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Abstract. In this paper we propose a new approach for tracking mul-
tiple objects in image sequences. The proposed approach differs from
existing ones in important aspects of the representation of the location
and the shape of tracked objects and of the uncertainty associated with
them. The location and the speed of each object is modeled as a discrete
time, linear dynamical system which is tracked using Kalman filtering.
Information about the spatial distribution of the pixels of each tracked
object is passed on from frame to frame by propagating a set of pixel
hypotheses, uniformly sampled from the original object’s projection to
the target frame using the object’s current dynamics, as estimated by the
Kalman filter. The density of the propagated pixel hypotheses provides
a novel metric that is used to associate image pixels with existing ob-
ject tracks by taking into account both the shape of each object and the
uncertainty associated with its track. The proposed tracking approach
has been developed to support face and hand tracking for human-robot
interaction. Nevertheless, it is readily applicable to a much broader class
of multiple objects tracking problems.

1 Introduction

This paper presents a novel approach for multiple object tracking in image se-
quences, intended to track skin-colored blobs that correspond to human hands
and faces. Vision-based tracking of human hands and faces constitutes an impor-
tant component in gesture recognition systems with many potential applications
in the field of human-computer and/or human-robot interaction.

Some successful approaches for hand and face tracking utilize ellipses to model
the shape of the objects on the image plane [1–5]. Typically, simple temporal
filters such as linear, constant-velocity predictors are used to predict/propagate
the locations of these ellipses from frame to frame. Matching of predicted ellipses
with the extracted blobs is done either by correlation techniques or by using
statistical properties of the tracked objects.

In contrast to blob tracking approaches, model based ones [6–11] do not track
objects on the image plane but, rather, on a hidden model-space. This is com-
monly facilitated by means of sequential Bayesian filters such as Kalman or
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particle filters. The state of each object is assumed to be an unobserved Markov
process which evolves according to specific dynamics and which generates mea-
surement predictions that can be evaluated by comparing them with the actual
image measurements.

Model based approaches are commonly assumed to be more suitable to track
complex and/or deformable objects whose image projections cannot be modeled
with simple shapes. Human hands, especially when observed from a short dis-
tance, fall in this category. Despite the fact that standard Bayesian filtering does
not explicitly handle observation-to-track assignments, the sophisticated tempo-
ral filtering which is inherent to model based approaches allows them to produce
better data association solutions. This is particularly important for multiple ob-
jects tracking, where it is common for tracked objects to become temporarily
occluded by other tracked or non-tracked objects.

Among model-based approaches, particle filtering [12] has been successfully
applied to object tracking, both with edge-based [12] and kinematic [7, 8] imaging
models. With respect to the data association problem, particle filtering offers a
significant advantage over other filtering methods because it allows for different,
locally-optimal data association solutions for each particle which are implicitly
evaluated through each particle’s likelihood. However, as with any other model-
based approach, particle filters rely on accurate modeling, which in most cases
leads to an increased number of unknown parameters. Since the number of re-
quired particles for effective tracking is exponential to the number of tracked
parameters, particle filter based tracking is applicable only to problems where
the observations can be explained with relatively simple models.

In this paper we propose a blob-tracking approach that differs significantly
from existing approaches in (a) the way that the position and shape uncer-
tainty are represented and (b) the way that data association is performed. More
specifically, information about the location and shape of each tracked object
is maintained by means of a set of pixel hypotheses that are propagated from
frame to frame according to linear object dynamics computed by a Kalman fil-
ter. Unlike particle filters which correspond to object pose hypotheses in the
model space, the proposed propagated pixel hypotheses correspond to single
pixel hypotheses in the observation space. Another significant difference is that,
in our approach, the distribution of the propagated pixel hypotheses provides
a representation for the uncertainty in both the position and the shape of the
tracked object. Moreover, as it will be shown in the following sections, the local
density of pixel hypotheses provides a meaningful metric to associate observed
skin-colored pixels with existing object tracks, enabling an intuitive, pixel-based
data association approach based on the joint-probabilistic paradigm.

