
Chaining Planar Homographies for Fast and Reliable 3D Plane Tracking
�

Manolis I.A. Lourakis and Antonis A. Argyros
Institute of Computer Science, Foundation for Research and Technology - Hellas

Vassilika Vouton, P.O.Box 1385, GR 711 10, Heraklion, Crete, GREECE�
lourakis|argyros � @ics.forth.gr – http://www.ics.forth.gr/cvrl/

Abstract

This paper addresses the problem of tracking a 3D plane
over a sequence of images acquired by a free moving cam-
era, a task that is of central importance to a wide variety
of vision tasks. A feature-based method is proposed which
given a triplet of consecutive images and a plane homogra-
phy between the first two of them, estimates the homography
induced by the same plane between the second and third
images, without requiring the plane to be segmented from
the rest of the scene. Thus, the proposed method operates
by “chaining” (i.e. propagating) across frames the image-
to-image homographies due to some 3D plane. The chain-
ing operation represents projective space using a “plane
+ parallax” decomposition, which permits the combina-
tion of constraints arising from all available point matches,
regardless of whether they actually lie on the tracked 3D
plane or not. Experimental results are also provided.

1 Introduction
Plane tracking is essential for a wide variety of vision

applications, ranging from 3D reconstruction [7] to visual
localization and augmented reality [10]. Depending on the
type of constraints used for driving plane tracking, proposed
approaches fall into two categories. The first consists of
methods attempting to identify and track 2D layers, that is
image regions comprised of pixels sharing the same para-
metric 2D motion. Such layers arise from the motion of ei-
ther piecewise planar imaged objects or of smooth, shallow
surfaces whose image motion can be well approximated us-
ing a parametric model involving image coordinates. Due
to their wide practical applicability, 2D layers have been
used by several researchers for representing moving images
[12, 13]. In [13], Zelnik-Manor and Irani have applied a
linear subspace constraint involving multiple planes across
multiple views to estimate the motion of small predefined
planar regions. Their method operates in a batch mode, esti-
mating the motion of the entire sequence in a single step and
requires the exact spatial extend of each of the tracked re-
gions to be determined in all images. Layer-based methods
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assume instantaneous camera motion and make extensive
use of the spatiotemporal intensity derivatives. Therefore,
they are inapplicable when the apparent image displace-
ments are large.

In cases where the inter-frame image motion is not in-
finitesimal, only sparse feature matches can be reliably ex-
tracted from images. Techniques operating under such con-
ditions constitute the second class of plane tracking meth-
ods and rely upon geometric constraints arising from match-
ing features. For example, Simon et al [10] track planes
by estimating pairwise planar homographies with the aid of
tracked interest points. Nevertheless, the approach of [10]
requires the image of the tracked plane to be segmented
from the scene, calls for manual intervention to bootstrap
tracking and is unable to incorporate information arising
from points off the plane or from more than two images.
Avidan and Shashua [2] follow a direct approach for re-
covering a set of consistent camera matrices without recon-
structing the 3D scene. The main contribution of their work
is a merging operation on two consecutive fundamental ma-
trices that uses the trifocal tensor as the connecting thread.
Their method is based on tracking a scene plane along an
image sequence and provides, as a byproduct, the homog-
raphy matrices it induces between adjacent views. How-
ever, owing to the use of constraints involving algebraic dis-
tances, the estimated homographies are not optimal.

In this paper, a novel feature-based approach to plane
tracking is presented. The method is based on a homogra-
phy “chaining” operation that is applied to triplets of con-
secutive images through a sliding time window and exploits
the fact that all images of a planar surface acquired by a
rigidly moving observer depend upon the same 3D geom-
etry. Plane tracking is achieved by tracking the 2D pro-
jections of points from all over the scene and expressing
their image motion as the sum of a homographic transfer
plus a residual planar parallax vector. Due to the fact that
this “plane + parallax” decomposition simplifies the mo-
tion equations by partially factoring out the dependence on
the camera relative rotation and intrinsic calibration param-
eters, it has often been employed for dealing with a wide

