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Abstract. Omni-directional vision allows for the development of techniques for mobile
robot navigation that have minimum perceptual requirements. In this work, we focus
on robot navigation algorithms that do not require range information or metric maps of
the environment. More specifically, we present a homing strategy that enables a robot to
return to its home position after executing a long path. The proposed strategy relies on
measuring the angle between pairs of features extracted from panoramic images, which
can be achieved accurately and robustly. In the heart of the proposed homing strategy
lies a novel, local control law that enables a robot to reach any position on the plane by
exploiting the bearings of at least three landmarks of unknown position, without making
assumptions regarding the robot’s orientation and without making use of a compass. This
control law is the result of the unification of two other local control laws which guide the
robot by monitoring the bearing of landmarks and which are able to reach complementary
sets of goal positions on the plane. Long-range homing is then realized through the sys-
tematic application of the unified control law between automatically extracted milestone
positions connecting the robot’s current position to the home position. Experimental
results, conducted both in a simulated environment and on a robotic platform equipped
with a panoramic camera validate the employed local control laws as well as the overall
homing strategy. Moreover, they show that panoramic vision can assist in simplifying the
perceptual processes required to support robust and accurate homing behaviors.
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1. Introduction

Vision-based robot navigation is an important application of computer
vision techniques and tools. Many approaches to this problem either assume
the existence of a geometric model of the environment (Kosaka and Pan,
1995) or the capability of constructing an environmental map (Davison
and Murray, 2002). In this context, the problem of navigation is reduced to
the problem of reconstructing the workspace, computing the robot’s pose
therein and planning the motion of the robot between desired positions.
Probabilistic methods (Thrun, 2000) have been developed in robotics that
deal with this problem, which is usually referred to as the simultaneous
localization and mapping (SLAM) problem.

Catadioptric sensors have been proposed as suitable sensors for robot
navigation. A panoramic field of view is advantageous for the achievement
of robotic navigational tasks in the same way that a wide field of view
facilitates the navigational tasks of various biological organisms such as
insects and arthropods (Srinivasan et al., 1997). Many robotic systems
that use panoramic cameras employ a methodology similar to the one
employed in conventional camera systems. Adorni et al. discuss stereo om-
nidirectional vision and its advantages for robot navigation (Adorni et al.,
2003). Correlation techniques have been used to find the most similar pre-
stored panoramic image to the current one (Aihara et al., 1998). Winters
et al. (Winters et al., 2000) qualitatively localize the robot from panoramic
data and employ visual path following along a pre-specified trajectory in
image coordinates.

Panoramic cameras, however, offer the possibility of supporting naviga-
tional tasks without requiring range estimation or a localization approach
in the strict sense. Methods that rely on primitive perceptual information
regarding the environment are of great importance to robot navigation
because they pose minimal requirements on a-priori knowledge regarding
the environment, on careful system calibration and, therefore, have better
chances to result in efficient and robust robot behaviors. This category
includes robot navigation techniques that mainly exploit angular informa-
tion on image-based features that constitute visual landmarks. Several such
methods exist for addressing a specific navigation problem, the problem of
homing (Hong et al., 1991). Homing amounts to computing a path that
returns a robot to a pre-visited “home” position (see Figure 1). One of
the first biologically-inspired methods for visual homing was based on the
“snapshot model” (Cartwright and Collett, 1983). A snapshot represents
a sequence of landmarks labeled by their compass bearing as seen from a
position in the environment. According to this model, the robot knows the
difference in pose between the start and the goal and uses this information
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Figure 1. The robot acquires a snapshot of the environment at home position. Then,
it wanders in its environment (solid line) and, at some position G homing is initiated
so as to return to home (dashed line) by making use of the landmarks available in the
workspace (small black rectangles).

to match the landmarks between the two snapshots and to compute its
path. There have been several implementations of snapshot-based tech-
niques on real mobile robots. Some of the implemented methods rely on
the assumption that the robot has constant orientation or can make use of
a compass (Lambrinos et al., 2000; Moller, 2000). These approaches are not
able to support robot homing for any combination of goal (home) snapshot,
current position and landmark configuration. Furthermore, the conditions
under which the related control laws are successful are not straightforward
and cannot be directly inferred from the visual information available at the
current and the goal snapshots.

In this work, we present a complete long-range homing strategy for
a robot equipped with a panoramic camera. The robot does not have to
be aware of its position and orientation and does not have to reconstruct
the scene. At the core of the proposed strategy lies a snapshot-based local
control law (Argyros et al., 2001), which was later further studied and
extended (Bekris et al., 2004). The advantage of this particular local control
law is that it can guide a robot between two positions provided that three
landmarks can be extracted and corresponded in the panoramas acquired
at these two positions. This implies that there is no inherent control-related
issue that restricts the set of position pairs that the algorithm can accommo-
date. Constraints are only related to difficulties in corresponding features
in images acquired from different viewpoints.

