
www.elsevier.com/locate/imavis

Image and Vision Computing 26 (2008) 39–52
Learning temporal structure for task based control

Kingsley Sage a,*, A. Jonathan Howell a, Hilary Buxton a, Antonis Argyros b

a Department of Informatics, Centre for Research in Cognitive Science, University of Sussex, Brighton BN1 9QH, UK
b Institute of Computer Science, Foundation for Research and Technology Hellas, P.O. Box 1385, GR 711 10 Heraklion, Crete, Greece

Received 16 July 2004; received in revised form 10 July 2005; accepted 5 August 2005
Abstract

We present an extension for variable length Markov models (VLMMs) to allow for modelling of continuous input data and show that
the generative properties of these VLMMs are a powerful tool for dealing with real world tracking issues. We explore methods for
addressing the temporal correspondence problem in the context of a practical hand tracker, which is essential to support expectation
in task-based control using these behavioural models. The hand tracker forms a part of a larger multi-component distributed system,
providing 3-D hand position data to a gesture recogniser client. We show how the performance of such a hand tracker can be improved
by using feedback from the gesture recogniser client. In particular, feedback based on the generative extrapolation of the recogniser’s
internal models is shown to help the tracker deal with mid-term occlusion. We also show that VLMMs can be used as a means to inform
the prior in an expectation maximisation (EM) process used for joint spatial and temporal learning of image features.
� 2006 Elsevier B.V. All rights reserved.
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1. Learning temporal structure and task based control

1.1. Predictive control

A common observation in animate vision is that it is ‘pur-
posive’, i.e. the visual processing is focussed on a particular
task or goal [2]. In cognitive computer vision systems, this
notion has to be formalised using models that support online
expectation or ‘predictive control’. That is, behavioural
models must be acquired by the system, e.g. by learning,
and exploited for effective prediction at the required level
of visual processing, e.g. here object trajectories.

Assuming that spatial localisation of task relevant
objects is possible, and the existence of suitable training
data, then the categorisation/classification labels and local-
isation data taken together provide an account of object
trajectories. If we have over-arching prior knowledge about
the types of trajectories we may observe, the learning of
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temporal dynamics for a specific target is simply a matter
of ‘best fitting’ the localisation data to the available models
(e.g. N-th order polynomial curve fitting).

In the absence of such a ‘global’ perspective of candidate
trajectories, we can still make useful assumptions that con-
strain the learning of temporal dynamics. For example, we
assume there is some underlying process that describes the
motion and that the motion is smooth and continuous
(except, for example, under occlusion). Additional assump-
tions will determine the generative properties of the result-
ing model.

Markov models have been used extensively in the mod-
elling and recognition of human activities involving highly
structured and semantically rich behaviours such as sign
language (Starner and Pentland [20], Vogler and Metaxas
[21]), dance and aerobics (Galata and Hogg [9]) and vehicle
movements around parked aircraft [10]. Learning of first-
order Markov models is a well-established field. Unfortu-
nately, as Galata and Hogg point out [9], hidden Markov
models (HMMs) do not easily encode high order temporal
dependencies. Local optima are frequently encountered by
iterative optimisation techniques when learning HMMs
with many free parameters. Galata and Hogg use variable
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length Markov models (VLMMs) [16], which are able to
locally optimise memory length within the model. This
approach captures long term temporal dependencies in
some parts of behaviour and short term dependencies else-
where. Their approach uses discrete VLMMs modelling
transitions between a predetermined set of prototypes.
Clouse et al. [4] show how time delay neural networks
can be used to induce and represent finite state machines
with long memory lengths (cf. higher order Markov mod-
els). Johnson and Hogg [12] model highly non-linear
behaviours for a pedestrian tracking activity using a Gauss-
ian mixture over system state change and observed history.
Their approach is unusual in that it does not assume a dis-
cretisation of state space and models behaviours as both
continuous and non-linear. However, one drawback of this
approach is that, while the distributions are learnt and
effective in online control, the prediction used Kalman fil-
ters to constrain the search from frame to frame. As shown
later in this paper, more powerful predictive control, robust
to long term occlusions is possible using our temporal
structure learning. This is because the VLMMs are able
to use their longer length optimised state histories to pro-
vide a better account of likely future state using stochastic
sampling techniques than a first-order model. So repeated
applications of stochastic sampling produce a more struc-
tured and constrained prediction of likely state sequences.

1.2. Interpretation of human activities—the ActIPret project

The ActIPret project (actipret.infa.tuwien.ac.at) aims to
develop a cognitive vision methodology that interprets and
records the activities of people handling tools. The focus is
on active observation and interpretation of activities, on
parsing the sequences into constituent behaviour elements,
and on extracting the essential activities and their functional
dependence. The ActIPret demonstrator is a distributed sys-
tem with low-level data-driven vision components and high
level task driven behavioural reasoning components. These
components are organised into a nominal hierarchy and
higher level components interact with the lower level compo-
nents through a common service interface. The resulting sys-
tem implements a scheme of task-based visual control that
can be thought of as data-driven (bottom-up) processing lim-
ited in scope by task-based (top-down) control.

The work described in this paper has application in the
interactions between just two of the ActIPret components, a
Gesture Recogniser (GR) that identifies task relevant func-
tional gestures (activities such as ‘pickup’ and ‘putdown’ rath-
er than communicative gestures), and a Hand Tracker (HT)
that provides 3-D hand positional data to the GR. The work
has more general applicability across a range of problems in
Cognitive Vision where perception is guided by expectation.