The proposed approach has been tested in the context of a human-robot inter-
action application involving detection and tracking of human faces and hands.
Experimental results demonstrate that the proposed approach manages to suc-
cessfully track multiple interacting deformable objects, without requiring com-
plex models for the tracked objects or their motion.
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Fig. 1. Block diagram of the proposed approach

2 Problem Description and Methodology

A tracking algorithm must be able to maintain the correct labeling of the tracked
objects, even in cases of partial or full occlusions. Typically, this requirement calls
for sophisticated modeling of the objects’ motion, shapes and dynamics (i.e. how
the shape changes over time). In this paper we present a blob tracker that han-
dles occlusions, shape deformations and similarities in color appearance without
making explicit assumptions about the motion or the shape of the tracked ob-
jects. The proposed tracker uses a simple linear model for object trajectories and
the uncertainty associated with them. Moreover, it does not rely on an explicit
model for the shape of the tracked object. Instead, the shapes of the tracked ob-
jects and the associated uncertainty is represented by a set of pixel hypotheses
that are propagated over time using the same linear dynamics as the ones used
to model the object’s trajectory.

An overview of the proposed approach is illustrated in Fig. 1. The first step
in the proposed approach is to identify pixels that are likely to belong to tracked
objects. In the context of the application under consideration, we are interested
in tracking human hands and faces. Thus, the tracker implemented in this paper
tracks skin-colored blobs1. To identify pixels belonging to such objects we em-

1 The proposed tracking method can also be used to track blobs depending on prop-
erties other than skin color.
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(a) (b) (c) (d) (e)

Fig. 2. Object’s state representation. (a) Observed blob (b)-(e) Examples of possible
states. Ellipses represent iso-probability contours for the location of the object (i.e. the
first two components of xt). Dots represent the pixel hypotheses.

ploy a Bayesian approach that takes into account their color as well as whether
they belong to the foreground or not. Image pixels with high probability to
belong to hand and face regions are then grouped into connected blobs using
hysteresis thresholding and connected components labeling, as in [3]. Blobs are
then assigned to objects which are tracked over time. More specifically, for each
tracked object two following types of information is maintained:

– The location and the speed of the object’s centroid, in image coordinates.
This is encoded by means of a 4D vector x(t) = [cx(t), cy(t), ux(t), uy(t)]T,
where cx(t) and cy(t) are the image coordinates of the object’s centroid at
time t and ux(t) and uy(t) are the horizontal and vertical components of its
speed. A Kalman filter is used to maintain a Gaussian estimate x̂(t) of the
above-described state vector and its associated 4×4 covariance matrix P(t).

– The spatial distribution of the object’s pixels. This is encoded by means of
a set H = {(xi, yi) : i = 1 . . .N} of N pixel hypotheses that are sampled
uniformly from the object’s blob and propagated from frame to frame using
the dynamics estimated by the Kalman filter.

The representation described above is further explained in Fig. 2. Figure 2(a)
depicts the blob of a hypothetical object (a human hand in this example). Fig-
ures 2(b)-(e) depict four possible states of the proposed tracker.

The distribution of the propagated pixel hypotheses provides the metric used
to associate measured evidence to existing object tracks. During the data asso-
ciation step, observed blob pixels are individually processed one-by-one in order
to associate them with existing object tracks.

After skin-colored pixels have been associated with existing object tracks, the
update phase follows in two steps: (a) the state-vector (centroid’s location and
speed) is updated using the Kalman filter’s measurement-update equations and
(b) pixel hypotheses are updated by resampling them from their associated blob
pixels. The resampling step is important to avoid degenerate situations and to
allow the object hypotheses to closely follow the blobs shape and size.

Finally, track management techniques are employed to ensure that new objects
are generated for blobs with pixels that are not assigned to any of the existing
tracks and that objects which are not supported by observation are eventually
removed from further consideration.
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(a) (b) (c) (d)

Fig. 3. Blob detection. (a) Initial image, (b) foreground pixels, (c) skin-colored pixels,
(d) resulting skin-colored blobs.

3 The Proposed Tracking Method

In this section we provide a detailed description of the proposed multiple objects
tracking method.

