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Abstract 

We present a new approach for the detection of events 

in image sequences. Our method relies on a number of 

logical sensors that can be defined over specific 

regions of interest in the viewed scene. These sensors 

measure time varying image properties that can be 

attributed to primitive events of interest. Thus, the 

logical sensors can be viewed as a means to transform 

image data to a set of symbols that can assist event 

detection and activities interpretation. On top of these 

elementary sensors, temporal and logical aggregation 

mechanisms are used to define hierarchies of 

progressively more complex sensors, able to detect 

events having more complex semantics. Finally, 

scenario verification mechanisms are employed to 

achieve process monitoring, by checking whether 

events occur according to a predetermined order. The 

proposed framework has been tested and validated in 

an application involving monitoring of automated 

processes. The obtained results demonstrate that the 

proposed approach, despite its simplicity, provides a 

promising framework for vision based event detection 

in the context of such applications.  

1 Introduction 

With recent advances in computer vision, it is now 

becoming possible to extract high-level semantic 

information from video streams. The automatic 

detection and analysis of events are important in a 

variety of applications including surveillance, video 

annotation, vision-based human-computer interaction, 

etc. For example, the goal of most surveillance systems 

is the automatic detection of events and suspicious 

activities for triggering alarms, thus reducing the 

volume of data presented to a human operator. Road 

traffic monitoring, airport security, access control to 

buildings, are just a few out of several important 

application areas.  

    Event detection requires the interpretation of the 

“semantically meaningful object actions” [3]. To 

achieve this task, the gap between the numerical 

features of video objects and the symbolic description 

of their meaningful activities needs to be bridged. Past 

work has mostly dealt with the extraction of object 

trajectories followed by supervised learning that makes 

use of parameterized models for actions [1, 2]. Such 

models usually consist of predefined dynamic patterns 

of movements that are learnt in an offline training 

phase. However, as the nature of events varies 

depending on the application, event modeling becomes 

a very challenging task. Currently, there exist several 

smart camera systems for dealing with several instances 

of the event detection and activity interpretation 

problem; some of them are already successful 

commercial products. Recently, Valera and Velastin [5] 

provided an extensive review of such camera systems.  

    In this paper, we propose a new approach to event 

detection and interpretation. We develop an event 

detection and process monitoring framework that has 

two significant advantages over past work. First, it 

decouples the detection and the interpretation of events 

from the explicit, computer-based detection and 

recognition of objects, actions, and their relationships. 

This is very important because it makes the framework 

usable in a variety of different application domains. 

Secondly, the framework depends on very simple, low-

level vision processes, which is a key to robust and 

efficient performance. Despite them working in a 

different application domain, Ye et al [4] propose a 

similar approach. Their visual interface cues paradigm 

relies upon simple image processing to detect pre-

defined sequences of visual events and support human-

computer interaction. 

    The proposed approach is based on what we call 

“Vision Based Logical Sensors” (VBLSs). In the heart 

of this approach lies the notion of a Logical Sensor 

(LS). A LS is a logical construct that decides (by 



providing a Boolean, true/false output value) whether a 

specific property holds in a specific image region at a 

certain moment in time. Example such properties are 

“region illumination exceeds predefined threshold”, 

“region changed with respect to the scene background”, 

“region profile matches stored prototype”, etc. LSs, 

enable the detection of primitive events in a video 

stream. Compound Logical Sensors (CLSs) can then be 

built through temporal and logical aggregation applied 

to the output values of LSs (or, recursively, other 

CLSs). Temporal aggregation creates a CLS by 

reasoning on the value of a LS (or of a CLS) over time. 

Logical aggregation creates a CLS by combining the 

values of several other LSs or CLSs into Boolean 

expressions. LSs together with the mechanisms of 

temporal and logical aggregation are used for the 

detection of events of high complexity. 

    The framework proposed in this paper is particularly 

suited to the application area of monitoring of 

automated processes. In most such processes, things 

occur in a strict, predetermined way. For example, in 

an assembly automation process, mechanical parts 

move on a conveyor belt and are being manipulated by 

actuators in a process that, typically, presents no 

considerable deviations. The fact that these processes 

have considerable structure, permit us to turn difficult 

detection problems into much simpler verification 

problems. More precisely, instead of trying to detect 

what is going on in the viewed scene, the VBLS 

approach can be used to verify that things proceed as 

expected. This results in several advantages: 

• Computational efficiency: The VBLS approach 

requires simple, low level, computationally cheap, 

data parallel image processing operations to be 

applied on (typically) small image regions. 