Establishing feature correspondences in images acquired from adjacent
viewpoints is a relatively easy problem. Thus, short-range homing (i.e.,
homing that starts at a position close to home) can be achieved by
directly applying the proposed local control law as it is described in (Argyros



232 K.E. BEKRIS, A.A. ARGYROS, AND L.E. KAVRAKI

et al., 2005). In the case of long-range homing (i.e., homing that starts
at a position far from home), prominent features are greatly displaced
and/or occluded, and the correspondence problem becomes much more
difficult to solve (Lourakis et al., 2003). Therefore, control laws based on
the comparison of two snapshot are only local in nature and they can-
not support long-range homing. To overcome this problem, the proposed
method decomposes homing into a series of simpler navigational tasks, each
of which can be implemented based on the proposed local control law. More
precisely, long-range homing is achieved by automatically decomposing the
path between the current robot position and the home position with the
aid of a set of milestone positions. The selection process guarantees that
pairs of milestone positions view at least three common landmarks. The
local control law can then be used to move the robot between consecutive
milestone positions. The overall mechanism leads the robot to the home
position through the sequential application of the control law. Note that
using only the basic control law to move between adjacent milestone posi-
tions leads to a more conservative selection of such intermediate goals. With
the introduction of the complementary control law (Bekris et al., 2004) and
its unification with the basic one, the only constraints on the selection of
the milestone positions are due to landmark visibility.

The proposed method for robot homing has been implemented and
extensively tested on a robotic platform equipped with a panoramic cam-
era in a real indoor office environment. Different kinds of visual features
have been employed and tested as alternative landmarks to the proposed
homing strategy. In all experiments the home position could be achieved
with high accuracy after a long journey during which the robot performed
complex maneuvers. There was no modification of the environment in order
to facilitate the robot’s homing task. The proposed method can efficiently
achieve homing as long as enough features exist in the world. Homing will
fail only if three robust features cannot be extracted and tracked at any
time.

Our approach of robot navigation is similar to that of purposive vision
(Aloimonos, 1993). We use information specific to our problem which is
probably not general enough to support many other navigational tasks.
We derive partial representations of the environment by employing retinal
motion-based quantities which, although sufficient for the accomplishment
of the task at hand do not allow for the reconstruction of the state of the
robot. Similar findings have been reported for other robotic tasks such as
robot centering in the middle of corridors (Argyros et al., 2004).

The rest of the work is organized as follows. Section 2 focuses on the local
control strategy that enables a robot to move between adjacent positions
provided that a correspondence between at least three features has been
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established in panoramas acquired at these positions. Section 3 describes our
approach on how to automatically decompose a long-range homing task into
a series of short-range navigation tasks each of which can be implemented
through the proposed local control law. In Section 4 we present alternative
panoramic image features that can be used to perceptually support the
homing strategy. Extensive experimental results from implementations of
the proposed homing strategy on a robotic platform are provided in Section
5. Moreover, the benefits stemming of the use of panoramic cameras com-
pared to conventional ones are described in Section 6. The work concludes
in Section 7 with a brief discussion on the key contributions of this work.

2. Control Law

In the following, the robot is abstracted as a point on the 2D plane. The
objective of the local control law is to use angular information related to
features extracted in panoramic images in order to calculate a motion vector

that, when updated over time, drives the robot to a pre-visited goal
position. A snapshot of the workspace from a configuration P € (R? x S1),
corresponds both to the sequence of visible landmarks and the bearings
with which the landmarks are visible from P. The current and the goal
position of the robot, together with the corresponding snapshots, will be
denoted as A and T, respectively.

bisector

L]
T

o}

Figure 2. The definition of the motion vector for two landmarks.
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2.1. BASIC CONTROL LAW

We will first consider the case of two landmarks L; and L;. The angular
separations 9”,91] € [0,27) correspond to the angles between L; and L;
as measured at A and T respectively. If Af;; = ng — 0;; is positive, then
the robot views the two landmarks from position 7" with a greater angle
than from position A. The robot will move in a direction that increases the
angle 0;;. If 0 < 6;; < m and A#;; > 0, the robot should move closer to
the landmarks. All directions that are in the interior of the angle between
—_— —_—

vectors AL; and AL; will move the robot to a new position with greater
0;; including the d1rect10n of the angle bisector (513 Similarly, when 0;; > 7,
moving on the direction of 5” increases 0;;. When Af;; is negative, the
robot should follow the inverse of d;;. A motion vector that has the above
properties and has magnitude that is a continuous function over the entire
plane is given by the following equation:

Abyj -6, if —m < Afj <
—
My =13 (2r— Aby)- 7;, if AGy; > 7 (1)
(=27 — Aby) - 6,5, if Ay < —.