3.1 Segmentation of Skin-Colored Foreground Blobs

The first step of the proposed approach is to detect skin-colored regions in the
input images. For this purpose, a technique similar to [3, 13] is employed. Ini-
tially, background subtraction [14] is used to extract the foreground areas of
the image. Then, for each pixel, P (s|c) is computed, which is the probability
that this pixel belongs to a skin-colored foreground region s, given its color c.
This can be computed according to the Bayes rule as P (s|c) = P (s)P (c|s)/P (c),
where P (s) and P (c) are the prior probabilities of foreground skin pixels and
foreground pixels having color c, respectively. Color c is assumed to be a 2D
variable encoding the U and V components of the YUV color space. P (c|s) is
the prior probability of observing color c in skin colored foreground regions. All
three components in the right side of the above equation can be computed based
on offline training.

After probabilities have been assigned to each image pixel, hysteresis thresh-
olding is used to extract solid skin color blobs and create a binary mask of
foreground skin-colored pixels. A connected components labeling algorithm is
then used to assign different labels to pixels that belong to different blobs. Size
filtering on the derived connected components is also performed to eliminate
small, isolated blobs that are attributed to noise.

Results of the intermediate steps of this process are illustrated in Fig. 3.
Figure 3(a) shows a single frame extracted out of a video sequence that shows
a man performing various hand gestures in an office-like environment. Fig. 3(b)
shows the result of the background subtraction algorithm and Fig. 3(c) shows
skin-colored pixels after hysteresis thresholding. Finally, the resulting blobs (i.e.
the result of the labeling algorithm) are shown in Fig. 3(d).
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(a) (b) (c) (d)

Fig. 4. Tracking hypotheses over time. (a), (b) uncertainty ellipses corresponding to
predicted hypotheses locations and speed, (c), (d) propagated pixel hypotheses.

3.2 Tracking Blob Position and Speed

The dynamics of each tracked object are modeled by means of a linear dynamical
system which is tracked using the Kalman filter [15, 16]. The state vector x(t)
at time t is given as x(t) = (cx(t), cy(t), ux(t), uy(t))T where cx(t), cy(t) are the
horizontal and vertical coordinates of the tracked object’s centroid, and ux(t),
uy(t) are the corresponding components of the tracked object’s speed.

The Kalman-filter described above is illustrated in Figures 4(a) and 4(b) which
show frames extracted from the same sequence as the one in Fig. 3. The depicted
ellipses correspond to 95% iso-probability contours for the predicted location
(smaller, red-colored ellipses) and speed (larger, purple-colored ellipses) of each
tracked object’s centroid. As can be verified, objects that move rapidly (e.g.,
object 2 in Fig. 4(a)) or objects that are not visible (e.g., object 2 in Fig. 4(b))
have larger uncertainty ellipses. On the other hand, objects that move slowly
(e.g., faces) can be predicted with more certainty.

3.3 Pixel Hypotheses Propagation

Pixel hypotheses are propagated using the predicted state estimate x̂(t|t − 1)
and the predicted error covariance P(t|t − 1) of the Kalman filter discussed in
the previous section. More specifically, each pixel hypothesis (xi, yi) in H =
{(xi, yi) : i = 1 . . .N} is propagated in time by drawing a new sample from

N

([
xi + ûx(t|t − 1)
yi + ûy(t|t − 1)

]
,Ph(t|t − 1)

)
(1)

where ûx(t|t−1) and ûy(t|t−1) are the predicted velocity components (i.e. third
and forth element of x̂(t|t− 1) and Ph(t|t− 1) is the top left 2× 2 submatrix of
P(t|t − 1).

Figures 4(c) and 4(d) depict the predicted pixel locations (i.e. pixel hypothe-
ses) that correspond to the object tracks shown in Figs. 4(a) and 4(b), respec-
tively. As can be verified, tracks with larger uncertainty ellipses correspond to less
concentrated pixel hypotheses. On the other hand, propagated pixel hypotheses
tend to have higher spatial density for object tracks that are predictable with
higher confidence.
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Three objects merged into a single blob. Predicted pixel locations for each of
the three objects (1st row), pixels finally assigned to each object (2nd row).