•  Extendibility: LSs and CLSs can be dynamically 

tailored and expanded based on the needs of 

different application domains. 

• Flexibility and adaptability: Most complex vision 

algorithms either fail in specific settings or require 

elaborate, non-intuitive parameter tuning. With the 

VBLS approach the process of finding an 

arrangement of LSs/CLSs that succeeds in 

detecting interesting events, is facilitated.  

Moreover, as it will become clearer later in the paper, 

intuitive explanations at varying levels of detail can be 

provided by the system while reporting the success or 

the failure in the detection of certain events. 

    The rest of the paper is organized as follows. Section 

2 provides a description of the basic elements of the 

VBLS approach. Section 3 describes experiments 

carried out with a prototype implementation of the 

approach in the application area of the monitoring of 

automated processes. The document is concluded with 

a short discussion summarizing the contributions of this 

work and with current and future research directions.  

2 The proposed VBLS approach 

In this section, we present, in more detail, the basic 

elements of the proposed VBLS approach. 

2.1 Logical Sensors (LSs) 

A Logical Sensor (LS) is the basic entity in the VBLS 

approach. Its function is to apply a set of user-defined 

Image Processing and Analysis Algorithms (IPAs) in a 

user-defined Region Of Interest (ROI). The goal of the 

IPAs is to detect an interesting property within the 

specific ROI. The output of the LS is a Boolean value, 

which reports whether the specified ROI has, at a 

certain moment in time, the property sought by the 

IPAs associated with this LS.  

2.1.1 Region Of Interest (ROI) 

A ROI is an arbitrarily shaped, user defined region in 

an image that is used to spatially constraint image 

processing and analysis. We denote a ROI R, with 

( , , , , , )R ROI I M W H X Y≡ , meaning a region of 

interest in image I, having a mask image M with a 

bounding box of dimensions WxH, located at image 

position (X, Y). An image pixel belongs to the ROI if 

and only if the corresponding mask image pixel has a 

value of 1. Figure 1 gives an illustrative example of the 

definition of a ROI.  

 

 
 

Figure 1: Example ROI (red rectangle). Pixels in 

yellow color are the ones to be considered for 

further processing. 



2.1.2 Image Processing and Analysis Algorithms 

(IPAs) 

Having defined a ROI, the next step is to define the 

algorithm(s) that will be applied to it. We differentiate 

among four categories of IPAs.  

• Preprocessing IPAs: These algorithms take as 

input a grayscale image and process it to yield an 

enhanced/improved image. Examples of such 

algorithms are various types of filtering operations 

(Gaussian smoothing, averaging, median filtering, 

histogram equalization, etc).  

• Analysis IPAs: They operate on grayscale images 

and produce a binary image in which pixels that 

have a certain desired property are differentiated 

from those that don’t have it. Examples of such 

algorithms are change detection algorithms, 

template matching, etc. 

• Post-processing IPAs: These algorithms operate 

on binary images and produce another binary 

image with certain desired properties. Examples of 

such algorithms are the morphological operators 

(erosion, dilation, etc). 

• Decision IPAs: These algorithms typically take as 

input a binary image, and decide the value 

(true/false) of the Logical Sensor.  

A Logical Sensor requires at least one decision IPA to 

be defined. Preprocessing, analysis and post-processing 

IPAs are only used to support the decision IPA, if 

needed. Having mentioned this, a Logical Sensor in the 

context of the VBLS approach is the (Boolean) result 

of a collection of IPAs applied over a user defined 

ROI. More formally, an LS L computes a binary valued 

function f implemented through a series of IPAs that 

are applied to a ROI R, or ( )L f R≡ . 

2.2 Compound Logical Sensors (CLSs) 

The Compound Logical Sensors (CLSs) are built based 

on LSs. There are two mechanisms used to build CLSs. 

The first mechanism is termed temporal aggregation. 

Time is measured relative to present (t=0) and 

increases towards the past. Moreover, discrete time is 

assumed, with measurements coinciding with the frame 

rate of the employed camera. It is assumed that a 

history of past values is maintained for each of the 

defined LSs and CLSs. Then, we denote the temporal 

aggregation of a CLSj as:  

 

min max 2 1( , , , , )i jCLS TA CLS A A T T≡  (1) 

The meaning of definition (1) above is that a new CLS 

(CLSi) is built through temporal aggregation (TA) of 

the values of a previously defined compound logical 

sensor, CLSj. More specifically, CLSi will be true at 

time t if CLSj was true at least Amin and at most Amax 

times over the time interval [t-T1, t-T2]. A trivial case of 

temporal aggregation is of the form 

( ,1,1,0,0)i jCLS TA LS= , meaning that CLSi simply 

reports the current value of LSj.  

