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Abstract— We show how matching and reconstruction of
contour points can be performed using Dynamic Time Warping
(DTW) for the purpose of 3D hand contour tracking. We
evaluate the performance of the proposed algorithm in object
manipulation activities and perform comparison with the Iter-
ative Closest Point (ICP) method.

I. INTRODUCTION

In a learning by demonstration context, a robot observes
a human performing a task, after which it is supposed
to perform the action and thus learn through an imitation
process. In order to imitate a human action, the robot needs
to retrieve information about of how a specific task was
performed – it needs to register the movement of the whole or
parts of a human body and an object, as well as the sequence
of different actions performed on the object. The goal of our
current work is the development a real-time stereo based
hand tracking system that can be used for 3D hand pose
estimation required in the imitation process.

Tracking and reconstructing hands in 3D requires solutions
to a number of different problems: hand modeling and
detection, temporal association, representation and extraction
of 2D data, data association, and matching for 3D reconstruc-
tion. Most of the approaches of 3D hand tracking are either
model-based or view-based. The former rely on articulated
3D hand models, used to minimize an error function between
the model and the observed image data in a sequence of
images. This approach requires a model initialization in the
first frame which is commonly performed manually. View-
based approaches perform pose estimation and classification
using a limited number of selected hand poses collected
in the training stage. Related to the number of cameras
used, both monocular and stereo systems have been used.
In the case of the former, assumptions about the size of the
hand have to be made to facilitate the 3D reconstruction
problem. The stereo-based approaches, on the other hand,
require a data association and matching step prior to the
reconstruction.

This work is based on further developments of the system
presented in our previous work [2]. In the tracking system,
the hands are first identified separately in each of the stereo
images and their contours are extracted. This is followed by
stereo-based blob matching technique and shape matching
through contour alignment. The particular objective of the
work presented here is the development and evaluation of the
shape matching and contour alignment step. In the original
work [2], Iterative Closest Point (ICP) algorithm and an

assumption of the affine motion model were used. However,
this approach is not suitable for cases where the inherent
assumption of planarity of the hand due is not valid which
is commonly the case in object grasping and manipulation
activities.

This paper presents a new approach for contour align-
ment based on dynamic programming, considered here in
the Dynamic Time Warping (DTW) context. An extensive
experimental evaluation shows that the performance of the
new approach is clearly superior, increasing the robustness
to occlusions and relaxing the planarity assumptions.

II. RELATED WORK

Pose tracking and 3D reconstruction of hands is a difficult
problem: hands are textureless objects with many degrees of
freedom, usually self-occluded or occluded by other objects
when object manipulation actions are considered. Since full
3D reconstruction based only on the hand depth estimation
is a complex and time-consuming process, view-based ap-
proaches have been extensively used in the literature [3].
The tracking problem is then solved through a classification
framework, relating image information directly to the pose
space of the hand. Approaches that make use of databases
and deformable templates fall in this group [5], [6]. Model-
based approaches [3] commonly build an articulated hand
model. This model is then used in the tracking process where
the incremental change in pose between consecutive images
is estimated by minimizing an error function between the
model and the observed image data.

For robotic imitation scenarios, where it is expected that
a human demonstrates to a robot how to manipulate a
certain object in its workspace, model-based approaches
offer a better solution. Apart from not having the need for
extensive training, database generation and storage, model-
based methods offer a more flexible framework once the
mapping between different kinematic chains is needed.

Even if a considerable amount of work has been put on
the development of humanoid robots during the past few
years, robot hands are still simple and do not offer the full
complexity of human hands. The simplest form of mapping
from a human to a robot hand may then be to just disregard
those degrees of freedom that are not articulated on the
robot hand. Model-based trackers also offer the capability
of continuous pose estimation while view-based methods,
if they are not extended with some local fitting step, only
provide classification to the nearest dictionary pose.



Within the model-based approaches, we can differentiate
systems based on the extracted features and the methods
used to reconstruct the hand model based on these features.
Regarding the features, we can differentiate between low
level and high level (semantic) features. High level features
are desirable since they compress a lot of information about
the hand pose in few parameters, and they allow high
processing speed for the fitting process. The drawback of
high level features is that it is difficult to extract them
from images in a general and robust way. One of the most
common examples of a high level feature is the position of
the fingertips [4].

