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Abstract 
This paper presents a method for real-time 3D hand 

tracking in images acquired by a calibrated, possibly 
moving stereoscopic rig. The proposed method 
consists of a collection of techniques that enable the 
modeling and detection of hands, their temporal 
association in image sequences, the establishment of 
hand correspondences between stereo images and the 
3D reconstruction of their contours. Building upon our 
previous research on color-based, 2D skin-color 
tracking, the 3D hand tracker is developed through the 
coupling of the results of two 2D skin-color trackers 
that run independently on the two video streams 
acquired by a stereoscopic system. The proposed 
method runs in real time on a conventional Pentium 4 
processor when operating on 320x240 images. 
Representative experimental results are also 
presented.  

1. Introduction 
   Tracking body parts such as hands and faces of 
humans engaged in various activities constitutes a key 
pre-processing step for parsing visual input into 
constituent behavior elements towards the automatic 
interpretation of the performed activities. It is the 
importance and the difficulty of providing robust 
solutions to this problem without resorting to 
unrealistic assumptions that justify the volume of past 
and ongoing related research.  
    Vision-based methods for tracking hands and 
reconstructing them in 3D need to provide solutions to 
subproblems such as the modelling and the detection 
of hands, the temporal association of detected hands in 
image sequences and the extraction of 3D information 
from the inherently 2D observations of the tracked 
models. As stated in [10], most approaches to 3D hand 
tracking can be classified as either model-based or as 
view-based. Model-based approaches make use of 
articulated 3D hand models. An error function 
measures the discrepancy between the projection of the 
hand model onto the image and the image-based 
evidence for the existence of a hand. The parameters of 
the model are then appropriately modified to minimize 
this error measure. Temporal continuity is also 

exploited by considering previously estimated model 
parameters as an initial solution for the current frame. 
As a side effect, model initialization is necessary for 
the first frame. View-based approaches [7] formulate 
hand tracking as a classification problem. These 
methods train a classifier to recognize a limited 
number of selected hand poses. The training data are 
formed by associating detected hand features at 
particular hand poses with these hand poses. Hybrid 
methods combining both approaches have also been 
proposed [8]. These methods use 3D models to 
generate an arbitrarily large training set of 2D hand 
appearances by projecting a 3D model on the 2D 
image. View-based classification is then used to solve 
the inverse problem (i.e. determining the mapping 
from 2D detected hands to 3D hand poses). 
    In this paper, we present our approach to 3D hand 
tracking and reconstruction. The proposed method 
provides 3D information regarding the tracked hands 
either in the form of 3D hand positions or in the form 
of 3D hand contours. Compared to existing 
approaches, this method for detecting and tracking 
hands combines several attractive properties:  

Handling multiple, potentially occluding hands:
Many of the existing techniques deal with the 
detection and tracking of a single hand. Moreover, 
only a subset of existing techniques for multiple 
hand tracking can cope effectively with occluding 
hands. The proposed method detects and tracks an 
arbitrary, time varying number of hands that may 
move in occluding trajectories. 
Coping with cluttered, dynamic backgrounds and 
camera motions: Many of the existing approaches 
assume a uniform and/or static background to 
facilitate figure-ground segmentation. The 
assumption of a static background does not allow 
for moving cameras, which might be useful for 
purposefully observing a certain activity. The 
proposed method may operate in cluttered 
backgrounds using a moving stereo system under 
considerable illumination changes. 
Real time performance: The complex 3D models 
employed by certain methods require considerable 
computational resources to implement tracking. 
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The proposed method computes the 3D 
trajectories of hands at a rate of 29 Hz, and their 
3D contours at a rate of 21 Hz. 

    The rest of the paper is organized as follows. 
Section 2 describes the proposed approach in detail. 
Section 3 provides sample results from the operation of 
the tracker on binocular image sequences. Finally, 
section 4 provides the main conclusions of this work. 

2. 3D hand tracking and reconstruction 
   As already mentioned, the proposed method is based 
on our previous work on 2D tracking of multiple skin 
colored objects [1]. In the following section, we 
provide a brief overview of our 2D tracker. 

2.1. The 2D hand tracker 
   The employed 2D tracker [1] encompasses a 
collection of techniques that enable the modeling and 
detection of skin-colored objects as well as their 
temporal association in image sequences. The output 
of the 2D tracker is a number of blobs corresponding 
to the tracked hands, together with their 2D contours. 
A prototype implementation of the 2D tracker achieves 
real-time performance on a Pentium 4 processor (3.2 
MHz, 512Mbytes RAM, Windows XP), limited mainly 
by the maximum image acquisition rate of the 
employed cameras  which is 30 fps. 