1.3. The Hand Tracker

The FORTH Hand Tracker (see [1]) uses a non-para-
metric method for skin detection and performs tracking
in a non-Bayesian framework. A YUV 4:2:2 based skin col-
our representation is learned through an off-line procedure.
The skin colour detection model is adaptive, based on the
recent history of tracked skin-coloured objects. Thus, with-
out relying on complex models, it is able to robustly and
efficiently detect skin-coloured objects even in the case of
changing illumination conditions. Tracking over time is
performed by employing a novel technique that can cope
with multiple skin-coloured objects moving in complex pat-
terns in the view of a potentially moving camera. The Hand
Tracker provides real time hand candidate centroid data to
the GR.

1.4. Combining the HT and GR

In the ActIPret system, the GR is tasked with identify-
ing task relevant functional gestures for specific hand
objects. The selection of the relevant candidate hand
objects is determined by an abstract reasoning engine at a
higher level than the GR (Sage, Howell and Buxton [19]).
For multiple handed tasks, or early attentive processing
where we are interested in identifying all possible task rel-
evant hand candidates, we may need to track an arbitrary
number of candidate hand objects. The higher level reason-
ing component may have cause to request attentive pro-
cessing for multiple objects because of task ambiguity (it
can pursue concurrent multiple lines of reasoning), or
because there were multiple hand candidates (i.e. less than
perfect segmentation) reported during earlier processing.
Consistent hand candidate labelling is a key factor for
the performance of the ActIPret system as a whole.
Whereas short term consistency may be acceptable for dis-
crete gesture recognition (e.g. the hand has ‘reached out’
from the torso), it is problematic for longer temporal scale
recognition of behavioural activities (e.g. hand(x) picked
up object(y) and put it down on object(z)). Consistency
over longer temporal scales requires robustness against
many factors such as lighting variation and, in particular,
mid-term occlusion and ambiguity caused by intersecting
multiple hand trajectories. In order to achieve candidate
hand labelling consistency, the HT has to reason locally
about such occlusion and ambiguity in order to unify dif-
ferent labels should they arise (e.g. to determine that hand
(1) is the same physical hand as hand (2) when the new
label is created when the original object comes out of
occlusion).

In conventional approaches to solving this temporal
correspondence or ‘data association’ problem, we might
use predictive tools such as Kalman filters, or adopt graph
based spatial matching. In ActIPret we seek opportunities
through the hierarchical service structure. Normally, the
GR makes a service request to the HT for positional data
for a specific object or set of objects. The HT then provides
the data to the GR, which then applies its own processing
to determine whether gestures have been completed. When
the HT is not able to provide data positional data, the GR
contains useful information about what gestures might
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have been occurring at the time the hand object was lost.
At that point, the GR can generatively extrapolate
positional data for the missing hand object, maximising
the odds that disparate hand object labels can be re-unified
when positional data is available for the hand once
more.

The aim of the experiments described in Section 3 of this
paper is to learn relevant gesture models using hand posi-
tional data derived from FORTH’s tracker and show that
these gesture models can be used within a component such
as the GR to provide a robust means of dealing with track-
ing issues such as mid-order temporal occlusion. This capa-
bility is provided by strong generative properties of the
underlying VLMM gesture models introduced in Section
2. The experiments described in Section 3 demonstrate such
generative extrapolation in action.

2. From first-order to variable order temporal dynamics

2.1. HMM gesture recognition

A Hidden Markov Model (HMM) is a doubly stochastic
process, i.e. there is an underlying stochastic process that is
not observable (hidden) but can only be observed through
another set of stochastic processes that produce the
sequence of observed symbols [15]. The HMM is character-
ised by a triple k = (p,A,B), where A is a square N·N

matrix of probabilities for transitions between N discrete
hidden states, p is a vector of probabilities describing the
initial state of the model and B is a N·M matrix accounting
for the mapping between the N hidden states and the M
output (observable) symbols.

There are three general problems we may solve using
HMMs. Given a set of observation symbols O and a model
k we can calculate the probability of that sequence p(O|k)
(forward evaluation). Given O and k we can deduce the
most likely sequence of hidden states (Viterbi decoding).
Finally given O we can estimate model parameters k that
maximise the probability of O.

To capture gesture models, we used training observa-
tion sequences represented sequences of 3-valued vectors
(3-D hand velocities V = [vx, vy, vz]) to train a continuous
output HMM with hidden states modelled as 3-compo-
nent mixtures of Gaussian functions. We then varied the
number of hidden states to explore the underlying dimen-
sionality of the training set (which corresponds approxi-
mately to the number of distinct gesture phases) and
demonstrated the ability of the HMM to distinguish the
learned gesture from other gestures, as in some of our
previous work [18].

2.2. Overview of VLMM

Ron et al’s [16] formulation of the VLMM is based on
optimisation of the statistical prediction of a Markov
Model measure by the instantaneous Kullback–Liebler
(KL) divergence of the following symbols (the statistical
surprise of the model when presented with the next sym-
bol). The memory is extended when such a surprise is sig-
nificant until the overall statistical prediction of the
model is ‘sufficiently good’ for a user-defined error � [17].
The original formulation worked with training sequences
that were strings of discrete symbols (such as in language
modelling). The training process leads to a prediction suffix
tree that predicts the probability that a symbol at rt2R fol-
lows a variable length string st�N, . . .st–1. Throughout this
paper, we have adopted the notation of r as a single alpha-
bet symbol (length 1 string) and s as string of arbitrary inte-
ger length > 1. Where s is shown subscripted, this is
intended to show that we are indexing a single alphabet
symbol from within the string s. Further, to prevent confu-
sion between strings and joint probability, subscripted
strings are sometimes shown in braces. Distributions are
shown in upper case, single values are shown in lower case.
Thus, for example, P(R,T), where R is the alphabet and T is
time, is a 2-D array of values and p(r, t) is a single value.