If the robot moves according to the motion vector ]\—4;> as this is de-
scribed in Equation (1), it is guaranteed to reach the point of intersection of
the circular arc (L;T'L;) and the branch of the hyperbola that goes through
A and has points L; and L; as foci. An example of such a point is 7" in
Figure 2. If a third landmark, L, exists in the environment, then every
p051t10n T is constrained to lie on two more circular arcs. A partlal motion
vector MZ] is then defined for each possible pair of different landmarks L;
and L;. By taking the vector sum of all these vectors the resultant motion
vector M is produced. Figure 3 gives an example where M;CZ and M]k have
the same direction as the bisector vectors. Mz] is opposite to d;; because
AB;; is negative. The control law can be summarized in the equation

M = M;; + My, + My, (2)

where the component vectors are defined in Equation (1). Note that when
the robot reaches the goal position, it is guaranteed to remain there because
at that point the magnitude of the global motion vector Mis equal to zero.

In order to determine the reachability set of this basic control law, i.e.,
the set of points of the plane that can be reached by employing it in a
particular configuration of three landmarks, we ran extensive experiments
using a simulator as computed by detailed simulations. The gray area
in Figure 4(a) shows the reachability area of the basic control law. The
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sets of points that are always reachable, independently of the robot’s start
position, are summarized below:

— The interiorACA’ of the circle defined by L1, Ls and Ls.

— The union H of all sets H;. A set Hj is the intersection of two half-
planes. The first half-plane is defined by line (L;L;) and does not
include landmark Ly, while the second is defined by the line L;Ly
and does not include landmark L;, where k # i # j # k. In Figure
4(b) the white area outside the circle defined by the three landmarks
corresponds to the set H.

2.2. COMPLEMENTARY CONTROL LAW

We now present the complementary control law, that reaches the positions
that are unreachable by the basic law. As in the case of the basic control law,
the complementary control law exploits the bearings of three landmarks.
We first define the w-difference of an angular separation 6;; to corre-
spond to |m—6;;|. Points on the line segment (L;L;) will have m-difference of
0;; equal to zero. The nearest landmark pair (NLP) to the goal is the pair of
landmarks (L;L;), that has the minimum =n-difference. The corresponding
motion vector will be called the nearest motion vector (NMV). From the
study of the basic control law, it can be shown that for an unreachable
point 7', the dominating component vector is the NMV. The robot follows a
curve that is close to the hyperbola with the NLP landmarks L; and L; as
the foci, until it approaches the circular arc (L;T'L;). Close to the arc, the
NMV stops dominating, because Af;; approaches zero. If the goal position
is located at the intersection of the curve and the arc (L;T'L;), then the
robot reaches the goal. Otherwise, the robot reaches the arc and follows the

Figure 3. The definition of the motion vector for three landmarks.
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Figure 4. Simulation results. The robot’s initial position is point A and three landmarks
L1, L2, L3 exist in the scene. Every point is painted gray if it constitutes a reachable
destination by employing (a) the basic control law, (b) the complementary law or (c) the
unified control law.

opposite direction from the goal. Notice that the robot can easily detect
which landmark pairs do not correspond to the NLP. When the robot is
close to the circular arc defined by the NLP, those two vectors guide the
robot away from the goal.

In order to come up with a control law that reaches the complementary
set of points to that of the basic control law, the two component motion
vectors that are not the NMV vectors should be inverted. The gray area in
Figure 4(b) shows the reachability set of this new law.

2.3. THE UNIFICATION OF THE TWO LOCAL CONTROL LAWS

In this section we show how to unify the two control laws that have com-
plementary reachability areas in a single law with a reachability area that
equals the entire plane. The previous discussion suggests that in order to
decide which is the appropriate algorithm to use, the robot must distinguish
whether the goal is located in the set C' or in the set H so as to use the
basic control law or whether it is located somewhere in the rest of the plane
and the complementary law must be used. Deciding whether a snapshot
has been taken from the interior of the circle of the landmarks based only
on angular information is impossible. Nevertheless, the robot can always
move towards the goal by employing the basic algorithm and, while moving,
it can collect information regarding the goal snapshot. Based on a set of
geometric criteria it is possible to infer whether the basic algorithm was
the right choice or if the robot should switch to the complementary law.
The geometric criteria consider only the bearings of the landmarks and in
one case their rate of change.