2.2. Matching hand blobs in stereo 
   Each of the video streams delivered by the 
synchronized cameras of a stereoscopic system is 
processed by an instance of the previously described 

2D hand tracker. We denote by LH and RH  the sets of 

hand blobs that have been detected and tracked at time 
t in the left and right images of the stereo pair. Let the 

cardinality of these sets be LN  and RN , respectively. 

Moreover, let i
Lh and j

Rh denote specific hand blobs,

with 1 Li N  and 1 Rj N . We also designate the 

2D centroids of hands i
Lh and j

Rh  with i
Lm and j

Rm ,

respectively. 
   In order to achieve 3D reconstruction of the hand 
positions and hand contours, correspondence between 
hand blobs needs to be established. We formulate this 
problem as an instance of the stable marriage problem,
which can be defined as follows. Consider two disjoint 
sets A and B. Assume that each of the members of A
ranks the members of B in order of decreasing 
preference, and that the members of B do likewise. A 
set of pairings of the members of A with the members 
of B is said to constitute a stable marriage if and only if 
there exist no elements a A  and b B  which are not 

assigned to each other but would both prefer each 
other to their present partners. Gale and Shapley [5] 
showed that a stable marriage exists for any choice of 
rankings. The original formulation of the problem 
assumes that sets A and B have equal cardinalities. In 
our case, the roles of sets A and B are assumed by the 

sets LH and RH . Since it may well hold that L RN N ,

we have extended [5] to handle the case of sets with 
unequal cardinalities.  
    The required preferences among the members of 

sets LH and RH  are formed by employing the epipolar 

constraint [11]. More specifically, j
Rm  is constrained to 

lie on the epipolar line lR=F i
Lm , where F denotes the 

fundamental matrix of the stereo system.  Similarly, 
i
Lm  is constrained to lie on the epipolar line lL=FT j

Rm .

A distance measure ( , )ji
LR L RD h h  of i

Lh from j
Rh  can 

be defined as ( , ) ,j ji i
LR L LR RD h h d Fm m  where 

,d l p  denotes the Euclidean distance of point p from 

line l. Similarly, ( , ) ,j ji T i
RL L LR RD h h d F m m . By 

sorting these distances in ascending order, we may 
define preferences of left hand blobs to right hand 
blobs and vice versa. In other words, the larger the 

distance ( , )ji
LR L RD h h , the lower is the preference of 

i
Lh to j

Rh . The preferences of all j
Rh s to all i

Lh s are 

defined similarly based on ( , )j i
RL LRD h h . Furthermore, 

our extension to [5] for solving the stable marriage 

problem rejects a candidate pair if ( , )j i
RL LRD h h or

( , )ji
LR L RD h h is above a certain threshold. 

    Still, there may be cases where the solution to the 
stable marriage problem with preferences as defined 
above fails to result in correct matches. As an 
illustrative example, assume two different hands, each 
of which is visible in only one of the two images of the 
stereo pair. Assume also that incidentally, hands are 
located in such a way that eqs.(1) and (2) give rather 
small distances (i.e. high preferences).  The solution to 
the stable marriage problem will then provide a wrong 
match between these two hands. To cope with such 
situations, we reject matches that yield an impossible 
or a highly unlikely 3D hand position after 3D 
reconstruction (i.e. negative depth value or depth value 
outside reasonable bounds). 
    The computation of the distances DLR and DRL

requires that the fundamental matrix F of the stereo 
configuration is known. Assuming a fully calibrated 
stereo camera system, F can be computed analytically 
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as 1
r lA RSATF . In this equation, AL and AR are the 

intrinsic calibration matrices of the two cameras, R is 
the rotation matrix associated with the relative 
positions of the cameras of the stereo rig and S is a 
rank deficient matrix dependent on the relative 
translation between the two cameras.  

2.3. Shape matching through contour alignment 
   The algorithm described in the previous section 
matches hands between the images of a calibrated 
stereo-pair. To recover the 3D contour of a hand 
correspondences of contour pixels are also required. 
    The image of a hand is typically a small, textureless 
area in front of a relatively distant background. The 
lack of texture and the presence of considerable depth 
discontinuities are conditions that do not favor 
correlation-based approaches towards solving the 
correspondence problem. Instead, we compute 
correspondences through a top-down approach. The 
basic idea in this approach is that if two matching hand 
contours1 can be aligned, then the necessary 
correspondences for 3D reconstruction can easily be 
extracted. To perform this type of alignment, we 
employ a robust variant of the Iterative Closest Point
(ICP) algorithm. Given two point sets, P and M, the 
task of ICP is to find the affine motion that brings P
into the best possible alignment with M. The original 
ICP algorithm [3] consists of the following three steps: 
(1) pair each point of P to the closest point in M, (2) 
compute the motion that minimizes the mean square 
error (MSE) between the paired points and, (3) apply 
the motion to P and update the MSE. These three steps 
are iterated and have been proved to converge in terms 
of the MSE.  
    Several robust variants of the ICP algorithm have 
been proposed that can solve the problem in the 
presence of measurement outliers and, possibly, shape 
defects. In our hand tracking scenario, such outliers 
and shape defects can be due to inaccuracies in skin 
color detection. Filtering them out is very important 
because it safeguards the later process of 3D 
reconstruction against gross errors due to wrong point 
matches. The robust variant of ICP that we employ is 
similar in spirit with the one described in [4]; the major 
difference is that we use the Least Median of Squares 
(LMedS) robust estimator [9] in all steps of the general 
ICP algorithm, instead of the Least Trimmed Squares 
(LTS) estimator of [4]. 
    The initial contour alignment that is necessary for 
bootstrapping the ICP algorithm is easily achieved 

