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Lumen detection for capsule endoscopy

Xenophon Zabulis, Antonis A. Argyros and Dimitris P. Tsakiris

Abstract— In this paper, two visual cues are proposed, to
be exploited for the navigation of active endoscopic capsules
within the gastrointestinal (GI) tract. These cues consist of the
detection and tracking of the lumen and of an illumination
highlight in capsule endoscopy (CE) images. The proposed
approach aims at developing vision algorithms which are robust
with respect to the challenging imaging conditions encountered
in the GI tract and the great variability of the acquired
images. Cases where no or more than one lumens exists, are
also detected. The proposed approach extends the state-of-the-
art in lumen detection, and is demonstrated for in-vivo video
sequences acquired from endoscopic capsules.

I. INTRODUCTION

Capsule endoscopy (CE) [1], [2] is a diagnostic proce-
dure, in which a pill-sized capsule acquires images of the
gastrointestinal (GI) tract, utilizing a microcamera mounted
on one of its tips (see Fig. 1). The duration of this diagnostic
procedure may range from 6 to 18 hours, because the
capsule moves passively due to the peristalsis of the GI tract.
More recently, research is focused on methods of capsule
endoscopy where the capsule moves actively through the GI
tract. This reduces the duration of the whole procedure, while
allowing the explicit control of the camera’s line-of-sight, a
feature that is very valuable for diagnostic purposes [3], [4].
Example methods employed for the propulsion of the capsule
include magnetically-driven motion, legged locomotion and
others. Some of these principles are currently under scientific
investigation, while some others have already been patented.
Such methods include magnetically-driven motion of the
capsule [5], [6], legged capsule locomotion [4], [7], [8],
vibratory actuation [9] and others [10].

Even in the case of active capsule motion, the examination
is not, yet, foreseen to last less than several hours. For this
reason, methods to automate at least parts of the capsule
navigation are being investigated. The objective is to relieve
the capsule operator from the tedious task of continuously
steering the capsule and allow him to focus on the diagnostic
part of the process. Toward this goal, a fundamental reactive
behaviour to be implemented by the navigation system of
the capsule would be to strive to follow the lumen of the
GI tract, and avoid collisions with its tissue. In this paper,
the term [umen refers to the image region that depicts the
farthest imaged piece of tissue, relative to the camera, when
the capsule is - even coarsely - aligned with the GI tract. In
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Fig. 1. A prototype endoscopic capsule from two views (left is side view
and right is top view). A microcamera surrounded by LEDs is mounted at
the tip of the capsule, inside the plastic dome.

cases of complete misalignment, only the tissue very close
to the capsule is imaged; in such cases the lumen is absent.

CE is facilitated by LEDs mounted on the capsule and near
the camera. The illumination is not ambient and, thus, tissues
closer to the light sources are imaged with greater intensity
than the rest. Thus, the lumen is expected to appear darker
than the rest of the tissue. When the capsule is misaligned
with the GI tract, the lumen is partially seen (if at all) and the
visual field is dominated by tissue that is close, or in direct
contact with the capsule. In this case, this tissue appears
relatively brighter. The corresponding, bright image region
is referred to as highlight.

The detection of the lumen and highlight can provide
information that can be used to reorient the camera and
align it with the GI tract. When the lumen is imaged, the
capsule navigation system would rotate the capsule, so that
the lumen is centered in the image. In cases where the lumen
is invisible or partially imaged, the navigation system would
rotate the capsule, so that the highlight exits the image, and
the entire lumen appears centered in it. This work focuses
on the robust detection of the lumen based on data from
the capsule’s camera. The design of the control system
that actively orients the capsule depends on the specific
propulsion method employed for the active capsule, and is
beyond the scope of the present work.

