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Abstract

This paper proposes a feature-based method for recov-
ering the relative positions of the viewpoints of a set of
panoramic images for which no a priori order information
is available, along with certain structure information re-
garding the imaged environment. The proposed approach
operates incrementally, employing the Levenshtein distance
to deduce the spatial proximity of image viewpoints and thus
determine the order in which images should be processed.
The Levenshtein distance also provides matches between
images, from which their underlying environment points can
be recovered. Recovered points that are visible in multiple
views permit the localization of more views which in turn
allow the recovery of more points. The process repeats until
all views have been localized. Periodic refinement of the re-
construction with the aid of bundle adjustment, distributes
the reconstruction errors among images. The method is
demonstrated on several unordered sets of panoramic im-
ages obtained in an indoor environment.

1. Introduction

There is currently an abundance of vision algorithms
which, provided with a sequence of images that have been
acquired from sufficiently close successive 3D locations,
are capable of determining the relative positions of the
viewpoints from which the images have been acquired.
However, very few of these algorithms can cope with un-
ordered image sets, i.e. image sets for which no a pri-
ori proximity ordering information is available. In this
work, we are concerned with the problem of determining
the relative positions and orientations of the viewpoints cor-
responding to a set of unordered central panoramic im-
ages. This problem is hereafter referred to as unordered
panoramic image localization and arises naturally when,
for example, dealing with distributed camera networks or
vision-based mobile robot navigation (e.g., the so-called
“loop closing” and “kidnapped robot” problems). Image lo-
calization can be addressed in the framework of the funda-
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mental structure and motion (SaM) estimation problem and
benefits from the wide field of view offered by a panoramic
camera. This is because a wide field of view facilitates cap-
turing large portions of the environment with few images
and without resorting to the use of movable gaze control
mechanisms such as pan-tilt units. Furthermore, environ-
ment features remain visible in large subsets of images and
critical surfaces are less likely to cover the whole visual
field.

Most of the existing research on SaM recovery has ap-
proached the problem focusing on image sequences. The
underlying assumption is that images that have been ac-
quired close in time have viewpoints that are also close in
space and, therefore, can be processed by repeatedly ap-
plying short baseline algorithms, e.g. [2, 1, 10, 7]. When
applied to a set of unordered images, SaM estimation be-
comes more challenging since a suitable order for process-
ing images has to be automatically determined. For this
reason, there exist very few approaches that deal with SaM
estimation from unordered image sets [13, 14]. The so-
called appearance-based methods [4] are among the earliest
ones proposed for image localization tailored to unordered
panoramic images. Prior to being used in a certain environ-
ment, appearance-based methods require that representative
images of it are acquired and manually associated with loca-
tion information. During operation, an input image is com-
pared against all reference images. The location whose as-
sociated reference image best matches the input one accord-
ing to photometric cues, is reported as that corresponding to
the input image. Thus, such methods yield coarse location
information. Being interested in more accurate geometric
localization, we will not discuss them any further. Sagues
et al [12] borrow the idea of maintaining a database of ref-
erence views and rely on a set of images whose positions
and orientations have been measured manually. Image sim-
ilarity, however, is assessed with a geometric procedure that
relies on vertical line matching guided by the radial trifocal
tensor to identify the reference image that is most similar to
an unknown one. An unknown image is finally localized by
computing its relative motion with respect to a pair of close
reference images. Thus, the method is semi-automatic, in-
volving a fair amount of tedious manual localization of the



reference images to function properly. More relevant to our
work is the approach of Ishiguro et al [3], who employ a
set of cameras that have been placed at the same height and
rely on moving objects to statistically determine the base-
lines of camera pairs, even when the two cameras are not
visible from each other.

This paper puts forward a novel approach for determin-
ing the relative locations and orientations of a set of un-
ordered panoramic images, along with certain structure in-
formation regarding their imaged surroundings. The pro-
posed approach operates incrementally, deducing the prox-
imity of image viewpoints by employing the Levenshtein
distance (LD) to compare image data confined to horizons.
Thus, the LD determines the order in which images should
be processed and also provides matches among them, from
which their underlying environment points can be recov-
ered. Recovered points that are visible in multiple images
permit the addition of more images to the reconstruction
through resectioning, which in turn allows the recovery of
more points and so on, until all images have been included
into the reconstruction. Periodic refinement of the recon-
struction with the aid of bundle adjustment, distributes the
reconstruction errors among images.