0-7695-2521-0/06/$20.00 (c) 2006 IEEE



spectrum of vision problems [3, 11]. Here, the application
of the “plane + parallax” decomposition allows all informa-
tion conveyed by matching points to be taken into account,
without the need for continuously maintaining a segmenta-
tion of the tracked plane from the scene. The motion model
estimated for the tracked plane is exact and fully projec-
tive (i.e. a homography) and no camera calibration infor-
mation or 3D structure recovery is necessary. Intended for
use in time-critical applications, the proposed method is de-
signed to operate in a continuous mode, in which images
are processed incrementally as acquired. This is in con-
trast to methods that process image data in a single batch
step and are therefore not suitable for time-sensitive appli-
cations. The proposed method follows a strategy similar
to that in [2], with an important difference being that it is
based on simpler constraints whose derivation is shorter and
does not involve the trifocal tensor. Moreover, our method
tracks 3D planes by minimizing a geometrically meaning-
ful criterion with respect to a set of four free parameters,
which, according to the subspace constraint of [8], is a the-
oretically minimal one. Compared to [2] and [10] which
estimate twelve and eight parameters respectively, the esti-
mation of just four parameters is both faster and more accu-
rate. The rest of the paper is organized as follows. Section
2 explains the notation that will be used and provides some
background knowledge. Section 3 derives the constraints
that form the basis for the proposed plane tracking method.
Experimental results from a prototype implementation are
reported in section 4. The paper is concluded with a brief
discussion in section 5.

2 Notation and Background
In the following, vectors and arrays appear in boldface

and are represented using projective (homogeneous) coordi-
nates [5]; � denotes equality up to an arbitrary scale factor.
3D points are written in uppercase and their image projec-
tions in lowercase (e.g. � and � ). � will designate the
fundamental matrix, � and � � its associated epipoles and �
will be used for plane homographies.

As shown in [8], the fundamental matrix and plane ho-
mographies are tightly coupled. Specifically, the group of
all possible homography matrices between two images lies
in a subspace of dimension 4, i.e. it is spanned by 4 ho-
mography matrices. These homography matrices are such
that their respective planes do not all coincide with a single
point. Shashua and Avidan show in [1] that given the funda-
mental matrix � and the epipoles � and � � in an image pair,
a suitable basis of 4 homography matrices � 	 � 
 
 
 � � � , re-
ferred to as “primitive homographies”, is defined as follows:

� � � � � � � � � � " � % � ' � ( ) + - � � � � � 1 3 � (1)

where � � are the identity vectors � 	 � 5 % � 8 � 8 9 , � : �
5 8 � % � 8 9 and � > � 5 8 � 8 � % 9 , � 
 � � designates the skew sym-

metric matrix representing the vector cross product and 1 is
a vector such that 1 3 � E� 8 . Given the primitive homogra-
phies, any other homography � can be expressed as their
linear combination � � I � � J 	 L � � � � L � O P .

Next, a result due to Shashua and Navab [9] that plays
a central role in the development of the proposed method
is presented. Let Q be an arbitrary 3D plane inducing a
homography � between two images. Let also � S be a 3D
point not on Q projecting to image points � S and � �S and
assume that � has been scaled to satisfy the equation � �S �

� � S V � � . Then, for any 3D point � projecting onto � and
� � , there exists a scalar Z such that

� � � � � V Z � � 
 (2)

Equation (2) dictates that the position of projected points in
the second image can be decomposed into the sum of two
terms, the first depending on the homography induced by Q
and the second involving parallax due to the deviation of the
actual 3D structure from Q . The term Z in Eq. (2) depends
on � but is invariant to the choice of the second image and
is termed as relative affine structure in [9]. Given � , � � , �
and � � , the term Z corresponding to � can be computed by
cross-multiplying both sides of Eq. (2) with � � , which after
some algebraic manipulation yields

Z � 5 � � a � � 9 3 5 � � a � � 9c c � � a � � c c : 
 (3)

3 The Proposed Method

We start by shedding some light into the function of point
� S in the derivation of Eq. (2). Recall that � and � � are
homogeneous entities, defined up to an arbitrary scale fac-
tor. Therefore, by fixing � ’s scale, � S serves to establish
a common relative scale between � and � � . Notice, how-
ever, that in the case that � has not been scaled with the aid
of � S , Eq. (2) continues to hold for some Z � that is a fixed
scale multiple of the Z given by Eq. (3) for the scaled � .