To learn VLMM gesture models from hand training
data, we first fit a set of N Gaussian mixtures over the data
using the standard first-order HMM learning procedure.
We discard the learned HMM state transition matrix and
prior vector and use just the mixture mean l and co-vari-
ance / parameters. Our VLMM alphabet R then corre-
sponds to the mixture indices (1, 2, . . ., N). The
probability of being in a state rt is defined as the fit between
a piece of observed data xt and the N Gaussian mixtures. In
this paper, states are assumed to be numbered 1, 2, . . ., N.
More sophisticated modelling could expand R to model the
mixture index plus other parameters such as probabilistic
context [18].

The central element in generating the prediction suffix
tree is the KL divergence measure for the statistical sur-
prise associated with a prediction for a symbol, s, com-
pared with the longer string rs:

Errðrs; sÞ ¼
X

r02R
pðrsr0Þ log

pðrsr0Þ
pðr0jsÞpðrsÞ ð1Þ

The source probabilities p(s) and p(r|s) are estimated
from sums and products of the empirical counts (#) of
the appearances of their constituent alphabet symbols in
the distribution P(R, T) defined by:

pðrtÞ ¼
gðxt; lr;/rÞPr0¼N

r0¼1 gðxt; lr0 ;/r0 Þ
ð2Þ

p(rt) is drawn from the distribution P(R, T) and is the
probability of alphabet symbol r at time t (i.e. the fit
between the observation data x at time t and the set of N

Gaussian mixtures specified by {l1, /1}. . .{lN, /N}). Fol-
lowing Ron’s original paper and applying Laplace’s rule
of succession:

pðsÞu #sþ 1P
s02Rjsj#s0 þ jRj ð3Þ
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pðrjsÞu #ðrjsÞ þ 1P
r02R#ðr0jsÞ þ jRj ð4Þ

The notation R|s| taken from Ron’s original paper refers to
the set of strings of length |s| that can be derived from the
alphabet. For example, for a two symbol alphabet R = {1,
2}, if we wanted to find p({l,2}) we would need to evaluate
p({l, 1}), p({l, 2}), p({2, 2}) and p({2, 1}) for the denominator
term. Fortunately, it is easy to show that the denominator
terms are constant for any given R and |s|. We dispensed with
the smoothing terms by simply removing the + 1 from the
numerator terms and the |R| from the denominator terms.
Here, |R| = N, i.e. the alphabet size is the number of Gauss-
ian mixtures. As P(R, t) is a continuous valued vector of
length N, and s is a variable length string (potentially 1 sym-
bol or > 1 consecutive symbols), the #s term becomes a sum
of products of probability values:

#s �
X
t2T

pðfst�jsjþ1; . . . ; stgÞ ¼
X
t2T

� Yt0¼t

t0¼t�jsjþ1

pðst0 Þ
�

ð5Þ

rather than a simple count and likewise the #r|s becomes:

#rjs �
X
t2T

pðfst�jsj; . . . ; st�1; rtgÞ

¼
X
t2T

�
pðrtÞ

Yt0¼t�1

t0¼t�jsj
pðst0 Þ

�
ð6Þ

This extension to the VLMM formulation to the contin-
uous case enables us to estimate p(s) and p(r|s) under noisy
conditions and proves to degrade gracefully in practice
towards a first-order (length = 1) Markov model with 1/
|R| state transitions with high levels of noise. We use these
terms to build a Prediction Suffix Tree.
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Fig. 1. (a) Markov model used to generate discrete symbol string (b) P
A Prediction Suffix Tree (PST) is a tree graph representa-
tion of a set of variable length nodes that describe a training
data set. The nodes are those essential to the variable length
structure of the domain and are determined by applying the
KL divergence statistical test previously described. Each
node consists of a label (a set of alphabet symbols of length
1 < length � L and a set of |R| transition probabilities). L is
a user defined parameter that determines the maximum
allowed length of any variable length node to describe the
domain (the maximum PST tree depth). The transition prob-
abilities specify the probability of a subsequent single alpha-
bet symbol having observed the variable length node.
Following Ron et al.’s original formulation, the PST also
has a root node denoted ‘e’ (of nominal length 0) that speci-
fies the probabilities of observing single alphabet symbol
label nodes. There is one additional user-defined parameter
� that determines the level of statistical surprise required
before a node is inserted into the PST.

An example Markov source (used to generate training
data) and the corresponding PST generated for it are
shown in Fig. 1.

Once learned, a PST can be converted into a Probabilis-
tic Finite Automaton (PFA) 5-tuple (Q,R,s,c,p) where Q is
the finite set of M variable length states derived (approxi-
mately) from the leaves of the prediction suffix tree, R is
an alphabet of size N (the mixture indices), s:Q·R fi Q is
the transition function, c:Q · R fi [0,1] is the output prob-
ability function and p:Q fi [0,1] is the probability distribu-
tion over the starting states.

In the simplest case, we can then use the PFA to create a
forward evaluation matrix similar to calculate the distribu-
tion Pe(Q,T) as we would with a first-order HMM. We first
create a forward evaluation trellis of size M·T. The prob-
ability values p(qt) are calculated as follows:
p(1) = 0.6767

p(1) = 0.9072
p(2) = 0.0928

p(1) = 0.7778
p(2) = 0.2222

p(1) = 0.5644
p(2) = 0.4356
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p(2) = 0.7143
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p(1) = 0.6092
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p(2) = 0.3233
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rediction Suffix Tree learned from string for � = 0.001 and L = 3.
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peðqtÞ
¼ gðot; ltsðqÞ;/tsðqÞÞ

X
q02Q:r¼tsðqÞ:9sðq0;r!qÞ

peðq0; t� 1Þcðq0; rÞ

ð7Þ

where the mapping between the M states in Q and the N

Gaussian mixtures is denned by the notion of the terminal
symbol ts(q). ts(q) is the last symbol in the state q, e.g.
ts(123) = 3. So lq is denned as lts(q).