For the description of the geometric criteria, we will denote the inte-
rior of the landmark’s triangle as 7" and the circumscribed circle of two
landmarks and the goal as a landmark-goal circle. If the landmarks that
correspond to a landmark-goal circle belong to the NLP pair then the circle
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is called the NLP landmark-goal circle. The geometric criteria that can be
used to infer which control law to use based on angular measurements are
the following:

1. T € T? The goal snapshot 7' is in the set T if and only if ng <m, Vi,j €
[1,3], where L; and L; are consecutive landmarks as they are seen from
T.

2. T € H and A € T? The goal snapshot 7' is in the set H if and only if
T can see the landmarks with a different order than A does when A is
inT.

3.7 ¢ T and A on opposite half-plane defined by NLP pair? The robot
will then enter 7. If it is going to exit T then:

If the last landmark-goal circle intersected by the robot before leaving
T is the NLP circle then: T ¢ C.

4. A is on the NLP landmark-goal circle? The goal T is reachable by the
basic control law if the non-NLP differences in angular separation are
decreasing when the robot has reached the NLP landmark-goal circle.

The overall algorithm that is used for the navigation of the robot is de-
scribed in Algorithm 1. The robot can be in three possible states: UNCERTAIN,
BASIC and COMPLEMENTARY. When in BASIC the robot moves according
to the basic control law and when in COMPLEMENTARY the complementary
control law is applied.

The initial state is the UNCERTAIN one. The robot is applying the basic
control law, but also continuously monitors whether any of the above geo-
metric conditions have been met. If the goal is located in the interior of
the landmark’s triangle then the unified algorithm will immediately switch
to BASIC. The second criterion can be checked if the robot enters the
landmarks’ triangle while the third one only upon exiting this triangle.
The last criterion is used only if none of the previous ones has given any
information and the robot has reached the NLP landmark-goal circle. At
this point, the robot can switch behavior by tracking the change in angular
separations. These criteria guarantee that the appropriate control law will
be used, regardless of the location of the goal.

3. The Strategy for Long-Range Homing

The presented unified local control law may support homing when the latter
is initiated from a position close to home. However, in the case that home
is far apart from the position where homing is initiated, it may be the case
that these two positions do not share any visual feature in common and,
therefore, the unified local control strategy cannot support homing. In the
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Algorithm IT  Unified Control Law
status = UNCERTAIN;
repeat

if status is UNCERTAIN then
if T € T then
status = BASIC;
else if T € H and A € T then
status = BASIC;
else if T ¢ T and A on opposite half-plane defined by NLP pair then
if last landmark-goal circle intersected before leaving 7' is the NLP circle

then

status = COMPLEMENTARY
else

status = BASIC
end if

else if A is on the NLP landmark-goal circle then
if the non-NLP differences in angular separation are increasing then
status = COMPLEMENTARY
end if
end if
end if

if status is BASIC or status is UNCERTAIN then
compute motion vector M with Basic Control Law
else

compute motion vector M with Complementary Control Law
end if

move according to M
until current snapshot A and goal snapshot T are similar

following, we propose a memory-based extension to the local control law
which enables it to support such a type of long range homing.

The proposed approach operates as follows. Initially the robot detects
features in the view acquired at its home position. As it departs from
this position, it continuously tracks these features in subsequent panoramic
frames. During its course, some of the initially selected features may not be
visible anymore while other, new features may appear in the robot’s field
of view. In the first case the system “drops” the features from subsequent
tracking. In the second case, features start being tracked. This way, the
system builds an internal “visual memory” where information regarding
the “life-cycle” of features is stored.

A graphical illustration of this type of memory is provided in Figure
5. The vertical axis in this figure corresponds to all the features that have
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Figure 5. Graphical illustration of the memory used in long-range homing.

been identified and tracked during the journey of the robot from its home
position to the current position G. The horizontal dimension corresponds
to time. Each of the horizontal black lines corresponds to the life cycle of a
certain feature. In the particular example of Figure 5, the home position and
position GG do not share any common feature and, therefore, the local control
law presented in Section 2 cannot be employed to directly support homing.
In order to alleviate this problem, milestone positions (MPs) are introduced.
Being at the end position G, the method first decides how far the robot can
go towards home based on the extracted and tracked features. A position
with these characteristics is denoted as MP; in Figure 5. Achieving MP;
from the goal position is feasible (by definition) by employing features Fj,
Fys and F% in the proposed local control law. The algorithm proceeds in
a similar manner to define the next MP towards home. The procedure
terminates when the last MP achieved coincides with the home position.
The local control law of Section 2 guarantees the achievement of a target
position but not necessarily the achievement of the orientation with which
the robot has previously visited this position. This is because it takes into
account the differences of the bearings of features and not the bearings
themselves. This poses a problem in the process of switching from the
features that drove the robot to a certain MP to the features that will drive
the robot to the next MP. This problem is solved as follows. Assume that the
robot has originally visited a milestone position P with a certain orientation
and that during homing it arrives at position P’ where P" denotes position
P, visited under a different orientation. Suppose that the robot arrived at P
via features Fi, Fb, ..., F},. The bearings of these features as observed from
position P are A,(F1), Ap(Fs), -+, Ap(Fy) and the bearings of the same
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features as observed from P’ are Ap/(Fy), Api/(Fy), -+, Ap/(F,). Then, it
holds that
Ap(Fy) — Ap/(Fi) = ¢, Vi, 1 <i<mn,