Regarding the number of cameras, there are some im-
portant differences between monocular and multi-camera
systems. While the monocular systems usually use some
predefined hand parameters, such as the length of phalanxes
and the size of the palm, to reconstruct the hand in 3D [4],
stereo systems can extract depth information from the image
data directly, without assumptions about the hand parameters.
The extraction of depth information can be done in many
different ways. There are approaches such as [1] where
correlation methods are applied to extract dense depth maps
of the hand. However, the lack of texture usually makes the
use of correlation matching difficult. In our previous work,
[2] a different approach was applied considering only the
reconstruction of the hand contour.

III. CONTOUR MATCHING

In this section, we briefly introduce the ICP and DTW
algorithms.

A. ICP

ICP algorithm computes a motion which transforms one
set of points into another one according to a model. The
algorithm is iterative: At each iteration, it first computes a
motion which minimizes the current matching error and then
applies the estimated motion to update the point correspon-
dences. Two strong assumptions are made:

• An initial approximation for the point correspondences
is available.

• A suitable motion model is available to perform the
contour alignment.

In [2], the initial error measure is based on the first and
second moments of the contours. The hand contours are
approximated by ellipses and their centroids and principal
axes are matched. This approximation is fast, but it has some
problems: the more circular this ellipse approximation of the
contour is, the more uncertain is the alignment of the axes.
The motion model chosen in [2] is an affine transformation.
In terms of stereo matching, this works fine as long as the
contour points lie in a plane which also restricts the algorithm
to work only for a very limited set of hand poses. Finally, ICP
needs a measure of the error during the matching process. In
the original work, the 2D squared distance between a point
and the transformed point was used.

B. DTW

The approach adopted here, dynamic time warping, is con-
ceptually quite different. It is not iterative, and it computes
the point correspondences without any assumption of the
underlying motion model. The algorithm consists of four
steps:

1) Compute the pairwise distances from each point in one
set to all the points in the other set.

2) Select a pair of points that are supposed to be a good
match, in order to initiate the matching process.

3) For each possible pair of points, compute the ac-
cumulated cost of reaching this pair, based on the
accumulated cost of previous points and the cost of the
jump from the previous pair (the pair with minimum
accumulated cost previously computed).

4) The optimal path corresponding to the minimum total
cost of matches can be extracted by tracing back from
the end point.

The algorithm has time complexity O(n2) where n is the
number of points to be matched.

In the remaining part of the section, we present the
principal details of the proposed approach: the building of
the distance matrix and the choice of the starting point.

1) Distance Matrix: DTW algorithm finds the set of cor-
respondences with the least total cost (or distance) between
the matched points. For this reason, it is very important to
choose a distance measure that in a good way represents the
similarity of two hand contours in a stereo pair of images.

From a geometric point of view, the relation between
points in a calibrated stereo pair is given by the essential
matrix E:

PT
R EPL = 0 (1)

The relation is applied to points PR and PL in the
normalized camera coordinate systems, and are also valid
for their normalized image plane projections pR and pL.
Considering the camera intrinsic parameters K−1, we obtain
the well known fundamental geometry relationship:

pL = K−1
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uR = FpL (6)

pR and pL represent pixel coordinates and uR represents
the epipolar line.

The distance from a point to the epipolar line generated
by another point can be used in order to build the distance
matrix. The main advantage of this measure compared to
other measures such as the coordinates of the points or the
coordinates with the origin in the hand centroid is that the
measure is not based on any assumption except the epipolar
geometry: if the camera calibration is correct (and there are
no occlusions), the corresponding point lies on the epipolar
line. The main disadvantage is that this measure might be
ambiguous: in the case of point denoted 0 in Figure 1, it



will perfectly match both points denoted 0 and 8 in another
image.

Fig. 1. Point 8 has distance 0 to point 0 since it is based on the distance
between the epipolar lines the points lie on.

However, this problem is solved by the DTW algorithm.
Although two points would have similar distances to each
other, the subsequent ones will probably have very different
distances (as points 1 and 9 in Figure 1). This means that
despite the distance in the first pair will be low, the following
matches will increase a lot the total cost of the matching,
rejecting finally this set of correspondences. When there
are points with similar distances close to each other, the
system will produce errorneous results. This can be seen in
Figure 12, where the wrist segment of the contour is wrongly
reconstructed since it is almost parallel to epipolar lines.