Suppose now that three consecutive images f 	 , f : and f >
are available and that a planar homography between f 	 and

f : has been estimated. Considering the two image pairs ( f 	 ,
f : ) and ( f : , f > ), the key observation upon which the chain-
ing operation is based is the fact that image f : is shared by
both of them. Hence, the relative affine structure defined
when f : assumes the role of the first image in Eq. (2) is in-
sensitive to the choice of the second image (i.e. f 	 or f > )
completing the pair. This allows one to extract the relative
affine structure from the pair ( f 	 , f : ) and the corresponding
homography and then use it to estimate the plane homogra-
phy pertaining to the pair ( f : , f > ). More details are given in
the next section.
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� � � � � 	 � � � � � � � � � � � 	 � � � � �  � � � � � � � &� � ( * + � . � 0 � 	 � � �
Assume that 3 triplets of matching points4 6 7 8 6 :7 8 6 : :7 ; , < = ? 8 A A A 8 3 , are available across the

three images E F , E G and E H respectively and that the
homography I from image E F to E G due to some 3D plane
has been estimated. A procedure for estimating the plane
homography J induced by this 3D plane between imagesE G and E H will be described in the remainder of this section.

From the set of matching pairs 4 6 7 8 6 : 7 ; the epipolar ge-
ometry for images E F and E G and thus the epipole L in im-
age E F can be estimated. In a similar manner, the epipoleL : : in E H for the camera motion corresponding to framesE G and E H can be estimated from the set of matching pairs4 6 : 7 8 6 : :7 ; . Recalling that the homography from image E G toE F is simply I O F , Eq. (2) takes the following form for all
point matches in those two images: 6 7 P I O F 6 :7 Q S 7 L . By
employing Eq. (3), S 7 can then be estimated as

S 7 = 4 I O F 6 :7 T 6 7 ; W 4 6 7 T L ;Y Y 6 7 T L Y Y G A (4)

Taking into account point matches in frames E G and E H ,
Eq. (2) gives 6 : :7 P J 6 :7 Q S 7 L : : 8 (5)

where S 7 are given by Eq. (4). In order for Eq. (5) to hold
for the S 7 given by Eq. (4), the scale of J in it has to be
compatible with that of L : : . For this reason, J in Eq. (5)
is no longer a homogeneous ] T ] matrix but rather an
ordinary, inhomogeneous one. Equation (5) is thus a vec-
tor equation linear in J , providing three linear constraints
on the nine unknown elements of J . Due to the presence
of an arbitrary, unknown scale factor, only two of those
three constraints are linearly independent. Denoting the < -
th row of matrix J by _ W7 , writing 6 : :7 = 4 a : :7 8 c : :7 8 ? ; W
and L : : = 4 f : :h 8 f : :j 8 f : :k ; W , those two constraints can be
explicitly expressed as 1

_ WH 6 :7 a : :7 m _ W F 6 :7 = S 7 f : :h m S 7 f : :k a : :7_ WH 6 :7 c : :7 m _ WG 6 :7 = S 7 f : :j m S 7 f : :k c : :7 A (6)

Equations (6) do not require that the employed point
matches have been identified as lying on the plane. There-
fore, they do not require that the tracked plane has been
segmented from the rest of the scene and are applicable
even in the case of tracking a virtual (i.e. not physically
present in the scene) plane. Concatenating the equations
arising from five triplet correspondences, a matrix equation
of the form o _ = q is generated, where o is a ? r T t
matrix, _ = 4 _ W F 8 _ WG 8 _ WH ; W and q is a ? r T ? vector.

1Notice that all available point matches are assumed to originate from
actual image points (i.e. corners) and do not include any ideal points whose
third coordinate is zero.

Omitting any row of matrix o , yields a t T t linear system
with t unknowns that may be solved using linear algebra.
In the case that more than five triplet matches are available,
Eq. (6) gives rise to an over-constrained system from whichJ can be estimated in a least squares manner.

As described up to this point, the estimation of J is
achieved with a Direct Linear Transformation (DLT) algo-
rithm (see [5], ch. 3). Since DLT algorithms are not in-
variant to similarity transformations of the point image co-
ordinates, the accuracy of the estimation can be improved
by applying the normalization technique of [4] to matching
points prior to feeding them to the DLT algorithm. Inde-
pendently for each image < , this normalization corresponds
to a linear transformation z 7 , consisting of a translation fol-
lowed by an isotropic scaling that maps the average image
point to 4 ? 8 ? 8 ? ; W . Notice that in this case, the normalized
versions of the homography and epipole must be employed
in Eq. (4) and the homography estimate {J computed with
DLT needs to be denormalized using z H O F {J z G .