An important component of the capsule navigation process
is the detection of situations where the above process may
be prone to error, in which case the operator of the capsule
is alerted to resume control. Thus, cases where the lumen
is absent, as well as cases where two lumens appear in the
acquired images, are identified. To our knowledge, there are
two conditions under which two lumens may occur in the
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acquired image. First, when this is an anatomical fact. While
there are no “junctions” in the GI tract anatomy, concavities
give rise to a second lumen that is indistinguishable from the
correct one (a well-known example is the appendix). Second,
there are cases where the capsule faces the crease of a tissue
fold or the inner part of a colon “turn”.

This work also focuses on the particularly great variability
of lumen appearance in CE. In contrast to conventional
endoscopy, in CE the colon is not distended by gas and,
thus, may appear concave in the image. Also, in conventional
endoscopy the probe is actively aligned and not in contact
with the GI tract, to reduce the risk of tissue damage. Due to
these conditions, the lumen typically appears as the largest
and darkest blob in the image and exhibits a convex contour.
Additionally, wiring through the (conventional) endoscopical
probe facilitates high-resolution imaging and high frame
date, whereas in CE the wireless transmission of images and
power-consumption constraints impose limited frame rate
and image resolution. As an example, the widely known
PillCam endoscopic capsule developed by Given Imaging
[11], acquires 256 x 256 pixel images, at a frame rate of 2
Hz.

The remainder of this paper is organized as follows. In
Sec. II related work is reviewed. In Sec. III, the proposed
approach is described and in Sec. IV experiments with the
proposed approach are presented. Finally, conclusions and
directions for future research are provided in Sec. V.

II. RELATED WORK

Most of the relevant work in lumen detection regards
conventional endoscopy, the detection of the lumen aims at
the precise control of the endoscopic probe, so that it does
not collide with the tissue. Thus, most of the reviewed works
assume that the lumen is present in the image [12]. The
case of detecting whether the lumen is really imaged has
not been thoroughly investigated and, thus, only couple of
marginally-relevant works are reviewed, at the end of this
section. Also, to our knowledge, the use of highlights as a
cue to CE navigation, has not appeared in the literature.

A starting point for several approaches to lumen detection
is to focus interest on a coarse and dark image region, assum-
ing that it corresponds to the lumen, and then refine the shape
of this region. In this context, the consistent appearance of
the lumen as the largest dark blob in endoscopic images
[13], gave rise to image-thresholding approaches. To avoid
the empirical selection of the threshold value, methods for
its automatic adjustment were proposed in [14] and [15].
These approaches exhibit weak performance at cases of low
contrast, where the difference between the lumen and the
rest of the image pixels is not striking.

The thresholded image is combined in [16] with gradient
information capitalizing on the characteristic pattern of inten-
sity, which gradually increases outwards the lumen boundary.
To detect this pattern the iris filter [17] is utilized, in order
to evaluate the degree of convergence of the gradient vectors
towards some image region. The size of the filtering kernel
is set to approximate the image size of the candidate. The

result of threshold and filtering is prone to local maxima of
intensity, due to mucosal reflections, shadows, or noise. To
better approximate the lumen boundary, a region-growing
process was employed in [18], [14], [15]. In [19], color
and texture were combined in the lumen’s region-extraction
process utilizing an image segmentation technique [20]. The
method in [21], detects the lumen in the frequencies domain,
based on template-matching in the Fourier transform of the
image. The prototype is obtained through training, with
images in which the lumen prominently appears. In [22],
fuzzy logic was utilized to extract the lumen.

The methods in [23], [24], [18], [14], [15] tackle local
maxima with a coarse-to-fine approach that is based on image
pyramids and quad-trees. The coarse-to-fine treatment of the
data facilitates the acceleration of the process. Also, for
time-efficiency, the methods of [16] and [15] were hardware-
optimized in [25] and [26], respectively.

To our knowledge and as stated in [19], “... deciding
whether an image contains the distant colon lumen or not,
has not been investigated in the literature”. The work in [19]
implicitly detects the occurence of the lumen in the image, by
estimating the ratio of lumen and tissue pixels (utilized as an
indicator of image informativeness). The work in [27] detects
lumen contraction, i.e. the abrupt change of lumen diameter,
by detecting a temporal peak of the mean image intensity.
However, this method cannot detect a non-contracting lumen.