    The second mechanism for building CLSs is that of 

logical aggregation. According to this mechanism, a 

CLS is built based on the logical combination of the 

results of other LSs (or, recursively, CLSs). The 

following are some example CLSs: 

• CLS1  := LS1 OR LS2 

• CLS2 := LS3 AND LS4 

• CLS3 := LS4 XOR LS5 

• CLS4 := CLS1 AND LS6 (i.e.  CLS4 is equivalent to 

the expression “(LS1 OR LS2) AND LS6”). 

Logical and temporal aggregation can be combined 

arbitrarily. Hence, CLS7 = TA(CLS1, 3, 8, 5, 30) OR 

TA(LS2, 5, ∞ , 0, 9)  is a valid CLS since it is the result 
of the logical aggregation of two CLSs, each resulting 

from the temporal aggregation of other CLSs and LSs. 

Moreover, CLS7 will be true if CLS1 is true for at least 

3 and at most 8 time instances in the time interval 

[ ]30, 5t t− −  or if CLS2 is true at least 5 times during 

the last 10 time instances.  

2.3 Scenarios 

CLSs, as described in the previous section, can be used 

to combine several measurements in (image) space and 

time to detect interesting events. The scenarios are 

mechanisms provided to support the automatic 

monitoring of processes that consist of several events 

occurring serially, one after the other. A scenario SC is 

defined by the ordered list E of events 1 2, , , nE E E…  

comprising it, the time differences id  between the 

successive events iE  and 1iE + , and the time tolerances 

iτ  in the occurrence of these events. This means that if 

the event iE  occurs at time ti, then, according to the 

scenario, the event 1iE +  should occur in the time 

interval ,i i i i i it d t dτ τ+ − + +   .  More formally, a 

scenario SC is represented by the triplet 

( , , )SC E D T≡ , where 1 2, , , nE E E E= … , 

1 2 1, , , nD d d d −= …  and 1 2 1, , , nT τ τ τ −= … . The 

validation of a scenario is achieved by a mechanism 

that checks whether the events comprising the scenario 

occurred with a timing that respects the rules set. There 

are two different types of scenarios depending on the 

scheme used for their validation. In the case of a strict 

scenario, the events comprising it should occur only 



with the predetermined timing. In the case of a relaxed 

scenario, the events should occur at least with the 

predetermined timing; however, some of the events 

could also occur at other time instances, besides the 

ones specified in the scenario.     

  Figure 2 shows three scenario examples. Figure 2(a) 

shows the scenario as defined by the user. The vertical 

lines correspond to the time intervals in which each 

event ( iE ) must occur. In Fig. 2(b) event 2E  occurs 

after the defined interval. Both relaxed and strict 

scenario verification mechanisms will detect the failure 

after the end of the interval. In Fig. 2(c) 2E  occurs 

before the predefined interval. The strict scenario 

verification mechanism will detect the failure the 

moment 2E  occurs. The relaxed mechanism will detect 

the failure at the end of the interval. Finally, in Fig. 

2(d) the event 2E  occurs twice, both before and within 

the interval. In this case the strict mechanism will 

report a failure the moment 2E  occurs for the first 

time. The relaxed mechanism does not consider the 

premature occurrence as a fault therefore this scenario 

is considered as a successful one. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 2: Schematic illustration of successful and 

unsuccessful relaxed and strict scenarios. 

2.4 Error reporting mechanism 

   Regardless of its type, a scenario may fail either 

because an event was never detected, or because it was 

detected but did not occur with the proper timing. In 

both cases the framework may provide an intuitive 

explanation for scenario failure, at different levels of 

detail. This is achieved by tracing the hierarchical 

structure of the CLS responsible for the non-detected 

event and reporting the lower-level CLS or LS that did 

not produce the expected value. 

   Figure 3 displays the operation of the error reporting 

mechanism. When an error is detected, the error 

reporting mechanism is used to provide information 

regarding the failed scenario, the event that caused the 

failure, and the compound logical sensor that 

corresponds to that event. Also the report contains all 

the CLSs and LSs that may have affected the result of 

the CLS that corresponds to the detection of the failed 

event. 