In practice, the set of available matching point triplets
is almost certain to contain errors due to false matches and
errors in the localization of image corners. Hence, in or-
der to prevent such errors from corrupting the computed
homography estimate, the group of DLT constraints should
be employed within a robust regression framework. In our
case, the Least Median of Squares (LMedS) robust estima-
tor is employed to iteratively sample random sets of nine
constraints, recover an estimate of matrix J from each of
them and find the estimate that is consistent with the ma-
jority of the available constraints. To ensure that those ran-
dom sets arise from points having a good spatial distribution
over the image, random sampling is based on the bucketing
technique of [14]. Finally, the set of constraints having the
largest support (i.e. the inliers) is employed to recomputeJ with least squares.

Since the DLT constraints minimize an algebraic error
term with no physical meaning, the estimate computed by
LMedS is refined by a nonlinear minimization process that
involves a geometric criterion. Letting | 4 } 8 � ; represent
the Euclidean distance between the inhomogeneous points
represented by } and � , the nonlinear refinement minimizes
the following sum of squared distances� � � � � � : :

� � � � :
� � � � �

: : � �
� � � � :

� � � � � � : :
�

O � � � : :
�

� �� �
� � :

� � � � �
: : � �

� � � � � �
: : � � �

(7)

with respect to J . This criterion involves the mean
symmetric transfer error between actual and transferred
points in the two images and is minimized by applying the
Levenberg-Marquardt iterative algorithm as implemented
by MINPACK’s LMDER routine, initialized with the esti-
mate provided by LMedS. To safeguard against point mis-
matches, the nonlinear refinement is performed using only
the point features that correspond to inliers of the LMedS
homography estimate.
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Having presented the basic 3-frame chaining operation,
it is straightforward to extend it to handle a sequence of
more than three views. For example, in order to track the
plane in a new image � � , the homography � computed in
the previous step between frames � � and � � becomes the
new � for the triplet � � , � � and � � . Note also that the epipo-
lar geometry of frames � � and � � has been computed from
the previous iteration, therefore only the epipolar geometry
between frames � � and � � needs to be estimated during this
step. A final remark concerning the extension of the chain-
ing operation to more than three frames is that the estima-
tion of � can benefit from point trajectories that are longer
than three frames: If, for example, a four-frame point trajec-
tory is available for images � 	 , � � , � � and � � , the constraints
generated by the triplet � 	 , � � and � � can be combined with
those arising from � � , � � and � � . This variant of chaining
from multiple triplets can be carried out by maintaining a
small moving window of past frames.


 � � � � � � � � � � �  � " $ & ( * , . 0 2 � � 5 7 2 � : � � �
In the following, the basic method of the previous sec-

tion will be modified, aiming to derive a model involving
fewer, therefore easier to estimate, degrees of freedom (i.e.
free variables). It has already been mentioned that the en-
tire group of all possible homography matrices between two
images lies in a subspace spanned by the 4 primitive homo-
graphies of Eq. (1). This implies that given the primitive
homographies for frames � � and � � , the rows ; => of ma-
trix � in Eqs. (6) depend on four rather than nine parame-
ters. Therefore, the process described in section 3.1 can be
slightly modified to estimate the coefficients ? > making up

� instead of directly estimating the latter. In other words,
both the linear and the nonlinear estimation processes that
have been described above are performed with four rather
than nine unknowns. This reduction in the dimensionality
of the problem is of utmost importance since fewer degrees
of freedom entail less computation time for the homography
(particularly for the nonlinear refinement) as well as more
accurate estimates. We have found experimentally that the
execution time for plane tracking using the formulation in-
volving ? > is by an order of magnitude shorter from that
required when estimating � directly.

4 Experimental Results
The performance of a prototype C implementation of the

proposed method has been evaluated based on several test
image sequences. The current implementation performs
chaining using constraints arising from three frames at a
time. Representative results from two of the conducted ex-
periments are given in this section. The point features em-
ployed throughout all experiments have been extracted and
matched automatically. Using the resulting matching fea-
tures, the epipoles were computed by finding the kernels of

(a) (b)

(c) (d)

Figure 1. (a), (b) two views of a basement
(courtesy of the Oxford Visual Geometry
Group). The two polygons in (a) delin-
eate the planar regions tracked between im-
ages (a) and (b). (c) right wall warped and
stitched with (b), (d) floor warped towards
and stitched with (b); see text for explanation.

the fundamental matrices estimated using an implementa-
tion of [14]. In all experiments, the spatial extend of the
employed planes has been defined manually using a poly-
gon in the first frame. Following this, the plane homogra-
phy between the first two images that is necessary for boot-
strapping plane tracking (i.e. � in Section 3.1), is estimated
from the point matches lying within the specified polygon.
Alternatively, plane tracking could have been bootstrapped
by applying to the first pair of images an automatic plane
detection algorithm.