There are two major contributions from this work. First,
it is shown that the LD, an established string distance met-
ric, can be successfully applied to a matching problem in
vision. Second, a method is proposed that relies on im-
age horizons, which in essence are 1D images, to register
an unordered set of several panoramic images into a com-
mon coordinate frame without any knowledge of their rel-
ative positions or orientations. This method is also shown
to be scalable, being capable of localizing several images of
large spaces whose visual appearance changes considerably
among viewpoints. The rest of the paper is organized as
follows. An overview of the proposed method is provided
in section 2. Section 3 concerns image matching using the
LD and section 4 deals with using the established matches
for reconstruction from multiple panoramic images. Sam-
ple experimental results are reported in section 5. The paper
concludes with a brief discussion in section 6.

2. Method Overview

Assume that a set of images is available that has been
acquired with a panoramic camera confined to move on a
planar ground with its optical axis perpendicular to it and
at a constant height. It is desired to estimate the locations
and orientations (i.e. pose) of the image viewpoints on a
plane parallel to the ground, without any prior knowledge
whatsoever of their relative spatial arrangement.

Images are associated on the basis of matched points.
Under our assumed camera motion, the same planar “slice”
of the environment is projected to the horizons of all im-
ages. This implies that moving from one viewpoint to an-

other causes horizon points to move along the horizon, but
never away from it. This property is exploited to turn the 2D
image matching problem into a 1D horizon matching one.
More specifically, a string similarity measure is employed
to compare the pixel strings corresponding to the horizons
of the images to be matched; pixels not on the horizons are
ignored. The chosen string similarity measure is the Lev-
enshtein distance [5], which corresponds to the minimum
number of letter transformations that transform one string
to the other and whose computation determines matches
between string letters. Solving the correspondence prob-
lem via string matching was also proposed in [15]. How-
ever, in contrast to ours, that approach has several limita-
tions such as the adoption of an approximate affine camera
model, the assumption that intensitity profiles lie on locally
planar patches and the confinement of string matching to
finding the longest common substring of two strings, with-
out any provision for letter deletions and insertions due to
corner detector failures.

Intuitively, images that have been acquired from nearby
locations will have similar horizon pixel strings, therefore
they will yield a low LD. On the other hand, the horizons
of distant images will differ considerably, amounting to a
large LD. Thus, the LD can (a) assess the proximity of the
viewpoints of the compared images, coping even with wide
baseline image pairs and (b) provide pixel correspondences
between horizon pixel strings. Since a horizon covers a
360° field of view, each pixel on it corresponds to an angle
defining a bearing around the camera optical axis. Hence,
pairs of matched horizon pixels allow the recovery of their
corresponding environment points via triangulation. Image
matching guides the reconstruction of image poses and the
estimation of structure. A pair of images that share a large
number of matches and a large baseline is selected first.
This pair is used to recover an initial reconstruction. Then,
the image that has the smallest LD with any of the recon-
structed ones is added to the reconstruction by robustly esti-
mating its pose from the known image-reconstructed point
correspondences. This newly added image is used to re-
construct more points that are seen with sufficiently large
viewing angles. Sparse bundle adjustment is used every few
image insertions to jointly refine the motion and structure
estimates. Following sections 3 and 4 elaborate on details.

3. Image Matching
3.1. The Levenshtein Distance

The Levenshtein distance, also known as the edit dis-
tance, is a measure of the similarity between two strings
of arbitrary lengths [5]. Given a pair of strings referred to
as the source (s) and target (t), the LD corresponds to the
minimum number of one-step operations (defined as letter
deletions, insertions and substitutions), that are necessary



to transform s into ¢. For example, for s=“VISION” and
t="VISITOR”, LD(s,t) = 2 since two changes (i.e., insert
T’ before ’O’ and substite 'R’ for ’N’) suffice. The LD
can be computed in O(|s||¢|) time by a dynamic program-
ming technique, known as the Levenshtein algorithm. As
a byproduct, this algorithm returns the pairs of letters that
have been matched while computing the LD. A property of
the Levenshtein algorithm whose importance will become
clear in section 3.2, is that it preserves the order of matched
letters. In other words, if a letter at position ¢ in s matches
the letter at position j in ¢, then letters in s at positions k£ > 4
can only match letters in ¢ that are at positions [ > j. The
LD has been employed in various domains in need of pat-
tern matching, such as spell checking, pattern recognition,
speech recognition, information theory, cryptology, bioin-
formatics, etc. Regarding computer vision, use of the LD
has been rather limited and has concerned the comparison
of graph structures under edit operations, e.g. [9].