where ¢ is constant and equal to the difference in the robot orientation at
P and P’. This is because panoramic images that have been acquired at
the same location but under a different orientation differ by a constant
rotational factor ¢. Since both Ap(F;) and Ap/(F;) are known, ¢ can
be calculated. Theoretically, one feature suffices for the computation of
¢. Practically, for robustness purposes, all tracked (and therefore corre-
sponded) features should contribute to the estimation of ¢. Errors can be
due to the inaccuracies in the feature tracking process and/or due to the
non-perfect achievement of P during homing. For the above reasons, ¢ is
computed as:

d) = median{Ap(Fi) — API(FZ‘)}, 1 S ) S n.

Having an estimation of the angular shift ¢ between the panoramas ac-
quired at P and P’, it is possible to start a new homing procedure. The
retinal coordinates of all features detected during the visit of P can be
predicted based on the angular displacement ¢. Feature selection is then ap-
plied to small windows centered at the predicted locations. This calculation
results in registering all features acquired at P and P’ which permits the
identification of a new MP and the continuation of the homing procedure.
Moreover, if the robot has already arrived at the home position it can align
its orientation with the original one by rotating according to the computed
angle ¢.

An important implementation decision is the selection of the number
of features that should be corresponded between two consecutive MPs.
Although three features suffice more features can be used, if available. The
advantage of considering more than three corresponded features is that
reaching MPs (and consequently reaching the home position) becomes more
accurate because feature-tracking errors are smoothed-out. However, as the
number of features increases, the number of MPs also increases because
it is less probable for a large number of features to “survive” for a long
period. In a sense, the homing scheme becomes more conservative and it
is decomposed into a larger number of safer, shorter and more accurate
reactive navigation sessions. Specific implementation choices are discussed
in the experimental results section of this work.

4. Extracting and Tracking Landmarks

The proposed bearing-only homing strategy assumes that three landmarks
can be detected and corresponded in panoramic images acquired at different
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robot positions and that the bearings of these features can be measured.
Two different types of features have been employed in different experiments,
namely image corners and centroids of color blobs.

4.1. IMAGE CORNERS

One way to achieve feature correspondence is through the detection and
tracking of image corners. More specifically, we have employed the KLT
tracking algorithm (Shi and Tomasi, 1993). KLT starts by identifying char-
acteristic image features, which it then tracks in a series of images. The
KLT corner detection and tracking is not applied directly on the panoramic
images provided by a panoramic camera (e.g., the image of Figure 7) but on
the cylindrical image resulting by unfolding such an image using a polar-
to-Cartesian transformation (Argyros et al., 2004) (see for example the image
in Figure 6). In the resulting cylindrical image, the full 360° field of view
is mapped on the horizontal image dimension. Once a corner feature F' is
detected and tracked in a sequence of such images, its bearing AP(F') can
be computed as AP(F') = 2rxp/D where x is the x-coordinate of feature
F and D is the width of this panoramic image in pixels.

Figure 6. Cylindrical panoramic view of the workspace from the home position that
the robot is approaching in Fig. 13. The features extracted and tracked at this panorama
are also shown as numbered rectangles.

4.2. CENTROIDS OF COLORED BLOBS

The detection and tracking of landmarks can also be accomplished with
the aid of a blob tracker (Argyros and Lourakis, 2004). Although originally
developed for tracking skin-colored regions, this tracker may track multi-
ple colored objects in images acquired by a possibly moving camera. The
method encompasses a collection of techniques that enable the modeling
and detection of colored objects and their temporal association in image
sequences. In the employed tracker, colored objects are detected with a
Bayesian classifier which is bootstrapped with a small set of training data.
A color model is learned through an off-line procedure that permits the
avoidance of much of the burden involved in the process of generating
training data. Moreover, the employed tracker adapts the learned color
model based on the recent history of tracked objects. Thus, without relying
on complex models, is able to robustly and efficiently detect colored objects
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Figure 7. Sample panoramic image with extracted landmarks. Small squares repre-
sent the position of the detected and tracked landmarks. The contour of each detected
landmark is also shown.

even in the case of changing illumination conditions. Tracking in time is
performed by employing a novel technique that can cope with multiple
hypotheses which occur when a time-varying number of objects move in
complex trajectories and occlude each other in the field of view of a moving
camera.