The first experiment was performed on the well-known
“basement” image sequence, two frames of which (namely
0 and 8) are shown in Figs. 1(a) and (b). This sequence con-
sists of 11 frames acquired by a camera mounted on a mo-
bile robot as it approached the scene while smoothly turn-
ing left. The plane corresponding to the right corridor wall
was tracked from frame 0 to frame 8 using the proposed
method. Then, by employing the estimated homography,
the right wall from frame 0 was warped towards frame 8.
Fig. 1(c) shows the warped wall stitched with frame 8. A
second plane, namely the one corresponding to the floor,
was also tracked between frames 0 and 8. Fig. 1(d) shows
the result of warping the floor plane from frame 0 towards
frame 8 and stitching them together. As it is clear from the
results, the accuracy of the homographies estimated using
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(a) (b)

(c) (d)

Figure 2. (a), (b) first and last images from the
Arenberg castle sequence (courtesy of the
University of Leuven VISICS Group), (c) first
image warped towards the last using the es-
timated homography, (d) warped image in (c)
superimposed on (b) using the red and green
color channels.

the proposed method is satisfactory in both cases. Exclud-
ing the time required to detect and match corners between
successive frames, the average running times for tracking
the wall and floor planes in the whole sequence, were re-
spectively 63 and 66 ms per frame on an Intel P4@1.8 GHz
running Linux.

In order to quantitatively evaluate the performance of
plane tracking, the floor plane was tracked from frame 0
to frame 10 and then back to frame 0, reversing the order
of intermediate frames. This effectively simulates a cam-
era motion that is circular, i.e. ends at the location where
it started. Composing the pairwise homographies estimated
by the plane tracker, the floor’s homography from the first
frame through the last and back to itself can be estimated.
Ideally, this homography should be equal to the identity ma-
trix. In practice, the deviation in the position of floor points
transferred using this homography from their actual loca-
tions in the first frame, indicates the accuracy of plane track-
ing. The RMS error corresponding to the 91 transferred
floor points was found to be 19.3 pixels, corresponding to
an average RMS error of 0.91 pixels for each of the 21
frames involved in tracking. However, since certain floor
points correspond to mismatches or poorly localized cor-
ners, a more appropriate error measure is given by the root
median square (RMedS) error, which was found to be equal
to 8.47 pixels or on average 0.40 pixels per tracked frame.

The second experiment employs another well-known im-
age sequence, the first and last frames of which are shown
in Figs. 2(a) and (b). The sequence depicts the Arenberg
castle in Belgium and consists of 22 frames acquired with
a handheld camera. Applying the proposed method, the 3D
plane defined by the rightmost wall outlined in Fig. 2(a)

was tracked throughout the whole sequence. Fig. 2(c) il-
lustrates the result of warping the first frame towards the
last using the estimated homography. To aid in the eval-
uation of this result, Fig. 2(d) shows it superimposed on
Fig. 2(b), using different color channels for each image. As
can be clearly seen, image warping according to the esti-
mated homography successfully registers the plane’s image
in Fig. 2(a) with that in Fig. 2(b). In this case, the aver-
age running time for plane tracking was 84 ms per frame.
The plane of the right wall was again tracked from the first
to the last frame and back (for a total of 43 frames) and the
RMS and RMedS errors in this case were 31.7 and 18.3 pix-
els, amounting to average errors of 0.73 and 0.43 pixels per
frame respectively.

5 Conclusion
This paper has presented a method for tracking a 3D

plane across an image sequence. The method is based on
a homography “chaining” operation that exploits geometric
constraints arising from all available point matches, with-
out the need of segmenting them into planar and non planar
ones. The “chaining” operation involves the estimation of
a quadruple of plane parameters, which is achieved using
a combination of linear and nonlinear optimization tech-
niques. No restrictions are imposed on plane motion or the
viewed spatial extend of the tracked plane, which is actu-
ally allowed to be outside the field of view of all but the
first pair of images. Moreover, possible mismatches among
the employed point features are handled in a robust manner.
A scheme for camera tracking that builds upon the proposed
method is given in [6].
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