We assume a uniform 1/M distribution for p such that
RPQ = 1 for each timestep. Finally, we can form a |R|·T

trellis by adding rows of the M·T trellis so that the termi-
nal cluster symbol for each of variable length states is the
same. We can use the resulting forward evaluation trellis
to find the fit between any observation data series x1, x2,
. . . xT using the standard ideas of log likelihood per sym-
bol. We can also use scaling to prevent the trellis co-effi-
cients geometrically tending towards 1.

The use of the terminal symbol means there is a ‘many
to one’ mapping between states 2Q and the mean and
covariance value sets defined by the original N Gaussian
mixtures. Although this is fine for learning the set of vari-
able length states that describe any particular training
domain, it does place limitations on the generative proper-
ties of the resulting model overall. Consider the training set
extract shown in Fig. 2 that shows 2 Gaussian mixtures,
M1 and M2, fitted to the training data. The size, and thus
the mean and covariance value sets, for M1 and M2 will be
a function of the number of mixtures fitted to the data. For
a VLMM model derived from this example, there would
likely be states of length from 1 to 3. A length three state
corresponding to three consecutive points in mixture M1
would be strong evidence for a length 1 state corresponding
to M2. Whilst this would be fine for classifying other trajec-
tories with a similar structure, consider what might happen
if we try to use the same model in a generative mode. As
M1 and M2 have only one mean and covariance parameter
set each, every time we want to stochastically generate a
novel data point for a trajectory and specify the terminal
M2

M1

Fig. 2. Training set extract consisting of 7 2-D data points along a
continuous arc of motion.
state we will generate a value about the means of the
Gaussian mixtures. However, we have lost valuable infor-
mation about the distribution of mean and covariance val-
ues as we progress through the Gaussian feature space.
What is really required is that for each variable length state
q2Q, we want an independent mean and covariance
parameter set so that in the generative mode we create tra-
jectories that are more akin to the original training data.

To establish independent mean and covariance parameter
sets for each variable length state we used a single iteration of
the Forward Backward algorithm as typically used in the
Baum Welch iterative learning procedure for HMMs. We
denned an alpha (forward evaluation) trellis Pa(Q,T) with
a uniform distribution over Pa(Q,t = 1) = 1/M:

paðqtÞ ¼ gðot; ltsðqÞ;/tsðqÞÞ
X

q02Q:r¼tsðqÞ:9sðq0;r!qÞ
paðq0; t

� 1Þcðq0; rÞ ð8Þ

and a beta (backwards evaluation) trellis Pb(Q,T) with a
uniform distribution over Pb(Q, t = T) = 1:

pbðqt�1Þ¼
X

q02Q:r2R:9sðqt�1;r!q0Þ
pbðq0; tÞcðqt�1;rÞgðot;ltsðq0Þ;/tsðq0ÞÞ

ð9Þ

and a X distribution (‘counts’ of how often a state q2Q was
visited over any individual training exemplar):1

PXðQ; T Þ ¼ P aðQ; T Þ � P bðQ; T Þ ð10Þ

where � denotes the element wise product. We used the
well published methods for scaling coefficients in the distri-
butions to prevent numerical underflow. The independent
mean and covariance value sets for each q2Q were then
denned as:

lq ¼
Pt¼T

t¼1 otpXðq; tÞPt¼T
t¼1 pXðq; tÞ

ð11Þ

/q ¼
Pt¼T

t¼1 ðot � lqÞpXðq; tÞðot � lqÞ
T

Pt¼T
t¼1 pXðq; tÞ

ð12Þ

where T denotes matrix transpose.
We modified Ron’s original algorithm for learning the

Prediction Suffix Tree to facilitate easier conversion between
the PST and the full PFA forms. By ‘full’, we mean that the
resulting PFA is guaranteed always to be in a valid state
q2Q and that s is well defined for all symbols r2R regardless
of whether the symbol sequence qr appears in the training
data. This means that the PFA can deal with unseen data
without requiring any special modification of the forward
evaluation process. These additional nodes will not be further
expanded as they do not meet the KL criteria, but will appear
in the set of PST leaf nodes as the first step of its conversion to
the PFA.

To ensure that we can generate a full PFA, whenever a
node k is added at some depth l � L in the PST, we also
1 In other literature the counts are usually denoted by c We use X here to
prevent confusion with the output probability function of the VLMM.



Table 1
Tabular enumeration of state transitions for PFA built from augmented
PST leaf set {1,12,22,13,23,33,132,232,332}

Current state Next observed symbol

1 2 3

1 1 12 13
12 1 22 23
22 1 22 23
13 1 132 33
23 1 232 33
33 1 332 33
132 1 22 23
232 1 22 23
332 1 22 23
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add, "s2R, {s, suffix(k)} to the PST regardless of whether
{s, suffix(k)} meets the KL criteria or not. For PSTs with a
maximum tree depth > 2, we need to ensure that the result-
ing PFA has the means to make a transmission between
nodes that vary in length by more than one observation
symbol. So, as well as including all of the PST leaf nodes
in the PFA, we may need additional internal nodes in order
to ensure that "q2Q, then "r2R then $q 02Q: some

suffix{qr} = q 0 where {(some suffix)} constitutes any con-
secutive end set of symbols in a sequence.