                                                          
1 Note that the hand correspondence algorithm of section 2.2 
permits us to know which contours to align. 

through information already available from the 2D 
hand tracker. More specifically, assume that the pixels 

belonging to hand i
Lh have a covariance matrix i  and 

that the pixels of the corresponding hand j
Rh  in the 

right image have a covariance matrix j . Considering 

the two ellipses defined by equations 1T
ip p and 

1T
jq q , the first can be transformed to the second 

through a linear transformation q Vp , where V is 

such that T
j iV V . The recovery of the 

transformation V and its application to the contour 

points of hand i
Lh results in the approximate alignment 

of the contour points of i
Lh  with those of hand j

Rh .

2.4. 3D reconstruction 
   The recovery of the 3D coordinates of the matched 
hand centroids and the matched hand contour points 
can be achieved through standard triangulation. 

Assume a 3D point M projecting onto points i
Lm  and 

j
Rm on the left and right images of the stereo-pair. M is 

constrained to lie on the 3D line defined by CL and ML

where CL is the 3D location of the optical center of the 

left camera and ML is the 3D location of point i
Lm .

Similarly, M is constrained to lie on the 3D line 
defined by CR and MR where CR is the 3D location of 
the optical center of the right camera and MR is the 3D 

location of point i
Rm . In the case of noiseless 

measurements these two lines intersect at M. However, 

noise in the estimation of i
Lm  and j

Rm  and 

inaccuracies in camera calibration will almost certainly 
result in these two lines being skew. For this reason, M
is taken to be the midpoint of the minimum-length line 
segment whose endpoints lie on the two 3D lines MLCL

and MRCR  [6].  

3. Experiments 
   The developed method for binocular hand tracking 
and reconstruction has served as a building block in a 
number of applications and has been tested extensively 
in various environments. More specifically, it has been 
employed as a component of a cognitive vision system 
whose goal is the interpretation of the activities of 
people handling tools. Fig. 1(a) shows a snapshot from 
a related experiment in which a person operates a CD 
player while a pair of cameras is observing the scene. 
Detected skin-colored pixels are illustrated in white. 
The contour of the hand is shown in light blue. The 
index finger has also been detected based on a method 
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proposed in [2] and is marked with a black dot. Figure 
1(b) shows the computed 3D trajectory of the hand 
centroid. As it can be verified in this figure, the hand 
moves towards the CD player, opens the tray, moves 
towards the CD, takes the CD, puts it on the open tray, 
closes the tray and retracts to its rest position. For 
improving the readability of the 3D plot, the CD player 
has also been reconstructed in 3D. Reporting the 3D 
position of the hand is achieved at 29 fps on a 
conventional, Pentium 4 processor.  

(a) (b) 
Figure 1: (a) Left camera snapshot from a 3D hand tracking 

experiment, (b) the computed hand trajectory in 3D. 

    Figures 2(a),(b) show the left and right images of 
another stereo pair. In this experiment, several hands 
are successfully detected and tracked among images. 
Figure 2(c) shows the 3D reconstruction of the 
contours of these hands. 
    The developed method has also been used in the 
context of a system for vision-based human computer 
interaction [2]. Simple gesture recognition techniques 
applied to the output of the 3D hand tracker have 
resulted in a system that permits a human to remotely 
control the mouse pointer of a computer. Videos from 
related experiments can be found at 
http://www.ics.forth.gr/~argyros/research/virtualmouse
.htm.

4. Summary 
   In this paper, we have proposed a new method for 
binocular hand tracking and reconstruction. The 
proposed tracker is able to report the 3D positions and 
the 3D contours of several hands that move, possibly 
occluding each other, in the field of view of a 
potentially moving binocular camera system. The 
developed method has several attractive features, such 
as robustness in illumination changes and real time 
performance. Because of those, it has served as a 
building block in many applications.  
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(a) (b)

(c)
Figure 2: (a), (b) a stereo-pair from a hand tracking 
experiment, (c) the estimated 3D hand contours. The 

origin of the coordinate system is at the far left face of 
the parallelepiped.
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