3.2. Horizon Line Matching

As already stated in section 2, we assume color images
acquired by a central panoramic camera confined to move
at a constant height from a planar ground and with its opti-
cal axis perpendicular to it. A panoramic image can be un-
folded with a polar-to-Cartesian transformation that gives
rise to a cylindrical image. Such an image is represented by
a rectangular grid (cf. Fig. 1 top), whose vertical coordi-
nates axis corresponds to a longitude that we will refer to as
the image or viewpoint orientation. It can easily be verified
that under the assumed motion model, the vanishing line
of the ground plane corresponds to a straight horizontal line
(i.e. aline of fixed y-intercept) in the unfolded image, which
will hereafter be referred to as the horizon line. Moreover,
the assumed camera motion guarantees that in the absence
of occlusions, if an environment point projects on the hori-
zon line of one view, then it appears on the horizon of any
other view. Stated differently, the epipolar constraint for all
points on the horizon of a panoramic image confines them
to lie on the horizon line in any other panoramic image ac-
quired under the assumed camera motion. Prior to extract-
ing a horizon line, linear color normalization is performed
separately to each color band to account for possible illu-
mination changes. Furthermore, in order to allow for some
tolerance in the case that the image plane of the panoramic
camera is not exactly parallel to the ground, horizon lines
are extracted through convolution with an 1D Gaussian fil-
ter of o = 2, oriented vertically and centered on the line’s
expected location.

Considering the effects camera motion has on the im-
age horizon, pure translation is expected to expand the ar-
eas around the focus of expansion (resulting in pixel inser-
tions), shrink areas around the focus of contraction (result-
ing in pixel deletions) and shift pixels in other locations by

an amount dependent on scene structure. Pure rotation is
expected to introduce a constant, horizontal shift to all hori-
zon pixels. General motion will have a combined effect.
Pixel substitutions are also expected because of illumina-
tion changes, occlusion effects and imaging deformations.
Before applying the LD to the comparison of strings con-
sisting of horizon pixels, the costs incurred by each edit op-
eration should be defined. In this work, pixel deletions and
insertions are assumed to have unit cost. The cost of a pixel
substitution depends on the absolute differences of the RGB
components of the pixels being compared. If any of these
differences exceeds a certain threshold, the substitution is
assigned a fixed cost of two. Otherwise, the cost of sub-
stitution increases proportionally with the sum of the three
cubed differences and assumes values in the range [0, 2]. A
threshold value of 25 has produced good results in practice.
The previous definition allows for some smoothness in the
cost of substitutions and assigns low values when replacing
pixels whose values differ slightly due to image noise and
guantization effects.

As defined, the LD compares linear strings that have cer-
tain first and last letters. Panoramic horizons, however, are
inherently cyclic and their origins in cylindrical images are
arbitrary. Had the relative orientations of image viewpoints
been known, this could have been remedied by circularly ro-
tating all horizon strings so that their origins corresponded
to the same absolute direction. Since the proposed ap-
proach does not make any assumption on the relative poses
of panoramic views, the LD should be extended to account
for the arbitrary linearization of horizons extracted from un-
folded panoramic images. The problem of cyclic sequence
matching has attracted considerable interest and several al-
gorithms have been proposed for efficiently solving it [8].
For the purposes of this work, the technique described next
has proved to perform well in practice.

The target horizon string is first duplicated next to itself,
thus ensuring that it can be matched with the source string
without having to wrap around at string ends. Nevertheless,
target string duplication introduces a new problem, specifi-
cally the possibility that both a target string pixel and its du-
plicate are matched to different source pixels, thus violating
the uniqueness stereo property. To deal with this problem,
the source horizon string is repetitively matched with a sub-
string of the duplicated target string that is aligned with the
part of the latter yielding the most pixel matches and whose
length is being progressively shrunk until it becomes equal
to that of the source string. Figure 1 provides two sample
images of dimensions 1278 x 144 that were captured about
50cm apart. Superimposed lines indicate horizon pixel pairs
matched between the two views as described above. Typi-
cally, the number of pixels matched between two images of
this resolution is from 900 to 1000. It is worth pointing out
that the order-preserving property of the Levenshtein algo-



ey =

Figure 1. Example of matches obtained with the LD between two horizon lines. Note that the bottom image is repeated twice. To improve
readability, only one every 12 matches is shown and line segments of different colors are drawn between neighboring matching pixels.