To illustrate this, for an alphabet R = {1, 2, 3}, consider
a discrete PST with depth L = 3 as shown in Fig. 3a. Tak-
ing the leaf set of PST nodes {1,3,132,232,332}, it is not
possible to draw a full PFA. For example, if the PFA is
in states 1,132,232 or 332 and receives the next symbol 2,
there are no states in Q to make a transition to. Also as
the leaf set only contains nodes of length 1 and 3, there
is no single symbol transition possible between the length
1 nodes and the length 3 nodes.

Our example has assumed that symbol 32 met the KL
criteria but that 12 and 22 did not. If we add 12 and 22 any-
way (because we added 32) then we have the PST as shown
at Fig. 3b with the two additional nodes shown as dotted
links. Now we have the PST leaf set {1,3,12,22,132,232,
332}. Next, if the PFA was in state 1 then we can observe
the symbol 2 and move to state 12, and if the PFA was in
states 132,232 or 332 we would move to state 22.

However, we still have a problem with the length 3
states. Whilst we can define exit transitions for these states
there are no transitions that cause us to enter them. This is
because the prefixes for these states (i.e. 13,23 and 33) do
not appear in the leaf set. To solve this problem we need
to expand the node 3 to provide the additional nodes 13,
23 and 33 as shown in Fig. 3c. This now gives us an aug-
mented leaf set of {1,13,23,33,132,232,332} from which
we can derive a complete PFA as summarised in Table 1.

The PST learning process is easily extended to multiple
exemplars by taking average statistics for Err(rs, s) over all
exemplars.

3. Tracking experiments

We present four experiments that deal with the learning
of temporal structure for hand trajectories captured by
332232132
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Fig. 3. Prediction Suffix Trees with leaf sets (a) {1,3,132,232,332}, (b
hand trackers. The first three use 2-D hand positional data
generated by FORTH’s HT. The fourth uses 3-D data
derived from the Terminal Hand Orientation and Effort

Reach Study Database created by Human Motion Simula-
tion (HUMOSIM) at the Center for Ergonomics, Universi-
ty of Michigan, USA. It is important to re-iterate here that
these experiments are not learning about discrete transi-
tions between a fixed set of prototypes. We are learning
on continuous valued vectors where each vector at time t

describes the fit between the training data and N Gaussian
mixtures fitted over that data.
3.1. Experiments 1, 2 and 3: 2-D examples

The gesture training data for this experiment was col-
lected using FORTH’s HT. 2-D hand centroid positional
data (hand in a constant z-plane position) was collected
for examples of the hand moving in an approximately cir-
cular motion. Each example consisted of between 200 and
250 equal temporally spaced timesteps. An example data
set exemplar is shown below in Fig. 4. The training set con-
sisted of a total of seven complete exemplars and each
exemplar consisted of positional data for one hand with
no occlusion. We took the first derivative of the training
set data to give velocity data.

We first trained a continuous valued first-order HMM
over the velocity training set with 10 hidden nodes, which
gave us all of the parameters for 10 Gaussian mixtures.
The number of hidden nodes chosen was an arbitrary choice
intended to balance over-generalisation and over-fitting.
332
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) {1,3,12,22,132,232,332} and (c) {1,12,22,13,23,33,132,232,332}.
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Fig. 4. 2-D hand tracking training exemplar 01 as (a) positional data, (b) first derivative.

2 The HMM was based on the same set of N Gaussian mixtures from
which the VLMM was first built (before the construction of the M

mixtures, one per variable length state).
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The number of hidden nodes determines the size of the
VLMM alphabet. We then generated the distribution
P(R,T) for each velocity training set exemplar and trained
the VLMM over those distributions with a maximum predic-
tion suffix tree depth L = 10 using a minimum statistical sur-
prise parameter min � = 10�5. The resulting augmented
Prediction Suffix Tree (PST) had 2821 nodes, which was then
converted into a PFA which had 2548 nodes with node
lengths in the range 2–8. The maximum node length discov-
ered was less than the maximum permitted showing that, for
that value of statistical surprise, the model achieved the best
result that was possible. Smaller values of min �will result in
larger PSTs. In general we found that values between 10�3

and 10�5 give good results over a range of applications.
We refined the Gaussian mixture representation so that

there were independent parameter sets l, / for each of the
M variable length states in Q. So we started out with N mix-
tures, one for each Gaussian mixture fitted to the training
data and ended up with M mixtures, one for each of the var-
iable length states. Taking C = {l1, l2, . . ., lM} and U = {/1,
/2, . . . , /M}, we now define the full continuous valued
VLMM, V, as the 7-tuple (Q, R, s, c, p, C, U). As previously
described, we can generate a forward evaluation matrix
either as a M·T matrix (full forward evaluation trellis) or
as a N·T matrix (compact forward evaluation matrix) by
combining states that end in the same observation symbol.
The compact trellis has the advantage that matrix entries
for symbol n2N at time t represent the total probability asso-
ciated with that observation symbol rather than the isolated
probability of being in any particular state q2Q.

We then defined a forward evaluation procedure simi-
lar to the standard approach [15] for calculating p(O|k)
for a first-order HMM. This can be used to measure the
log likelihood fit between any testing data and V, but
we are more interested in the generative properties of V

and using these properties to deal with problems such
as a mid-term occlusion. We use the forward evaluation
procedure to create a VLMM tracker using stochastic
sampling to generate states data in the absence of obser-
vation data. This VLMM tracker is distinct to the
FORTH tracker. The FORTH tracker produced the posi-
tional hand data that is used to train the VLMM. The
VLMM tracker uses the learned PFA to deal with mid-or-
der temporal occlusion and can ‘fill-in’ the trajectory. The
key elements of the VLMM tracker procedure can be
summarised by the algorithm shown in Fig. 5.