Another problem solved by the DTW algorithm are the
occlusions. If some points are occluded just in one of the
images of the stereo pair, the number of contour points will
be different in each image. When the algorithm reaches the
point where the partial occlusion begins, it detects that the
distance between the next pairs increases until the occlusion
finishes. If a suitable distance measure is chosen, DTW
will drop these points, that is, it will leave them without
any correspondence in the other image. The matching will
continue normally when contour points are visible in both
images again, see Figure 2.

2) Starting Point Selection: Matching cyclic sets of points
with DTW has one prerequisite: the beginning and end
matching pair have to be chosen and it has to be the
same point pair. Although DTW can align sequences with
disaligned starting points, the points that are dropped while
aligning the sets are lost. In Figure 3 we show an example
of that: the real starting point pair should be the pair (5, 0)
instead of (0, 0). As the consequence, only the central point
pairs of the contours, from (5, 0) to (14, 9), are well matched.
There are solutions to this problem, but they usually require
at least twice the computation time required by the original
DTW algorithm.

It seems reasonable to use the distance matrix built with
distances to epipolar lines in order to use the point pairs with
lowest distance as starting points. Unfortunately, as said, this
measure is ambiguous, so we have many pairs with very
low distances which do not represent good matches. One

Fig. 2. Only point 2 is wrongly matched due to the occlusion.

Fig. 3. Gray cells corresponds to the ideal correspondences, and bordered
are the real ones.

can think about applying another measures such as using
the coordinates centered in the middle of the hand to fix
this ambiguity. However, there is another problem: since the
distance to an epipolar line is a continuous real value, a
threshold should be applied to consider a point “close” or
“far” to the epipolar line and it may be difficult to find such
a threshold.

For this reason a different approach was taken. If we
assume that the hand pose does not change too much between
the consecutive frames, a good match from the current
frame after applying the DTW algorithm, which avoids the
ambiguity of the distance measure, can be used as a starting
point. In the first frame, the starting point is selected based
on the distance matrix. Although the matching can be wrong
in some points, there is a region between the alignment
portion in the beginning and the end, see Figure 3, where the
points are well matched. With this procedure, the selection
of starting point is fast and accurate and the problems may



occur only in the first frame.

C. Accumulated distance computation

Once the starting point pair has been selected, we can
begin the computation of the accumulated cost until each
possible point pair in the matrix has been visited. The
allowed transitions and their related costs J have to be de-
fined. There are different possibilities related to the allowed
transitions in a DTW system. We describe below what each
of the possible transitions means:
• From pair (m,n) to pair (m + 1, n): we advance one

point in the first contour but stay in the original point
on the second contour. We denote this an “alignment”
jump.

• From pair (m,n) to pair (m + 1, n + 1): we advance
one point on both contours. We denote this a “matching”
jump.

• From pair (m,n) to pair (m + 2, n): we advance two
points in the first contour but stay in the original point
on the second contour.

• From pair (m,n) to pair (m + 2, n + 2): we advance
two points on both contours.

In our system, we only allow the transitions from (m,n)
to (m,n + 1), (m + 1, n) (alignment) and (m + 1, n + 1)
(matching). We have tested the performance of the system
by allowing longer transitions and we concluded that the
improvement was not significant.

In the proposed approach, the cost associated to a transi-
tion serves as a multiplier of the distance associated with a
point pair. It can be used to favor shorter transitions, or to
favor ”matching” transitions, for example. For example, if
there are no occlusions, we would want to favor matching
transitions where we advance one point in both contours,
and not transitions for alignment, where only one contour
advances for one point. However, we experienced that the
behavior with this approach is worse in cases of partial
occlusions, where a lot of alignment transitions are required
to match the contours properly. A good balance in our system
was a factor of 1.5 for alignment, and a factor of 1 for
matching, meaning that alignment has an additional cost.
This improved considerably the matching process in the
fingertips, where there are points with similar distances very
close.

The accumulated cost C for a pair (i, j) if the last matched
point was (m,n) can then be expressed as:

C(i, j) = C(m,n) + (7)
minallowed jumps(J(m− i, n− j)× c(i, j))

An example with constant cost for the different transitions
J is shown in Figure 4. In order to compute the accumulated
cost in the white bordered cell (4, 4), we add the intrinsic
cost of the pair c(4, 4) = 1 and the minimum accumulated
cost for the possible predecessors, that in this case is an
alignment transition from (4, 3). J is set to one in this case
for simplicity. This accumulated cost is calculated for all the
point pairs until the end point pair is reached.