Figure 2. The angles 6 and ¢ define the relative orientation of two
panoramic views. Angle w defines the absolute orientation of the
left view in a global coordinate system and angle ¢ corresponds to
the bearing angle of a horizon image pixel (see section 4).

rithm (section 3.1), automatically enforces the stereo order-
ing constraint when matching horizon strings, ensuring that
the order of matches is preserved along horizon lines.

3.3. Angular Alignment of Images

This section is concerned with estimating the relative ro-
tation between two cylindrical images whose optical cen-
ters lie on the plane Z = 0. Figure 2 shows two panoramic
views at locations (X, Y.) and (X, Y, ). Atfirst, we are in-
terested in recovering the angle 6 that makes the two views
parallel. Following this, we are also interested in recover-
ing the angle ¢ that permits the alignment of both views
with the direction of their relative translation.

Assume that the horizon lines of the image pair have
been matched as explained in section 3.2. The disparities
of horizon pixels have two components: The first, which
varies from pixel to pixel, depends on the relative transla-
tion of the two images and the structure of the environment.
The second depends on the relative orientation between the
images and is the same for all pixels regardless of the envi-
ronment. Thus, assuming that the average of positive trans-
lational disparities is approximately equal to the average of
negative ones, the mean of all disparities approximates the
disparity due to rotation. The assumption that positive and
negative disparities cancel out boils down to an implicit as-
sumption regarding scene structure. Nevertheless, experi-
mental evidence indicates that this assumption is valid even
in settings with considerable depth variations of no partic-
ular structure. A circular shift of the second horizon line
with the estimated rotation 6 roughly aligns it with the first.

Then, the shifted horizon line is rematched with the first us-
ing the Levenshtein algorithm and the aforementioned pro-
cedure is repeated for refining the estimated rotation. The
procedure terminates when the change in the estimated ro-
tation becomes too small.

Having canceled the rotation 6 between the two images,
the direction ¢ of the translational motion of one with re-
spect to the other can be estimated based on the follow-
ing observation. When a camera moves along a straight
path without rotating, horizon pixels move so that positive
and negative disparities define two half circles. These half
circles are separated by the foci of expansion and contrac-
tion, which define the direction of translation. Therefore,
for two matched horizon lines with no relative rotation, the
two antidiametric points separating the horizon pixels into
two groups with opposite disparity signs yield the direction
of translation ¢ as the direction of the line passing through
them. As will shortly become clear, the angles 6 and ¢
achieving the angular alignment of images are needed only
when localizing an initial pair of reference images. How-
ever, we have observed that the matches produced by the
Levenshtein algorithm are of better quality when the images
being matched are aligned. Therefore, prior to computing
the final matches for two images, they are aligned by rota-
tional shifting according to their estimated 6 and ¢ angles.

4. Camera Pose and Structure Estimation

Horizon line matching as described in section 3 supplies
the matched features required for image pose estimation and
reconstruction. Let L denote the set of images that have
been localized at some stage and U the set of those that re-
main to be localized. First, a pair of reference images is
assumed to be manually identified and L is initialized to
containing them. These images should be selected so that
they share a significant number of matches and, at the same
time, have a large baseline so that estimating the structure of
their observed points is well-conditioned. The origin of the
coordinate system employed in the reconstruction is taken
to coincide with one of the reference images. Then, the di-
rection of translation of the remaining reference image with
respect to the first is estimated as detailed in section 3.3.



This direction defines the angular coordinate of the second
image; its radial coordinate is arbitrarily set to unity and
corresponds to an unknown overall scale. After determin-
ing the relative positions of the two reference images, an
initial map of the environment is recovered from them by
triangulation from matched horizon points. More specif-
ically, if an environment point is observed with a bearing
1 by a camera at position (X, Y.) with an azimuth angle
w, its position (X,Y") on the plane parallel to the floor is
constrained by (see also Fig. 2):

(Y —Y.) — (X — X.) tan(w + ) = 0. (1)

For two corresponding points in two images, Eq. (1) pro-
vides two linear constraints on (X,Y") from which the for-
mer can be determined.