For experiments 1 through 4, the setup was slightly more
complicated. We trained the model on first derivative data.
Subsequent testing data was positional data (like the original
form of the training data), so we had to design a VLMM
tracker routine that took this into account. When observation
data is not present (cf. occlusion) then we stochastically gen-
erate states that tell us the relative motion so we can produce a
cumulative estimate of where we believe the hand to be.

The original training set was modified to provide a test-
ing set. To simulate the effect of occlusion, we deleted a
number of consecutive timesteps from each of the exem-
plars. This was achieved by adding a flag in the testing
set to indicate whether the positional data was to be made
available to the VLMM tracker at any timestep. The track-
er then processed each timestep in turn. As long as data
was available, it calculated the relative motion from the last
timestep to the current one and used the VLMM model to
update the full forward evaluation trellis. When data was
not available (because the occlusion flag was set), the tracker
used stochastic sampling to determine its next state and pro-
duce a relative motion estimate. We compared the generative
capabilities under occlusion of the VLMM tracker with a
first-order HMM 2 describing relative motion, together with
structurally naive estimators based on constant velocity and
constant acceleration assumptions. Where the data was
available to the VLMM tracker, it is shown in black. Where
data was not available to the VLMM tracker it is shown in
yellow. Thus, for evaluating the performance of the VLMM
tracker, the black and yellow points form the ground truth.
Whilst in the black region, the VLMM tracker builds its
internal distribution Pe(Q,T). When data suddenly is not



Fig. 5. Pseudo-code of tracking algorithm used in experiments 1 through to 4.
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available, the VLMM tracker uses Pe(Q,T) and the VLMM
parameters to start generating predicted values to fill in the
missing steps in O. These predicted values are shown in
magenta. For comparison, predicted values for a first-order
HMM are shown in red.

Figs. 6–8 show examples of 2-D generative trajectories
created during times of occlusion during hand tracking
for experiments 1–3, respectively. In each case, the occlu-
sion was for 25 timesteps. In Fig. 6 the occlusion started
at step 37, in Fig. 7 at step 64 and in Fig. 8 at step 6.
Two standard, learning-free, tracking methods, constant
velocity (shown in green) and constant acceleration (blue,
this is effectively a Kalman Filter without noise), are shown
to perform, as expected, fairly well for short periods of
occlusion—up to 3 or 4 timesteps. Fig. 6a shows that their
trajectory predictions rapidly diverge from the true trajec-
tory for longer periods of occlusion. Figs. 6b, 7b and 8b
show the actual timestep wise Euclidean distance of each
generated trajectory to the original ground truth data, in
other words, how close the prediction is to the actual hand
movement. Figs. 6c, 7c and 8cshow the timestep-wise mean
of each set of generated trajectories and provide a simple
overall measure of the performance of the tracker methods.

The trajectories of main interest are for the first-order
HMM (red) and VLMM (magenta) methods. It can be seen
in Figs. 6a and 7a that both methods attempt to reproduce
the curving movement learnt from the training data, though
the first-order HMM produces more variability and exhibits
less structure in its predictions. For Figs. 6 and 7 overall, the
VLMM provides the closest fit to the original hand trajecto-
ry, reflecting the fact that the VLMM is able to use the longer
histories to make quantitatively better future predictions
than the first-order HMM. The only drawback to the VLMM
approach can be seen in Fig. 8 where the occlusion has started
very early in the exemplar (at step 6). At this early stage of the
motion, the VLMM has not yet observed sufficient track his-
tory to determine the internal state in the space of transitions
between variable length states. Prior to starting tracking, the
VLMM forward evaluation trellis was initialised with a uni-
form prior over all its states (uniform p). Thus the VLMM is
acting as a ‘probe’ to generate a number of plausible different
possible paths when the occlusion occurs. This is not a prob-
lem unique to our VLMM implementation, it is common to
any high order temporal model. We have since refined our
learning method to include an estimate of the prior over the
M variable length states at time t = 1 using PX(Q, t = 1) from
the application of the forward backward algorithm.

3.2. Experiment 4: 3-D example

The gesture training data used for this experiment was
taken from the HUMOSIM database. The database con-
tains 3-D hand trajectory data collected from 22 subjects
of varying gender, age, and height. Two hundred and ten tar-
get locations and hand orientations were used, giving a total
number of 4410 trials and the 8820 reach movements.

We only used a small subset (17 exemplars) of the wealth
of available training data relating to a simple reach out/
pickup and return type series of gestures. An example of
a typical 3D HUMOSIM training exemplar is shown at
Fig. 9. We pre-processed the data so that consecutive time-
steps with a Euclidean distance of less than 0.5 cm were
removed so that the resulting motion did not contain peri-
ods of stasis. It is not unusual for some of the HUMOSIM
exemplars to have periods of 60–70 timesteps of stasis. To
model this un-processed data would require a VLMM with
an equivalent depth, but the essence of the interesting
motion is captured in a considerably smaller model. With-
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out the pre-processing, this imbalance in temporal model
would give rise to a PST with some very deep trees sections
to capture the lengthy periods of stasis, with other less deep
sections that captured, for example, most of the inwards
and outwards motion segments. Such a tree would be very
unbalanced (i.e. have significant variations in root to leaf
node path lengths). We are currently researching more effi-
cient methods for representing such unbalanced problems
using hierarchical approaches.