III. PROPOSED METHOD

Due to the interplay of the light shed by LEDs and
the 3D shape of the colon, it is reasonable to assume
that both the lumen and the highlight correspond to size-
dominant local extrema of image intensity. Specifically, the
lumen corresponds to the most distant part of the tissue and
therefore appears as the darkest image area. Similarly, the
highlight is expected to be the brightest image area.

The input to the proposed method is a circular image of
radius R. Unless stated otherwise, the algorithm operates on
a monochromatic image with intensities in the range [0, 1].
When color is considered, the image is initially transformed
to the HSV color space and the hue component is used. The
output consists of:

« One or two candidate highlight regions.

e Zero (minimum), one (typically), or two (maximum)

lumen regions.
The representation of each region includes its pixels, its
contour, and a representative point (defined below).

The proposed method detects the lumen and the highlight
by a coarse-to-fine version of the Mean Shift algorithm
(MS) (Sec. III-A). The MS algorithm runs several times
with different seed points and the detected extrema are
spatially clustered. For each cluster, a representative is kept
which is then grown to a size-dominant bright or dark
image region, based on a region-growing technique (Sec. III-
B). The resulting regions are then further evaluated as to
whether they are likely to correspond to the pursued lumen(s)
and highlight (Sec. III-C). Finally, the detected regions are
tracked over time (Sec.III-E). In addition, the case that the
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lumen is not present in the image is investigated (Sec.III-D).
An overview of this method is illustrated in Fig. 2.

A. Localization of size-dominant local extrema of intensity

The localization of size-dominant local extrema of inten-
sity is performed with a variant of the MS algorithm [28].
This algorithm is a mode detector for data samples drawn
from a probability density function (PDF). MS iteratively
shifts a weighting kernel K, by centering it to its centroid,
which is computed by weighting the locations of the kernel’s
points with their underlying PDF values. In this work, the
samples are the image pixels, the PDF is the image intensity
function, and K is uniform and circular; at a given position,
its center is denoted as ¢, and its centroid as ¢.. The method
iterates between (a) computing ¢; and (b) shifting K to
be centered at ¢.. The algorithm terminates either when C
convergences to a stable location (i.e. when |¢; — ¢;| becomes
less than some threshold 7) or when a maximum number of
iterations is reached. The initial value of ¢; is an input to the
algorithm and called a seed point. The size of K determines
the scale of the detected mode. A small kernel can be trapped
in extrema of small spatial extent. In contrast, a large kernel
will converge to coarse-scale modes, but with less accuracy
caused by the intense blurring due to the large K.

For the detection of size-dominant extrema, an iterative,
coarse-to-fine version of MS is proposed. The proposed
algorithm starts with a kernel K of radius pg, which is
progressively reduced. In each subsequent iteration ¢ > 1,
the basic MS step is performed and the resulting location
forms the seed of the next iteration. The kernel radius and
shift threshold are reduced as p; = pof’ and 7; = 13,
respectively, where 5 € (0,1). A large kernel ensures
robustness against extrema of minor size, while reducing
its size increases the extrema localization accuracy. The
result of this process is a point referred to as a Mean Shift
Result (MSR) (see Fig. 2b). Being initialization-dependent,
the MS algorithm does not provide a global result. Thus,
it is multiply executed for seed points that are log-polarly
distributed around the image center ¢ = (0,0) (see Fig. 2c¢).

When a kernel is partially outside the image, inaccurate
results are obtained, because unknown pixel values have to
be considered. To ensure robust behavior, K is prevented
from crossing these boundaries. To retain K’s convergence
towards the extremum, its motion is adjusted to follow the
boundary until convergence. The adjustment accounts for the
circular shape of the CE image and proceeds as follows:
Let KC be centered at ¢, its centroid ¢, and ¥ = ¢, — ¢,,.
If centering K at ¢; would cause C to cross the image
boundary (|é;, — ¢z > R — p;), then ¥ is decomposed into
two orthogonal vectors. These are ¥, and v, with ¥, being
parallel to £ = @— &. The shift of K is then performed in
two steps. In the first, C is shifted in the direction of ¥, for
a distance R — |¢, — 0] — p;; this guarantees that K is exactly
tangent to the image boundary. In the second, X is shifted
in the direction and distance defined by ¥,. As a result,
“slides” tangentially to the image boundary.