Fig. 4. Distance matrix with accumulated costs.

D. Backtracking

Once all the accumulated distances have been calculated,
the backtracking process begins. The set of best correspon-
dences is extracted by backtracking the ”best predecessor”
from the end point pair and repeating the process until the
starting point pair is reached.

Fig. 5. Two frames of each sequence used in evaluation: moving, pushing,
rotating an object and simple hand waving.

IV. EXPERIMENTAL EVALUATION

We compared the performance of the ICP algorithm de-
veloped in [2] and the DTW algorithm developed proposed
here in a number of hand gesture and object manipulation
sequences. For the ICP algorithm, we allow the maximum



Fig. 6. Waving sequence: ICP(thick/circle line) and DTW (thin line).

Fig. 7. Pushing sequence: ICP(thick/circle line) and DTW (thin line).

Fig. 8. Moving sequence: ICP(thick/circle line) and DTW (thin line).

number of iterations to be 50. The sequences on which
the performance of the algorithms was evaluated included
moving, pushing and rotating an object, and simple hand
waving, see Figure 5. Ground truth was provided by manu-
ally marking the matched pairs in all frames. The results are
represented by plotting the error probability density function.

The waving sequence is the simplest one. The hand
contour points lie in the same plane, facing the cameras and
without any object involved. These are the ideal conditions

Fig. 9. Rotating sequence: ICP(thick/circle line) and DTW (thin line);
Rotating sequence

of the ICP algorithm, and the performance of this algorithm
in this sequence is very good. The performance of DTW in
this sequence is slightly worse, see Figure 6.

The rest of the sequences consist on the manipulation
of an object, so there are occlusions. ICP is less robust to
occlusions than DTW, since usually the hand contour shape
is considerably different in stereo images when there are
occlusions present, see Figure 2. But the main advantage
of DTW is that it shows a good performance for the case
when the hand contour points do not lie on a plane, see
Figures 7, 8 and 9. Those figures represent the probability
density of the distance between the extracted fingertips and
the ground truth. As we can see, the distance error in DTW
is concentrated in lower values than in ICP.

We have also performed a qualitative evaluation of the
two methods. Some of the sample results are presented in
Figures 10-12. Here, the reconstruction of hand contours
performed with DTW and ICP is compared to the ground
truth which is represented as a line skeleton from the wrist to
the fingertips. In Figure 10, it is visible that the performance
of DTW is better than ICP when the planar assumption is not
satisfied anymore. Even if the extracted contours are almost
the same in the image, the reconstructed 3D contour is clearly
much better in the case of DTW approach. Figures 12 and
11 also show that the DTW approach not only outperforms
ICP but also performs well in cases of occlusions. While the
thumb is occluded by the rest of the fingers, it is partially
visible in the 3D reconstruction since the right camera image
(not present in the figure) had a better angle to visualize the
thumb.

V. CONCLUSIONS

Extraction and tracking of human hands is an important
part of various interaction and instruction systems. Many
systems have been proposed in literature, based both on
single and multiple cameras. However, most of them are
designed for a specific purpose such as extraction of the
hand contour without the full reconstruction of the hand’s
pose. The systems that can extract full pose of the hand are



Fig. 10. ICP, DTW and ground truth reconstruction for the pushing sequence.

Fig. 11. ICP, DTW and ground truth reconstruction for the moving sequence.

Fig. 12. ICP, DTW and ground truth reconstruction for the rotating sequence.

mostly run off-line or require parallel processing on several
machines to achieve real-time performance.

Our current work aims at developing a full hand pose
tracking system that performs in real-time without any
special hardware. For this purpose, we use a stereo setup
and built upon our previous work on hand contour tracking
that assumed only cases where the hand was kept planar.
To allow for more complex cases of object manipulation,
we propose to replace the original ICP algorithm with a
DTW approach that clearly shows a better performance in the
considered sequences. Based on the contour extraction and
fingertip detection in 2D, followed by the 3D matching and
reconstruction step, the system will be used together with an
articulated model of the hand to estimate the state of all the
joints of the hand with the use of inverse kinematics.
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