The availability of a map allows more images to be added
to L through resectioning. More specifically, the image
I € U thatis closest to any of the images in L in terms of
the LD is selected and removed from U. Being close to at
least one of the reconstructed images ensures that I shares
with it many points that have already been reconstructed.
Thus, known map to image correspondences allow the lo-
cation and pose of I to be estimated in a least squares man-
ner from constraints on (X, Y;) and w arising from Eq. (1).
To safeguard against errors arising mainly from mismatched
points, this computation is carried out with the aid of the
LMedS robust estimator [11]. After I has been included
in L, its matched points that are not related to already re-
constructed structure can be reconstructed and added to the
map. The accuracy of point reconstruction via triangulation
is known to increase with the translational displacement be-
tween the employed images, i.e. their baseline. This is be-
cause a large baseline amounts to a large contained angle
between the two backprojected rays originating at the image
centers and, therefore, to a more precise estimation of their
point of intersection. In this work, points are reconstructed
by examining all pairs of images in which their projections
have been matched. Image pairs that give rise to small con-
tained angles for the backprojected rays are removed from
further consideration. A lower threshold of 15° is used to
determine when the contained angle for a pair of rays is
sufficiently large or not. Each of the remaining image pairs
yields one estimate for the coordinates of the point to be re-
constructed and the median of all such estimates provides a
robust preliminary estimate. Finally, the point’s coordinates
are computed as the mean of the 70% of the estimates that
are closer to the median one. To improve stability, a point
is reconstructed only if it is visible in more than a minimum
number of views, which is set to 7 in the current implemen-
tation.

After new points have been introduced in the map, the
poses of all images in L are re-estimated in a robust fashion
[11]. Points that are marked as outliers in any of these es-

timations are removed from the map. Such points might be
reconstructed again later if new constraints on their coordi-
nates become available from the reconstruction of more im-
ages observing them. Each time a certain number of images
(currently 5) have been added to the reconstruction, pose
and structure estimates are simultaneously refined by min-
imizing the image reprojection error through sparse bundle
adjustment. Minimization of the reprojection error evenly
distributes errors among reconstructed points and image
poses. Bundle adjustment was performed using our sha
package [6]. The above steps are repeated until U becomes
empty, i.e. all images have been localized.

5. Experimental Results

This section presents experimental evidence regarding
the performance of the proposed method in an indoor en-
vironment. Experiments were conducted with the aid of
a central catadioptric color camera with a resolution of
640 x 480 pixels. This camera has a single effective view-
point and is made up of a single perspective camera com-
bined with a convex mirror. The y-intercept of horizon lines
was specified manually. All reported experiments were con-
ducted in a unmodified laboratory room, a CAD floorplan of
which is shown in Fig. 5(a). Sample panoramic images of
the room are also included in the supplementary material.

The first conducted experiment aims to verify a claim
made in section 2, namely that the magnitude of the LD de-
pends upon the Euclidean distance between the viewpoints
of the images being compared. To achieve this, a set of im-
ages whose pose can be determined fairly accurately was
acquired as follows. The panoramic camera was rigidly at-
tached to a rotating horizontal rod mounted on a vertical
pole at a height of about 1.7m above the floor. Rotating the
rod with known angles effectively moved the camera along
acircle. By varying the position of the camera along the rod
and then completing a full revolution, more concentric cir-
cular trajectories could be traced. In total, 48 images were
captured, arranged on three concentric circles with radii 0.4,
0.9 and 1.4 meters, each of which contained 16 images. For
an arbitrarily chosen image on the inner circle, Fig. 3 plots
the LD between it and every other image against the im-
age locations that are within a square of side 3m. To aid
in visualization, a 3D surface interpolating the distances is
drawn. This surface has a funnel-like shape, confirming
that increasing Euclidean distances correspond to increas-
ing LDs.

The image set employed in the previous experiment was
also used to quantitatively assess the accuracy of the cam-
era poses estimated with the proposed method. Known cir-
cle radii and relative camera orientation angles provide the
ground truth for the image poses, which can be compared
to the camera pose estimated for each image by the pro-
posed method. Figure 4(a) facilitates the visual comparison
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Figure 3. Side (a) and top (b) views of the surface defined from the
LD of image at location (—0.4,0) on the inner circle to all other
images, plotted against the image viewpoint locations.