B. Region extraction

1) Clustering MSRs: The multiple MSRs of the previous
step occur closely clustered at the spatial vicinities of size-
dominant intensity extrema (see Fig. 2d). In contrast, when
such extrema do not exist in the image, the MSRs are
scattered across the image with great variance (see Fig. 3).
Based on this observation, a criterion is evaluated to detect
if the lumen is really present in the image or not. Details are
presented in Sec. III-D. If the lumen is not present in the
image, the remainder of this step deals only with highlight
detection.

The input MSRs are clustered based on spatial proximity,
through a generalized connected components labeling (CCL)
algorithm. Two MSRs are grouped together if their Euclidean
distance is less than 6. The CCL algorithm computes the
transitive closure of this relation and partitions the set of
MSRs into a number of equivalence classes, each being a
cluster of “connected” MSRs. For each such cluster, the MSR
with the highest (for highlight) or lowest (for lumen) mean
intensity at its neighborhood is selected as its representative.

2) Extracting coarse representations of image regions:
The representatives extracted in the previous step are used
as input seed points to a Recursive Region Extraction (RRE)
process. This is a region-growing process, whose goal is to
extend the cluster representatives into their corresponding
image regions and which operates as follows. Initially, each
region contains a seed point p, which is the representative of
a cluster of MSRs. Immediate neighbors of pixels already
assigned to the region are added to it, if their intensity
differs less than a threshold s to the mean intensity in the
neighborhood of p. This process is an iterative one. Each
iteration j results in an image region R ;. Moreover, in each
iteration, x is modulated as k; = ko + jro/7, where 7 is
an input constant. The process is terminated if (a) the region
does not grow any more, or if (b) by growing the region by
one more iteration (j + 1) any of the following would occur:

o The area of R; increases by an order of magnitude.

o The compactness! of R; decreases by an order of

magnitude.

3) Refining image regions: The regions extracted in the
previous step are refined utilizing an active contour (or
“snake”) [29] (see Fig. 2e). The contour energy minimized
by the snake contains terms depending on color, gradient and
contour smoothness.

C. Region evaluation

In this step, the extracted bright and dark regions are
evaluated, based on their likelihood to correspond to high-
lights and lumens, respectively. For bright regions, only the
best scoring region is selected. Dark regions are sorted with
respect to a measure of this likelihood, since there might be
more than one lumen appearing in the image. For a dark
region D the metric is:

S=1I>.C A, D

IThe compactness of an image region is measured as the ratio of the
region’s area to that of a circle with the same perimeter.
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Fig. 2. Overview of the steps of the proposed method. Left to right: (a) Original image with superimposed result; solid line outlines highlight and dashed
line the lumen. (b) Behavior of the proposed variant of the MS algorithm. Figure shows the trajectory of K and the progressive reduction of its radius.
Notice that before converging to the intensity extremum, the trajectory of the kernel is parallel to the boundary of the image. (c) Initialization seeds for
multiple runs of the MS algorithm. (d) The resulting MSRs for the dark (bright dots) and bright (dark dots) areas. (e) Extracted regions and their boundary

approximation; region representatives indicated with dots.

where A is D’s area, C is the ratio of D’s area over its
perimeter, [ = 14 (1 — my) and m; the mean intensity of
its representative point. In the above equation, the / factor
is set to be the most influential, because it represents the
“darkness” at the neighborhood of the representative. For
bright regions, the metric is simplified to the value of the
mean intensity of the region. Due to the multiplicative nature
of the above metric, runner up solutions exhibit a large metric
difference to the winning one. A second lumen is considered
only if the score of the second-winning region is in the same
order of magnitude as the first.