For the purposes of the experiments of this work, the employed tracker
has been trained with color distributions corresponding to three colored
posters (Figure 7). These posters are detected and subsequently tracked in
the panoramic images acquired during a navigation session. A byproduct
of the tracking process is the coordinate (zg;,yr,) of the centroid of each
tracked landmark Fj;. Then, assuming that the center of the panoramic
image is (zp,yp), the bearing of landmark F; can easily be computed as

— Yp—YF; . . .
tan~! (;_790;) Landmarks that appear natural in indoor environments,
P i

such as office doors and desks, have also been successfully employed in our
homing experiments.

5. Experiments

A series of experiments have been conducted in order to assess qualitatively
and quantitatively the performance of the proposed homing scheme.
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Figure 8. Paths computed by the unified local control law. The reachability sets of
the basic and the complementary control laws are shown as dark and light gray regions,
respectively.

5.1. VERIFYING THE LOCAL CONTROL LAWS

Towards verifying the developed local control strategies, a simulator has
been built which allows the design of 2D environments populated with
landmarks. The simulator was used to visualize the path of a simulated
robot as the latter moves according to the proposed local control laws.
Examples of such paths as computed by the simulator can be seen in Figure
8. Additionally, the simulator proved very useful in visualizing and verifying
the shape of the reachability areas for the basic, the complementary and
the unified local control laws.

Although simulations provide very useful information regarding the
expected performance of the proposed local control laws, it is only exper-
iments employing real robots in real environments that can actually test
the performance of the proposed navigational strategy. For this reason,
another series of experiments employ an I-Robot, B21R robot equipped
with a Neuronics, V-cam360 panoramic camera in a typical laboratory envi-
ronment. Figure 9(a) illustrates the setting where the reported experiments
were conducted. As it can be seen in the figure, three distinctive colored
panels were used as landmarks. Landmarks were detected and tracked in
the panoramic images acquired by the robot using the method described
in Section 4.2. The floor of the workspace was divided into the sets C, H
and the rest of the plane for the particular landmark configuration that
was used. It should be stressed out that this was done only to visually
verify that the conducted experiments were in agreement with the results
from simulations. The workspace also contains six marked positions. Figure
9(b) shows a rough drawing of the robot’s workspace where the sets C', H
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(b)

Figure 9. The environment where the experiments were conducted.

as well as the marked positions are shown. Note that these six positions
are representative of robot positions of interest to the proposed navigation
algorithm, since A € T,FeC—-T,C D e H and B, E are positions in
the rest of the plane.

In order to assess the accuracy of the tracking mechanism in provid-
ing the true bearings of the detected and tracked landmarks, the robot
was placed in various positions in its workspace and was issued a vari-
ety of constant rotational velocities (0.075 rad/sec, 0.150 rad/sec). Since
this corresponds to a pure rotational motion of the panoramic camera, it
was expected for the tracker to report landmark positions changing at a
constant rate, corresponding to the angular velocity of the robot. For all
conducted experiments the accuracy in estimating the bearing was less than
0.1 degrees per frame, with a standard deviation of less than 0.2.

A first experiment was designed so as to provide evidence regarding
the reachability sets of the three control strategies (basic, complementary
and unified). For this reason, each algorithm has been tested for various
start and goal positions (3 different starting positions x 3 different types
of starting positions x 3 different goal positions x three algorithms). The
table in Figure 10 summarizes the results of the 81 runs by providing the
accuracy in reaching goal positions, measured in centimeters.

The main conclusions that can be drawn from this table are the follow-
ing:

— The basic control law fails to reach certain goal positions, indepen-
dently of the starting position. The reachability set is in agreement
with simulation results.

— The complementary control law fails to reach certain goal positions,
independently of the starting position. The reachability set is in agree-
ment with simulation results.
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— The unified control law reaches all goal positions.
— The accuracy in reaching a goal position is very high for all control
laws.

To further assess the accuracy of the unified algorithm in reaching a goal
position, as well as the mechanisms that the algorithm employs to switch
between the complementary and the basic control law, the unified control
law was employed 30 times to reach each of the 6 marked positions, resulting
in 180 different runs. Figure 11 shows the results of the experiments and
summarizes them by providing the mean error and the standard deviation
of the error in achieving each position. As it can be verified from Figure
11, the accuracy of the unified law in reaching a goal position is very high
as it is in the order of a very few centimeters for all goal positions.