We again used an alphabet of 10 Gaussian mixtures
describing the 17 training exemplars as first derivative
velocity data. As for the 2-D case, we then trained a
VLMM with a maximum depth L = 10 and � = 10�5.
The resulting PST had 3731 nodes with a corresponding
PFA with 3358 nodes. As before, we further refined the
mean and co-variance parameters to have one per variable
length state. Once again we created testing data by taking
training data exemplars and setting our occlusion flag over
some time interval. This test used a very much larger period
of occlusion of 21 consecutive timesteps. We arranged the
occlusion such that it started roughly half way through
the ‘reach out’ phase and ended roughly halfway through
the ‘reach in’ phase. This level of occlusion represents a
serious challenge to any tracker not only due to the rela-
tively extended period of occlusion but also because the
predictive element has to deal with the reversal of motion
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at the maximal out reach point. To deal with such occlu-
sion requires a higher order knowledge of the underlying
temporal process than would be afforded by either naive
trackers or first-order HMMs. In fact, these trackers per-
formed so poorly in this task that the results are not pre-
sented here. Instead we show some of the VLMM tracker
results at Fig. 10. Here we can see that the VLMM tracker
has predicted the motion reversal during the occlusion
period. The deeper structured representation of the under-
lying motion allows the VLMM to considerably out-
perform the other models in the previous experiment in
generative extrapolation.
4. Joint learning of temporal and spatial structure

experiments

Learning in task based visual control, and computer
vision more generally, spans two separate (but related)
problems. On the one hand, we need to learn the spatial
structure of task relevant objects and, on the other, we
need to learn the temporal dynamics (behaviour) of
those task relevant objects. Classical approaches to com-
puter vision have viewed these as separate problems
(e.g. determination of spatial structure as a segmenta-
tion task, or analysing behaviour as a statistically time
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dependent process). Recent developments have included
combining spatial and temporal learning into a single
inter-dependent process (such as Frey and Jojic’s trans-
form invariant mixture of Gaussians, [13,8]) and the
application of cognitive principles to exploit dependen-
cies between the two modes of learning (Moore, et al.
[14]). A further key aspect related specifically to the
notion of control is the use of models that have gener-
ative properties. So for spatial structure we can generate
pixel values (visualise structure prototypes) and for tem-
poral dynamics we can use constraints on the step
changes in the hidden variables to predict future obser-
vation data.
4.1. Learning spatial structure

If there is no prior information about the spatial structure
then the problem is one of discovering a set of prototypes (a
model k) that best fits the training (observation) data O, i.e.
we need to maximise P(k|O). There is usually no computa-
tionally tractable globally optimal or closed form solution
for this task and the problem falls to gradient ascent tech-
niques such as Dempster’s expectation maximisation (EM)
approach [5], genetic algorithms, random search and so on
(typically, any method that uses a likelihood function to
model L(O|k)). Additional variables may be incorporated
into the EM learning. Prey and Jojic [6] use transformation
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Fig. 10. Example 3-D generative trajectories using the VLMM model in experiment 4.
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indices (i.e. cluster transformation pairings) to create trans-
form invariant mixture of Gaussian models. Further, work
by Prey and Jojic [7] showed how this process could be imple-
mented computationally efficiently for all possible X and Y

translations by modelling transformation as a convolution
of the Fourier transforms of both the prototypes and O.
Other types of invariance can then be achieved through
appropriate co-ordinate system transformations (e.g. the
log-polar form for arbitrary scale and rotations).

4.2. Joint learning of spatial and temporal dynamics

Jojic et al. [13] demonstrated that the learning of spatial
and temporal structure can be usefully unified in their
transformed HMMs. Their approach combines the learn-
ing of transform invariant Gaussian mixture models with
Baum Welch re-estimation. The HMM parameters provide
an informed prior to the prototype/transformation index
that enables the mixture modelling to reach a more optimal
solution than with a uniform prior distribution (i.e. ML)
alone. Next we show, in a further extension of this work,
how variable length Markov models can be combined with
the Transform Mixture of Gaussian (TMG) models.

To demonstrate the various approaches we use a simple
visual task summarised in Fig. 11 inspired by Frey and
Jojic’s pacman toy domain. In this task a 5·5 pixel ‘pac-
man’ shape follows a path defined by a cross on 25·25 grid.
This path consists of 56 steps and can be summarised by a
chain code. Each step of the path defines a 25·25 image
with the appropriate pacman shape (always facing in the
direction of travel) superimposed on a uniformly distribut-
ed noise background. The image sequence for the task then
consists of 10 serial repetitions of the sequence giving a



Fig. 12. (a) Mean and (b) variance maps for experiment 5 learning the
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total of 560 frames. We constructed this task so that it con-
tains higher order (and variable order) Markov temporal
dependencies.

The TMG method learns a mixture of Gaussians model
for a number C of different visual cluster prototypes nor-
malised over a set of spatial transformations. Each cluster
c2C has a latent image zc formed by mean (l) and co-var-
iance (U) parameters:

pðzcÞ ¼ pðzjcÞ ¼ gðz; lc;UcÞ ð13Þ

The joint distribution of a training set image xt2X, a
transform l drawn from a set of L spatial transformation
matrices C = l1,. . .lL and the latent image corresponding to
cluster c with post-transformation noise W can be denned as:

pðxtjl; zcÞ ¼ gðxt; Clz;WÞ ð14Þ

p(xt) can then be denned by marginalising the expression
for p(xt|l, zc) over all zc2C and C. Frey and Jojic then cast
the learning of the cluster parameters lc and Uc as well
as a post-transformation noise parameter W as an expecta-
tion maximisation (EM) problem by setting the derivative
of log p(x) with respect to the model parameters equals
zero and deriving the corresponding E and M step update
equations. Frey and Jojic have produced an efficient imple-
mentation of this EM process for all possible X·Y transla-
tions using a convolution of the Fourier transform of the
clusters with the training data.3

Other types of transformations can be accounted for by
pre-processing the training set data by an appropriate co-
ordinate transformation, such as the log polar transform
for dealing with scale and rotation. For multiple transfor-
mations, such as X and Y translation and scale and rota-
tion simultaneously, Frey and Jojic further developed a
variational technique for decoupling transformation sets
to reduce the computational complexity associated with
multiple transformations.