D. Absence of lumen

Judging whether the lumen appears or not in an image
depends on the evaluation of four criteria. Fig. 3 shows
a typical case of an image in which the lumen is not
present. The central part of the image is bright due to
LED illumination and, consequently, the image periphery is
relatively dark. As a result, the MSRs corresponding to the
dark areas (dMSRs) are scattered in the periphery of the
image. Thus, an image is considered to be lumen-less if all
of the following hold:

o The majority (> 90%) of locations of the dMSRs occur

at the periphery of the image.

o The spatial variance of dMSRs locations is high.

o Clustering of dMSRs yields more than one cluster.

« The RRE region extracted for each of the above clusters

exhibits low compactness.

E. Tracking and target selection

The detected regions are tracked across time by associating
regions across frames. This association is based on region
overlap and is relatively simple because, in a certain frame,
the detected regions are usually few, sparsely dispersed and
non-occluding each other.

The tracking process is utilized in target selection. There
are cases at which multiple size-dominant dark blobs occur
in an image, without any of them really corresponding to
the lumen. Such cases are due to scene complexity (e.g.
colon folds, turns, etc.) and shadows. Such artifacts occur
only for a few frames in the temporal sampling of our
experiments. The tracking history is, therefore, utilized to

Fig. 3. Absence of lumen. When the lumen is not visible, the MSRs are
scattered in the periphery of the image.

reject lumen region hypotheses whose temporal duration is
short. In practice, a certain region should be considered as a
valid lumen hypothesis only if it has been tracked for more
than 5 frames.

Finally, there are cases where multiple lumens do occur
and which are tracked by the proposed approach. Additional
visual cues or other type of evidence is required to purpose-
fully select the best candidate in context-dependent and task-
driven application scenarios.

IV. EXPERIMENTS

In this section, the effectiveness of the proposed approach
is compared to existing approaches to lumen detection and
evaluated in particular situations that can be encountered in
CE. Images were acquired by a Given Imaging endoscopic
capsule with nominal size 256 x 256 pixels and, effective
R = 124 pixels. The frame rate was 2 fps. The values for
the parameters of the proposed method are: py = 2R/3,
790 = 1 pixel, § = 2/3, kK = 7, v = 4, and the number
of MS iterations in step 1 of the method was 5. Fig. 2 and
Fig. 3, were briefly discussed above to illustrate the steps of
the proposed method. Fig. 2 shows a conventional case of
lumen detection, which is treated adequately by several of
the existing methods. Fig. 3 shows a typical case where the
lumen is not imaged.

First, the proposed method is compared with other existing
approaches. Region growing techniques (e.g. [14]) perform
adequately in clearly defined lumen occurrences, but are
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Fig. 4. Comparing approaches to lumen detection: (a) original image, (b)
region growing with low tolerance, (c) region growing with high tolerance,
(d) iris filter response, (e) combination of region growing and iris response,
(f) proposed approach.

hindered by the presence of shadows (see Fig. 4). Due to
the shadow, there is no ideal threshold value that correctly
segments the lumen without over- or under-estimating its
area (see Fig. 4b and c). The convergence of gradient towards
the inner of the candidate lumen area can be combined to
refine this result, as in [14]. However, in the case of Fig. 4
the response of the iris filter (shown in Fig. 4d) does not
disambiguate the boundary, because, due to the shadow, the
gradient in the region is weak. In fact in this image, the
dominant filter response (shown by the arrow) is located on
the well-focused tissue fold, and on not the visible part of the
lumen, which occurs near the image border. Combining the
two responses leads to the less accurate contour of Fig. 4e.
In the proposed approach, the consideration of contour
compactness in the energy of the active contour restricts the
overestimation of the lumen. In addition, tracking multiple
candidate lumens, as proposed, facilitates, not only the better
description of the imaged scene (cases of two lumens),
but also the compensation against short failures of lumen
detection (see also Fig. 7 below).

