumed that the image projections of
each Euclidean 3D point have been identified and that initial estimates of the
3D point structure and the Euclidean camera matrices have been obtained as
described in [9]. The remainder of this section describes the application of sba
for refining those camera matrix and structure estimates.

4.1 Parameterizing Euclidean BA

The employed world coordinate frame is taken to be aligned with the initial
camera location. All subsequent camera motions are defined relative to the initial
location, through the combination of a 3D rotation and a 3D translation. A 3D
rotation by an angle § about a unit vector u = (uy,us,u3)? is represented
by the quaternion E = (cos(§), u1sin(Z), ussin(f), ussin($))? [6,18]. A 3D
translation is defined by a vector t. A 3D point is represented by its Euclidean
coordinate vector X. Thus, the parameters of each camera j and point i are
a; = (EjT,th)T and b; = X;, respectively. With the previous definitions, the
predicted projection of point ¢ on image j is

Q(a;,b;) =K (E; N; Ej' + t), (24)

where K is the 3 x 3 intrinsic camera calibration matrix, Ej_1 is the inverse

quaternion of E; and N; = (0, X;)T is the vector quaternion corresponding
to the 3D point X;. The expression E; N; E]-_1 corresponds to point X; rotated
by an angle 6; about unit vector u;, as specified by the quaternion E;. Thus,
each camera motion is parameterized by 7 unknowns while each 3D point by
3. The computation of the measurement vector’s Jacobian relies on a routine
for computing the Jacobian of function Q() in Eq. (24), whose code was gen-
erated automatically using MAPLE’s symbolic differentiation facilities. We also
note that the projection matrix of the first camera is kept constant during bundle
adjustment, equal to K [I3x3 | 0].

4.2 Experimental Results

Sample experimental results from a series of camera tracking experiments are
presented next. In all experiments, it is assumed that a set of 3D points are seen

in a number of images acquired by an intrinsically calibrated moving camera
and that the image projections of each 3D point have been identified. Initial
estimates of the Euclidean 3D structure and camera motions are then computed
using the sequential structure and motion estimation technique described in [9].
With the aid of sba, those estimates were then refined through Euclidean BA.
The set of employed sequences includes the “movi” toy house circular sequence
from INRIA’s MOVI group, “sagalassos” and “arenberg” from Leuven’s VISICS
group, “basement” and “house” from Oxford’s VGG group and three sequences
acquired by ourselves, namely “maquette”, “desk” and “calgrid”. The first five
are standard sequences, widely used as benchmarks in the reconstruction litera-
ture.

Table 1 illustrates several statistics gathered from the application of Eu-
clidean sparse BA to the eight test sequences. Each row corresponds to a single
sequence and columns are as follows: The first column corresponds to the total
number of images that were employed in BA. The second column is the total
number of motion and structure variables pertaining to the minimization. The
third column corresponds to the average reprojection error of the initial recon-
struction. The fourth column shows the average reprojection error after BA. The
fifth column shows the total number of objective function/Jacobian evaluations
during BA. The number of iterations needed for convergence is shown in column
six and the last column shows the time (in seconds) elapsed during execution of
BA. In all cases, the sparse LM algorithm terminated due to the magnitude of
the computed step § being very small. All experiments were conducted on a 1.8
GHz Intel P4 running Linux, GCC 2.96 and unoptimized BLAS.

As it is evident from these results, sba has successfully solved all underlying
minimization problems in little time. For comparison, we have also implemented
BA using a dense, general purpose version of the LM algorithm®. Note that
the dense Jacobians for the test problems are extremely large: For example, the
“movi” sequence involves 5747 variables and 12415 image projections. Taking
into account that each image projection is a 2D vector and that each double
precision real number requires 8 bytes to be stored, the amount of RAM nec-
essary to store the Jacobian in this case exceeds 1Gb and is thus beyond the
capacity of most current desktop computers. Therefore, using dense BA, we have
been able to solve only the problems associated with the shortest of the test se-
quences, namely those for “basement” and “house”, for which the corresponding
execution times were 481.54 and 1960.92 seconds, respectively. Compared to the
fractions of a second that were spent by sba for solving those problems, these
figures clearly demonstrate the enormous computational gains achieved by the
sparse BA implementation.