4.3. Experiment 5: applying VLMMs to the example task

Frey and Jojic’s original published MATLAB code is con-
cerned with learning spatial structure only [6]. Starting with
the assumption that P(C, L) = 1/CL for all timesteps T (uni-
form prior) and random values for the mean and variance val-
ues of the C cluster prototypes, it computes a post
transformation probability estimate term P(C) and then uses
a ML estimate derived from that to inform the P(C, L) prior at
the next iteration (P(c)/L). The prior is assumed to be uniform
across transformations, i.e. p(c, L) = k where k is a constant.

We first modified their approach so that the P(C, L) pri-
or could be re-estimated independently for each frame so
that we could use temporal models to constrain the prior
estimates over time giving us P(Ct, Lt). Jojic et al. [13] used
this idea to build a first-order Markov model onto their ori-
ginal work. The distribution of P(Ct, Lt) depends not only
on the individual post transformation probability P(Ct),
3 The source code for this implementation can be found at http://
www.psi.toronto.edu/�frey/tmgEM.m.
but on P(Ct�N, Lt�N) for an N-th order Markov process.
Having computed P(Ct) for each frame independently, we
were then able to use variable length Markov modelling
to determine P(Ct, Lt) for the next iteration. This has the
effect of improving the cluster prototypes by ensuring that
they are estimated from the members of the training set
that it is believed correspond to that cluster structure. Each
training image contributes to the post transformation
probability estimate term according to how likely it was
based on the previous N training set images.

For our application R corresponds to the cluster indices
and we model timestep to timestep cluster indices. More
sophisticated modelling would expand R to model the clus-
ter index plus other parameters such as relative motion, but
there is a trade-off between improving the spatial descrip-
tion of the derived clusters and the additional computa-
tional complexity of the VLMM.

We then use the PFA to estimate P(Ct, Lt) prior for the
next iteration. To do this we generate a forward evaluation
trellis matrix of size C·T, which specifies how likely each
cluster is for each frame in the training image set. We first
create a forward evaluation trellis of size M·T.

During the initial few iterations, the VLMM generates C

states (one for each cluster) and a first-order Markov model
with each state having transition probabilities u1/C. As the
learning process continues and spatial structure starts to
emerge, typically one of the cluster prototypes will acquire
a value P(ct) significantly greater than the 1/C value (until
the spatial learning has fully specialised the learned struc-
ture). This causes an attractor effect in the VLMM learning
as the statistically most likely explanation for the temporal
ordering will be a first-order VLMM with the transition
probability from the attractor state to itself for all timesteps.
To overcome this attractor, we normalise the prior P(C, L, T)
prior to each EM iteration such that RTP(Ct, Lt) = k.

We trained our combined algorithm for 100 iterations
with six clusters, allowing the VLMM to extend up to a
depth of five. The resulting mean and variance maps from
the six clusters are shown in Fig. 12. Dark areas in the var-
iance maps correspond to low variance. In contrast, a N-th
order Markov model would require N·Nk parameters for
its state transition matrix. So a third order HMM with
equivalent representational power would require 1296
parameters for its state transition matrix compared to a
VLMM with 211 nodes in its PFA. This reduction in the
number of transitions required to model the domain
reflects knowledge about the temporal structure of the task.
spatial structure for the pacman visual task. The spatial structure was
constrained by the temporal structure provided by a VLMM.

http://www.psi.toronto.edu/~frey/tmgEM.m
http://www.psi.toronto.edu/~frey/tmgEM.m
http://www.psi.toronto.edu/~frey/tmgEM.m
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The resulting VLMM prediction suffix tree consisted of
253 nodes (including the root node) and the PFA had 211
nodes of length either 2 or 3. The shorter length nodes
tended to correspond to portions of the task concerned
with ‘going straight ahead’ and the longer ones with ‘turn-
ing corners’. Clusters 2,3,4, and 6 captured most of the spa-
tial structure for the task.
5. Conclusions

We have extended Ron’s original VLMM formulation to
deal with continuous data representing probabilistic fit with
an alphabet at each time step rather than just discrete valued
transition. We have shown that this version of the VLMM
can be used to learn structured motion (i.e. gestures) in a
hand-tracking task. The resulting model has improved gen-
erative properties over the first-order HMM that are a useful
tool in dealing with tracking issues such as target labelling
consistency in the face of mid-term occlusion.

We have also shown that variable order temporal model-
ling can be applied to a joint spatial and temporal learning
task. The resulting model exhibits both spatial and temporal
generative properties that have applications in the learning
of visual control strategies in cognitive vision systems. Given
the current state of the joint model, we may stochastically
predict the next. We plan to extend our experiments with real
world images and to demonstrate an on-line control applica-
tion as well as investigate other methods for model trimming.
Model trimming is especially important in ensuring that the
solution found is the most naturally interpretable one [3].

One major challenge to learning for task-based control is
to learn hierarchical representations (1) for the case where
the data has multiple levels of granularity, e.g. trajectories
with long intermediate static frames, but also, more impor-
tantly, (2) for the case where the task requires context of dif-
ferent types to determine future processing, e.g. activity
models which require hand state and gesture phase in the
higher levels of the ActIPret system. Extensions are being
analysed for the former using two strategies, which avoid
pre-segmentation of the data, one relies on context variables
(see [18]) and the other involves extended unsupervised learn-
ing of the hierarchical organisation of data clusters. For the
latter, we are currently using partially hand-coded models
with supervised data learning where required on the dynamic
links (see [11]). Further, work on this approach for the ActI-
Pret project is described in our upcoming paper [19].
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