Additional experiments have been carried out for different landmark
configurations, including the special case of collinear landmarks. It is impor-
tant to note that except from different landmark configurations, different
landmarks have been also used. These landmarks were not specially made
features such as the colored panels but corresponded to objects that al-
ready existed in the laboratory (e.g. the door that can be seen in Figure
9(a), the surface of an office desk, a pile of boxes, etc). The algorithm was
also successful in the case that a human was moving in the environment
occasionally occluding the landmarks for a number of frames. The tracker
was able to recapture the landmark as soon as it reappeared in the robot’s
visual field. Finally, if the robot’s motion towards the goal was interrupted
by another process, such as manual control of the robot, the algorithm was
able to continue guiding the robot as soon as the interrupting process com-
pleted. Sample representative videos from such experiments can be found
in http://www.ics.forth.gr/cvrl/demos. In all the above cases the accuracy
in reaching the goal position was comparable to the results reported in
Figures 10 and 11.

Algorithm Basic Law Complementary Combination
Attempt Positions A C E A C E A C E
15t Initial point || 3.5 | 3.0 | Fail || Fail | Fail | 4.5 || 1.0 | 4.5 | 5.5
ond in C 2.0 | 1.0 | Fail || Fail | Fail | 5.5 20 | 35 | 85
3rd 0.0 | 1.5 | Fail || Fail | Fail | 4.0 || 4.0 | 3.0 | 3.0
15t Initial point || 3.5 | 11.5 | Fail || Fail | Fail | 6.0 || 2.0 | 9.0 | 1.5
gnd in / 1.5 | 1.5 | Fail || Fail | Fail | 25 || 3.5 | 3.0 | 6.5
3rd 2.5 | 2.0 | Fail || Fail | Fail | 85 20 1 3.0 | 3.5
15t Initial point || 2.0 | 2.0 | Fail || Fail | Fail | 2.5 || 1.5 | 2.0 | 2.0
ond not in C' 4.0 | 0.0 | Fail || Fail | Fail | 9.0 || 3.5 | 2.0 | 5.5
3rd or, H 0.5 | 5.5 | Fail || Fail | Fail | 3.0 1.5 | 3.5 | 80

Figure 10. Experiments testing the reachability area and the accuracy of the proposed
local control laws.
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Position: A B E D F C
Mean Val. 1.45 4.65 3.22 2.55 2.28 2.85
St. Dev. 1.13 2.10 1.96 1.35 1.22 1.41

Figure 11.  Accuracy of the proposed local control laws in reaching a desired position
(distance from actual position, in centimeters)

5.2. VERIFYING THE STRATEGY FOR LONG-RANGE HOMING

Besides verifying the proposed local control strategy in isolation, further
experiments have been carried out to assess the accuracy of the full, long-
range navigation scheme. Figure 12 gives an approximate layout of the
robot’s workspace and starting position in a representative long-range hom-
ing experiment. The robot leaves its home position and after executing
a predetermined set of motion commands, reaches position G, covering
a distance of approximately eight meters. Then, homing is initiated, and
three MPs are automatically defined. The robot sequentially reaches these
MPs to eventually reach the home position. Note that the properties of the
local control strategy applied to reaching successive MPs are such that
the homing path is not identical to the prior path. During this experiment,
the robot has been acquiring panoramic views and processing them on-line.
Image preprocessing involved unfolding of the original panoramic images
and Gaussian smoothing (0 = 1.4). The resulting images were then fed to the
KLT corner tracker to extract features as described in Section 4.1. Potential
features were searched in 7x 7 windows over the whole image. The robots
maximum translational velocity was 4.0 cm/sec and its maximum rotational
velocity was 3 deg/sec. These speed limits depend on the image acquisi-
tion and processing frame rate and are set to guarantee small inter-frame
feature displacements which, in turn, guarantee robust feature tracking
performance. The 100 strongest features were tracked at each time. After
the execution of the initial path, three MPs were automatically defined
by the algorithm so as to guarantee that at least 80 features would be
constantly available during homing.

Figure 13 shows snapshots of the homing experiment as the robot reaches
the home position. Figure 6 shows the visual input to the homing algorithm
after image acquisition, unfolding and the application of the KLT tracker.
The tracked features are superimposed on the image. It must be emphasized
that although the homing experiment has been carried out in a single room,
the appearance of the environment changes substantially between home
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position and position G. As it can be observed, the robot has achieved the
home position with high accuracy (the robot in Figure 13(c) covers exactly
the circular mark on the ground).