3.4 Associating Pixels with Objects

The purpose of the data association step is to associate observations with exist-
ing object tracks. In this paper, data association is performed on a pixel basis
rather than a blob basis; i.e. each observed skin-colored pixel is individually as-
sociated to existing tracks. This permits pixels that belong to the same blob to
be associated with different object tracks.

The metric used to provide the degree of association between a specific skin-
colored pixel with image coordinates (x, y) and a specific object track oi is as-
sumed to be equal to the local density of the propagated pixels hypotheses of
this track at the location of this specific pixel. More specifically, to estimate the
degree of association A(p, oi) between pixel p and track oi, we make use of the
following metric:

A(p, oi) = αi

CP
N(p)

CN(p)
, (2)

where N(p) = {pk, ‖p − pk‖ ≤ D} is a neighborhood of pixel p, CP
N(p) is the

number of propagated pixel hypotheses of object track oi within N(p) and CN(p)
is the total number of pixels in N(p). αi is a normalizing factor ensuring that
the sum of all data association weights of (2) remains constant for each track
over time. An 8-neighborhood (D =

√
2) has proven sufficient in all experiments.

After pixels have been associated with tracked objects, weighted means (ac-
cording to A(p, oi)) are computed for each tracked object and used for the
Kalman filter update phase. Pixel hypotheses are also resampled from the
weighted distribution of the observed pixels. The above-described data associa-
tion scheme follows the joint-probabilistic paradigm by combining all potential
association candidates in a single, statistically most plausible, update.
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Fig. 6. Tracking results for twelve segments of the office image sequence used in the
previous examples. In all cases the algorithm succeeds in tracking the three hypotheses.

A notable case that is often encountered in practice, is when all pixels of a
single blob are assigned to a single track and vice versa (i.e. no propagated pixel
hypotheses are associated with pixels of other blobs). In this case, resampling of
pixel hypotheses is performed by uniformly sampling blob pixels. This permits
pixel hypotheses to periodically re-initialize themselves and exactly-follow the
blob position and shape when no data association ambiguities exist.

Figure 5 demonstrates how the proposed tracking algorithm behaves in a case
where three objects simultaneously occlude each other, leading to difficult data
association problems. The top row depicts the predicted pixel locations for each
of the three valid tracks. The bottom row depicts the final assignment of blob
pixels to tracks, according to the density of the predicted pixel hypotheses.

4 Experimental Results

Figure 6 depicts the tracker’s output for a number of frames of the image se-
quence comprising the running example used in Figs 3, 4 and 5. As can be ob-
served, the tracker succeeds in keeping track of all the three hypotheses despite
the occlusions introduced at various fragments of the sequence.

The proposed tracker comprises an important building block of a vision-based,
hand- and face-gesture recognition system which is installed on a mobile robot.
The purpose of the system is to facilitate natural human-robot interaction while
guiding visitors in large public spaces such as museums and exhibitions. The
performance of the system has been evaluated for a three-weeks time in a large
public place. Figure 7 depicts snapshots of three different image sequences cap-
tured at the installation site. Despite the fact that the operational requirements
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Fig. 7. Tracking results from a real-world application setup

of the task at hand (i.e. unconstrained lighting conditions, unconstrained hand
and face motion, varying and cluttered background, limited computational re-
sources) were particularly challenging, the tracker operated for a three weeks
time with results that, in most cases, were proved sufficiently accurate to pro-
vide input to the hand- and face-gesture recognition system of the robot. During
these experiments the algorithm ran on a standard laptop computer, operating
at 640 × 480 images. At this resolution, the algorithm achieved a frame rate of
30 frames per second. Several video sequences obtained at the actual application
site are available on the web2.

5 Conclusions and Future Work

In this paper we have presented a novel approach for tracking multiple objects.
The proposed approach differs from existing approaches in the way used to
associate perceived blob pixels with existing object tracks. For this purpose, in-
formation about the spatial distribution of blob pixels is passed on from frame
to frame by propagating a set of pixel hypotheses, uniformly sampled from the
original blob, to the target frame using the object’s current dynamics, as esti-
mated by means of a Kalman filter. The proposed approach has been tested in
the context of face and hand tracking for human-robot interaction. Experimental
results show that the method is capable of tracking several deformable objects
that may move in complex, overlapping trajectories.
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