 

 
Figure 3: Error reporting mechanism 

2.5 Overview of the proposed approach 

Figure 4 shows a graphical presentation of the overall 

VBLS approach. The logical sensors process the image 

and create primitive information. The compound 

logical sensors can detect high level events by 

combining the primitive results created by LSs, using 

temporal and logical aggregation. Scenarios are 

constructed based on those events and scenario 

verification mechanisms are used to verify that events 

occur according to the predetermined timing. When a 

failure is detected, the error reporting mechanism is 

used to produce an error report. 

 

 

 



 

 
 

Figure 4: Overview of the VBLS approach 

3 Experiments 

A software platform has been developed in order to test 

and validate the VLBS approach. The capabilities of 

the platform include image sequence visualization, 

definition of ROIs, definition of IPAs, definition of 

LSs, definition of CLSs, definition of scenarios (both 

strict and relaxed), parameter tuning, control of several 

visualization options, saving of results in textual/video 

form and detailed error reporting.  

 

 
Figure 5: The software developed for testing the 

VBLS approach, while in operation. 

 

The VBLS approach has been tested in the context of 

an application involving the monitoring of the activities 

of a 5-axis robot. The task of this robot is to move parts 

(e.g. a drill) between different tool fittings using a 

gripper. A camera system was set up to observe and 

monitor the operation of the robot. Using the VBLS 

software platform, a user with limited training was able 

to quickly define LSs, CLSs and scenarios to detect and 

verify several interesting modes of robot operation 

(complex object manipulation, part relocation, etc). 

Moreover, the system was able to detect several failure 

situations, such as the dropping of the drill during 

relocation, failure of the gripper to remove the drill 

from a particular position, etc. In several of the 

conducted experiments a human has been entering the 

working space of the robot and the camera field of 

view. Nonetheless, this did not affect the correctness of 

the system’s operation. Figure 5 shows a typical 

screenshot of the system while in operation. LSs and 

CLSs which happen to be true or false at the particular 

moment in time are shown in green or red color, 

respectively.  

  Another experiment has been conducted to assess the 

performance of the proposed approach under varying 

illumination conditions. A video has been recorded in 

which a person manually changed the location of an 

object on a table. While doing this, the lighting 

conditions were changing significantly by turning the 

room lights on and off. A logical sensor has been 

defined performing change detection through 

Normalized Cross Correlation. Figure 6 shows 

characteristic snapshots from this experiment. As it can 

easily be verified, this logical sensor is able to detect 

the presence/absence of the object despite the 

significant illumination variations. This demonstrates 

that by incorporating simple, low level vision 

algorithms into the VBLS approach considerable 

invariance to illumination changes can be achieved. 

   Several other experiments have been conducted 

involving image sequences acquired from real-world 

situations in assembly automation. Preliminary results 

are very promising. 

   It is interesting that the current implementation of the 

VBLS framework involves only very simple IPAs such 

as Gaussian smoothing, median filtering, Gaussian 

background modeling, and various thresholding 

operations. This means that the power of the 

framework in detecting complex events lies in the 

spatial and temporal aggregation of the information of 

a large number of logical sensors rather than in the 

“intelligence” of one, complex vision module. We 

consider this to be an important property of the 

developed framework that can lead to efficient and 

robust performance in a wide variety of application 

domains. 

 

4. Summary 
 

In this paper, we have proposed a new approach for 

event detection and process monitoring. The aim of the 
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Figure 6: (a), (b) the logical sensor detects the 

presence of the object in its ROI under different 

illumination conditions, (c), (d) the same logical 

sensor detects the absence of the object under 

varying illumination conditions. 

 

approach is to enable the spatio-temporal integration of 

measurements taken from critical areas in the viewed 

scene in order to be able to detect events and to 

monitor processes. The proposed approach has been 

tested in the context of an application involving 

monitoring of automated processes. The proposed 

framework seems ideally suited for this application 

domain because events and activities therein have 

considerable structure. The preliminary results are very 

promising, as they reveal a number of beneficial 

framework properties, including but not limited to 

computational efficiency, extendibility, flexibility and 

adaptability. An interesting extension is to become able 

not only to monitor such processes but also to control 

them. This can be achieved by substituting the signals 

driving a robot or machine by the signals provided by 

the various LSs and CLSs. This would replace a 

number of hardware, expensive and difficult to 

reconfigure sensors with a virtual, cheap and easy-to-

reconfigure sensor network defined in the field of view 

of a single camera. Preliminary experiments in this 

direction gave very promising results. It also remains to 

be verified whether the same framework can be useful 

in less structured scenarios such as those involved in 

traffic monitoring, human-computer interaction and 

other surveillance applications. 
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