6. Advantages of Panoramic Vision for Bearing-Only Navigation

A major advantage of panoramic vision for navigation is that by exploiting
such cameras, a robot can observe most of its surroundings without the
need for elaborate, human-like gaze control. An alternative would be to use
perspective cameras and alter their gaze direction via pan-tilt platforms,
manipulator arms or spherical parallel manipulators. Another alternative
would be to use a multi-camera system in which cameras jointly provide
a wide field of view. Both alternatives, however, may present significant
mechanical, perceptual and control challenges. Thus, panoramic cameras,
which offer the possibility to switch the looking direction effortlessly and
instantaneously, emerge as an advantageous solution.

Besides the practical problems arising when navigational tasks have to
be supported by conventional cameras, panoramic vision is also important
because the accuracy in reaching a goal position depends on the spatial
arrangement of features around the target position. To illustrate this, as-
sume a panoramic view that captures 360 degrees of the environment in a
typical 640 x 480 image. The dimensions of the unfolded panoramic images
produced by such panoramas are 1394 x 163, which means that each pixel
represents 0.258 degrees of the visual field. If the accuracy of landmark
localization is 3 pixels, the accuracy of measuring a bearing of a feature
is 0.775 degrees or 0.0135 radians. This implies that the accuracy in de-
termining the angular extent of a pair of features is 0.027 radians, or,
equivalently, that all positions in space that view pair of features within the
above bounds cannot be distinguished. Figure 14 shows results from related
simulation experiments. In Figure 14(a), a simulated robot, equipped with

Figure 12.  Workspace layout of a representative long-range homing experiment.
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(a) (b) (c)
Figure 13. Snapshots of the long-range homing experiment, as the robot approaches
home.

a panoramic camera, observes the features in its environment with the
accuracy indicated above. Then the set of all positions that the robot would
stop by the proposed control strategy are shown in the figure in dark gray
color. It is evident that all such positions are quite close to the true robot
location. Figure 14(b) shows a similar experiment but involves a robot that
is equipped with a conventional camera with limited field of view that
observes three features. Because of the limited field of view, features do not
surround the robot. Due to this fact, the uncertainty in determining the
true robot location has increased substantially although that the accuracy
in measuring each landmark’s direction is higher.

(a) (b)

Figure 14. Influence of the arrangement of features on the accuracy of reaching a desired
position. The darker area represents the uncertainty in position due to the error in feature
localization (a) for a panoramic camera and (b) for a 60° f.o.v. conventional camera, and
the corresponding landmark configuration.
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In current implementations of panoramic cameras, however, the omni-
directional field of view is achieved at the expense of low resolution, in
the sense of low visual acuity. This reduced acuity could be a significant
problem for tasks like fine manipulation. For navigation tasks, however, it
seems that acuity could be sacrificed in favor of a wide field of view. For
example, the estimation of 3D motion is facilitated by a wide field of view,
because this removes the ambiguities inherent in this process when a narrow
field of view is used (Fermuller and Aloimonos, 2000). As an example, in
the experiment of Figure 14(b), the camera captures 60 degrees of the
visual field in a 640 x 480 image. Thus, each pixel represents 0.094 degrees
of the visual field and the accuracy of measuring a bearing of a feature is
0.282 degrees or 0.005 radians. Consequently, accuracy in determining the
angular extend of a pair of features is 0.01 radians, which is almost three
times better compared to the accuracy of the panoramic camera. Still, the
accuracy in determining the goal position is larger in the case of panoramic
camera.

7. Discussion

This work has shown that panoramic vision is suitable for the implemen-
tation of bearing-only robot navigation techniques. These techniques are
able to accurately achieve a goal position as long as the visual input is
able to provide angular measurements without having to reconstruct the
robot’s state in the workspace. Compared to the existing approaches to
robot homing, the proposed strategy has a number of attractive proper-
ties. The requirement for an external compass is no longer necessary. The
proposed local control strategy does not require the definition of two types
of motion vectors (tangential and centrifugal), as in the original “snap-
shot model” (Cartwright and Collett, 1983) and, therefore, the definition
of motion vectors is simplified. We have extended the capabilities of the
local control law strategy so that the entire plane is reachable as long as
the features are visible by the robot while executing homing. This fact
greatly simplifies the use of the proposed local strategy as a building block
for implementing long-range homing strategies. In this work we have also
presented one such long-range homing algorithm that builds a memory
of visited positions during an exploration step. By successively applying
the local control strategy between snapshots stored in memory the robot
can return to any of the positions it has visited in the past. Last, but
certainly not least, it has been shown that panoramic vision can be critically
important in such navigation tasks because a wide field of view corresponds
to greater accuracy in the achievement of the goal position compared to the
increased resolution that pinhole cameras offer. Both the local control laws
and the long-range strategy have been validated in a series of experiments
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which have shown that homing can be achieved with a remarkable accuracy,
despite the fact that primitive visual information is employed in simple
mechanisms.
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