Fig. 5 corroborates that it is more accurate to select the
region of lower intensity rather than the center of mass or the
contour, when tracking the representative of the lumen. In the
left column, the obliqueness by which the lumen is imaged
sets the center of mass approximately in the center of the
image, whereas the darkest region indicates more accurately
the orientation of the capsule relative to the axis of the
GI tract. The remaining columns are a sequence of frames,
which were acquired shortly apart (1 sec each). They show
how the collapse of tissue tangent to the capsule dome can
partially occlude the GI tract in front of the capsule. As seen
in the first frame, the “pathway” through the GI tract is on the
top part of the lumen. In the remaining frames, most of the
lumen is collapsed and the centroid of its image region does
not point to the direction that the capsule is to be oriented.

Fig. 5. Comparison of region representatives. Red targets plot the centroid
(mass center) and green targets indicate the darkest lumen region.

Fig. 6. Processing an image sequence where a second lumen appears. A
single lumen appears in the initial frames of the above sequence (top row). In
the bottom row, a second lumen gradually appears and is tracked. Dashed
lines outline the detected lumens and a solid line outlines the highlight.
Region representative points are marked with dashed circles.

In Fig. 6, an ambiguous case of lumen detection is
shown. In the first frames of the sequence, a single lumen
is detected and localized. In subsequent frames, the lumen
size decreases, its image intensity increases, and a second
lumen appears. Whichever lumen the capsule should follow,
there are frames where the assumption that the lumen is the
largest and darkest blob in the image does not hold. By
selecting the extremum as the representative, the potential
target direction of the capsule is guaranteed to point within
the lumen. In the video accompanying this paper [30], a
number of experiments in indicative CE image sequences
are shown.

Finally, Fig. 7 shows a case where a spurious second
lumen briefly occurs in the image. The spurious lumen is
removed from consideration, as it occurs for only a few
frames.

Processing a video frame requires about 3 sec on a con-
ventional Pentium PC that runs an unoptimized MATLAB
implementation of the proposed method.

Fig. 7. Rejecting candidate image regions that occur for short time periods.
The candidate region outlined with a dashed line is rejected, because it
occurs only for a few frames. Lumen and highlight outlined with green and
blue solid lines, respectively; representatives are marked with circles.
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V. CONCLUSIONS

In this paper, two visual cues to endoscopic capsule nav-
igation are proposed. These cues are based on the detection
and tracking of the lumen and of an illumination highlight
in CE images. The lumen is considered as a target direction
for navigation, whereas the intense presence of a highlight
signifies the misalignment of the capsule relative to the colon.
For example, in the top row of Fig. 6, the highlight is
(approximately) always in the opposite semi-circle on which
lumen resides. In the second row, where two lumens appear,
the highlight occurs between them. In both cases, rotating the
camera so that the highlight exits the visual field, the lumen
would become more centered in this field. The proposed
approach identifies cases where the lumen is not imaged,
to prevent from feeding the capsule navigation process with
spurious information. It also identifies the case where two
lumens are imaged.

This work extends the state-of-the-art in lumen detection
by coping with the large image variability and difficult imag-
ing conditions encountered in CE, which are significantly
different than those of conventional endoscopy. However, the
results might also be useful to conventional endoscopy, as
the microrobotic control of the corresponding probe is also
a current research topic, aiming at the simplification of probe
control and the prevention of tissue damage. In this context,
the location of the intensity minimum within the contour of
the lumen is a more useful cue than its centroid.

Two main follow up studies can be identified. The first
is to validate (in simulation and in-vitro) the adequacy of
the proposed visual cues in supporting capsule navigation.
The second is to semantically analyze the combined motion
patterns of lumen(s) and highlight in order to infer informa-
tion about the orientation of the capsule relative to the GI
tract. Another direction for future work is the integration of
the proposed method with existing methods which detect CE
video frames that are not useful for navigation, due to severe
clutter or illumination artifacts. Such cases occur when the
visual field is dominated by bubbles formed by intestinal
juices [31], or when the information value of the acquired
image is low [19], due to low contrast or lack of imaged
tissue.
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