5 Conclusions
This paper has presented the mathematical theory behind an LM-based sparse
bundle adjustment algorithm. The practical outcome of this work is a generic

' Our free C/C++ implementation of a dense LM algorithm can be found at http:
//wuw.ics.forth.gr/~lourakis/levmar.

|Sequence ||imgs| vars |init. err.|fin. err. func/jac|iter. exec. time|

“movi” | 59 [5747] 5.03 0.3159 | 18/18 | 18 3.80
“sagalassos”|| 26 |5309| 11.04 | 1.2703 | 44/33 | 33 4.98

“arenberg” 22 |4159| 1.35 0.5399 | 25/20 | 20 3.22
“basement” || 11 | 992 0.37 0.2447 | 29/21 21 0.29
“house” 10 | 1615 1.43 0.2142 25/19 19 0.41
“maquette” || 54 [15999| 2.15 0.1765 | 31/23 | 23 9.01
“desk” 46 |10588| 4.16 1.5760 | 32/23 | 23 6.92
“calgrid” 27 | 2355 3.21 0.2297 | 20/20 | 20 9.70

Table 1. Execution statistics for the application of sba to Euclidean BA: Total num-
ber of images, total number of variables, average initial reprojection error in pixels,
average final reprojection error in pixels, total number of objective function/Jacobian
evaluations, total number of iterations, elapsed execution time in seconds. Identical
values for the user-defined parameters have been used throughout all experiments.

sparse BA package called sba that has experimentally been demonstrated to be
capable of dealing efficiently with very large BA problems. The package can be
very useful to researchers working in vision and related fields, therefore it has
been made freely available.

References

1.

© =

10.

11.

12.

13.

14.
15.

16.

17.

18.

P. Beardsley, P.H.S. Torr, and A. Zisserman. 3D Model Acquisition From Extended Image
Sequences. In Proc. of ECCV’96, pages 683-695, 1996.

D.C. Brown. A Solution to the General Problem of Multiple Station Analytical Stereo Trian-
gulation. Technical Report 43, RCA-MTP, Feb. 1958.

J.E. Dennis and R.B. Schnabel. Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Classics in Applied Mathematics. SIAM Publications, Philadelphia, 1996.
A.W. Fitzgibbon and A. Zisserman. Automatic Camera Recovery for Closed or Open Image
Sequences. In Proceedings of ECCV’98, pages 311-326, 1998.

R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, 1st edition, 2000.

B.K.P. Horn. Closed-form Solution of Absolute Orientation Using Unit Quaternions. Journal
of the Optical Society of America, A, 4(4):629-642, 1987.

C.T. Kelley. Iterative Methods for Optimization. SIAM Publications, Philadelphia, 1999.
M.I.A. Lourakis and A.A. Argyros. The Design and Implementation of a Generic
Sparse Bundle Adjustment Software Package Based on the Levenberg-Marquardt Al-
gorithm. TR-340, ICS-FORTH, Heraklion, Greece, Aug. 2004. Available at
ftp://ftp.ics.forth.gr/tech-reports/2004.

M.I.A. Lourakis and A.A. Argyros. Efficient, Causal Camera Tracking in Unprepared Environ-
ments. Computer Vision and Image Understanding Journal, 99(2):259-290, Aug. 2005.

K. Madsen, H.B. Nielsen, and O. Tingleff. Methods for Non-Linear Least Squares
Problems. Technical University of Denmark, 2004. Lecture notes, available at
http://www.imm.dtu.dk/courses/02611/nllsq.pdf.

J.J. Moré, B.S. Garbow, and K.E. Hillstrom. User guide for MINPACK-1. Technical Report
ANL-80-74, Argonne National Laboratory, Aug. 1980.

J.J. Moré and D.C. Sorensen. Computing a Trust Region Step. SIAM J. Sci. Statist. Comput.,
4:553-572, 1983.

H.B. Nielsen. Damping Parameter in Marquardt’s Method. Technical Report IMM-REP-1999-
05, Technical University of Denmark, 1999. Available at http://www.imm.dtu.dk/ hbn.

J. Nocedal and S.J. Wright. Numerical Optimization. Springer, New York, 1999.

M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, and R. Koch. Visual
Modeling With a Hand-Held Camera. IJCV, 59(3):207-232, Sep./Oct. 2004.

V.V. Prasolov. Problems and Theorems in Linear Algebra. American Mathematical Society,
Providence, RI, 1994.

B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle Adjustment — A Modern
Synthesis. In Proc. of the Int’l Workshop on Vision Algorithms: Theory and Practice, pages
298-372, 1999.

L. Vicci. Quaternions and Rotations in 3-Space: The Algebra and its Geometric Interpretation.
Technical Report 01-014, Dept. of Computer Science, UNC, 2001.