(b)

of the estimated camera poses and the ground truth values.
The estimated camera locations are shown with red circles
while the true locations are shown with blue squares. Short
lines on circles or squares indicate the orientations of the
corresponding cameras. Clearly, the two sets of poses are
in close agreement, as confirmed by the mean and standard
deviation of the distance of the estimated camera locations
from their true positions which are respectively 3.1cm and
1.5cm. The orientation error has a mean of 0.56° and a
standard deviation of 0.98°. The 898 points reconstructed
during localization are shown in Fig. 4(b). Note that no
points lying on the walls that are far from the camera view-
points are reconstructed, either because they are not seen by
enough cameras with sufficiently large baselines or because
they did not give rise to reliable image matches.

To test the method when the camera moves on a less
regular trajectory, a third experiment was conducted. Dur-
ing this experiment, the camera was attached directly on
the vertical pole which was moved to 61 positions cover-
ing much of the free space of the room. Application of
the method to the acquired images recovered the camera
positions and the map of reconstructed environment points
shown in Fig. 5(b). A total of 2052 points were recon-
structed. Circles are again used to represent the camera lo-
cations and lines the camera orientations. As can be seen
by comparing this with the floorplan of Fig. 5(a), the layout
and proportions of the room’s walls have been reconstructed
quite accurately, despite the presence of large textureless
wall regions and significant variations of the amount of ex-
ternal light coming through the windows. It should be noted
that the method has been able to reconstruct the pillar that
exists in the middle of the room, overcoming ambiguities
due to occlusions. The increased errors in the top left and
right parts of the map are due to the lack of any texture on
these areas of the walls that renders horizon matching more
error-prone in them. No ground truth for the camera lo-
cations is available for this experiment due to the practical
difficulties involved in measuring them in a global coordi-
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Figure 4. (a) Estimated (circles) and ground truth (squares) cam-
era poses for a set consisting of 48 images captured with a camera
moving on three concentric circles. (b) The reconstructed camera
poses and environment points computed from the images of (a).
The color of camera locations varies from red to blue in the order
that the corresponding images were reconstructed. The color of re-
constructed points varies from red to green according to the num-
ber of images from which they have been reconstructed. Red cor-
responds to points reconstructed from few images, green to those
from many.

nate system. However, the distance of each camera location
from its two nearest locations has been measured during
image acquisition. Using the estimated camera locations,
the mean and standard deviation of the distances to neigh-
boring locations error were 1.8cm and 1.9cm, respectively.
Overall, the reconstruction results are very satisfactory, es-
pecially when considering the limited visual acuity of the
employed camera. More specifically, the unfolded images
were of dimensions 1278 x 144 pixels, which amount to
approximately 3.5 pixels per degree. For comparison, as-
suming that the same imaging sensor was used for acquiring
ordinary perspective images with a FOV of 50 degrees, one
degree would be imaged on 12.8 pixels. A video illustrating
the progress of camera localization and structure estimation
during this experiment has been submitted as supplemen-
tary material.
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Figure 5. (a) In scale floorplan of a laboratory room. The actual
dimensions of the room are 9.4 x 10.5 meters. (b) Reconstructed
camera poses and environment points for the room of (a). The
ratio of dimensions for the reconstructed room was 0.87 which
compares favorably to a true value of 0.89 obtained from (a).

The method has also been tested on the image set result-
ing from the union of the two sets employed in the previous
experiments and consisting of 109 views. Figure 6 shows
the camera poses and environment map recovered in this
case. The number of reconstructed points totaled 2450. De-
spite the larger number of images to be localized, the local-
ization error for the combined image set was found to be
at the same level as that for the individual sets. It is worth
mentioning that these two image sets have been acquired on
different days that were about two weeks apart.

6. Conclusion

This paper has presented a method for simultaneously
localizing an unordered set of panoramic images and recov-
ering a map of the environment. Matching a limited amount
of image data confined to horizon lines has been shown to
suffice for registering the images in a common coordinate
frame and partially reconstructing the environment. Pro-
vided that the epipolar geometry is known, the proposed
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Figure 6. Reconstructed camera poses and environment points
when employing the two combined sets of images. Note that due
to the choice of different initial reference images for the recon-
struction, the scale and coordinate system origin differs from that
of Fig. 5(b).
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method can be readily extended to matching corresponding
epipolar curves, thus covering the whole available visual
field.
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