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a b s t r a c t

There is currently an abundance of vision algorithms which, provided with a sequence of images that
have been acquired from sufficiently close successive 3D locations, are capable of determining the rela-
tive positions of the viewpoints from which the images have been captured. However, very few of these
algorithms can cope with unordered image sets. This paper presents an efficient method for recovering
the position and orientation parameters corresponding to the viewpoints of a set of panoramic images
for which no a priori order information is available, along with certain structure information regarding
the imaged environment. The proposed approach assumes that all images have been acquired from a con-
stant height above a planar ground and operates sequentially, employing the Levenshtein distance to
deduce the spatial proximity of image viewpoints and thus determine the order in which images should
be processed. The Levenshtein distance also provides matches between imaged points, from which their
corresponding environment points can be reconstructed. Image matching with the aid of the Levenshtein
distance forms the crux of an iterative process that alternates between image localization from multiple
reconstructed points and point reconstruction from multiple image projections, until all views have been
localized. Periodic refinement of the reconstruction with the aid of bundle adjustment, distributes the
reconstruction error among images. The approach is demonstrated on several unordered sets of pano-
ramic images obtained in indoor environments.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Numerous omnidirectional camera designs, each with its own
merits and characteristics, have been proposed in the literature.
Compared to conventional perspective cameras, omnidirectional
cameras offer a much wider field of view. Therefore, they facilitate
capturing large portions of the environment with few images and
without resorting to the use of movable gaze control mechanisms
such as pan-tilt units. This property has obvious advantages for vi-
sion applications such as mosaicing, surveillance, telepresence,
map building and localization, justifying the increased interest in
omnidirectional vision. On the other hand, the attractive combina-
tion of increased environment coverage with low pixel bandwidth
comes at the price of more difficult image matching due to the dis-
tortions caused by the intricacies of image formation and the re-
duced visual acuity due to the limited maximum resolution of
contemporary imaging sensors.

This paper is concerned with the challenging problem of deter-
mining the relative positions and orientations of the viewpoints
ll rights reserved.
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corresponding to a set of unordered central panoramic images,
i.e. an image set for which no a priori proximity ordering informa-
tion is available. The aforementioned problem is hereafter referred
to as unordered panoramic image localization and arises naturally
when, for example, dealing with distributed camera networks or
vision-based mobile robot navigation (e.g. the so-called ‘‘loop-clos-
ing” [7] and ‘‘kidnapped robot” [4] problems). Image localization
can be addressed in the framework of the fundamental structure
and motion (SaM) estimation problem and benefits from the wide
field of view offered by a panoramic camera. This is because envi-
ronment features remain visible in large subsets of images and
critical surfaces are less likely to cover the whole visual field. Exist-
ing research on SaM recovery has achieved a high level of sophis-
tication and has produced impressive results. However, most of
this research has approached the problem focusing on image se-
quences. The underlying assumption is that images that have been
acquired close in time have viewpoints that are also close in space
and, therefore, can be processed by repeatedly applying short base-
line algorithms, either in a batch [5,30,12] or in an sequential mode
[6,24,2,33,38]. Short baseline algorithms typically determine im-
age matches with the aid of Harris corners [8] or Lowe’s SIFT
descriptors [19]. Occasionally, the simplifying assumption of a lo-
cally planar ground is made and pose is represented with three
parameters, i.e. two for translation and one for rotation around
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the vertical axis [33]. Often, sequential image localization is solved
concurrently with the spatial mapping problem, thus the family of
related methods are collectively referred to as simultaneous locali-
zation and mapping (SLAM) [2,15]. When applied to a set of unor-
dered images which is the case dealt with in this paper, SaM
estimation becomes more challenging since no prior linear order-
ing of images exists and, therefore, image matching has to cope
with arbitrarily large baselines. Furthermore, a suitable order for
processing images has to be determined automatically. For these
reasons, there exist few approaches that deal with SaM estimation
from unordered image sets, e.g. [35,37,17].

The so-called appearance-based methods [41,14,10,21] are
among the earliest ones proposed for image localization tailored
to unordered panoramic images. Prior to being used in a certain
environment, appearance-based methods require that representa-
tive images of it are acquired and manually associated with loca-
tion information. During operation, an input image is compared
against all reference images. The location whose associated refer-
ence image best matches the input one according to photometric
cues, is reported as that corresponding to the input image. There-
fore, such methods yield coarse, qualitative location information
that is often described as topological localization. The approach
of Lamon et al. [14] is particularly interesting since it shares with
our work the idea of matching images using strings of visual fea-
tures. In [14], strings consist of symbols encoding coarse features
such as vertical edges and color patches, whose ordering conforms
to the relative ordering of the corresponding features in the pano-
ramic image. Since in the context of the present work we are inter-
ested in accurate metric localization, appearance-based methods
will not be discussed any further. Sagues et al. [34] borrow the idea
of maintaining a database of reference views and rely on a set of
images whose positions and orientations have been measured
manually. Nevertheless, image similarity is assessed with a geo-
metric procedure that relies on vertical line matching guided by
the radial trifocal tensor to identify the reference image that is
most similar to an unknown one. An unknown image is finally
localized by computing its relative motion with respect to a pair
of close reference images. Thus, the method is semi-automatic,
requiring a fair amount of tedious manual localization of the refer-
ence images. More relevant to our work is the approach of Ishiguro
et al. [9], who employ a set of cameras that have been placed at the
same height and rely on moving objects to statistically determine
the baselines of camera pairs, even when the two cameras are
not visible from each other.

This work puts forward a novel approach for determining the
relative locations and orientations of a set of unordered panoramic
images, along with structure information in the form of a 2D map
of their imaged surroundings. The main requirement is that all
panoramic images must have been captured from the same height
above a planar ground and with their optical axes perpendicular to
it. Other than that, introduction of artificial markers or other mod-
ifications of the environment are avoided. The proposed approach
operates sequentially, deducing the proximity of image viewpoints
by employing the Levenshtein distance (LD) to compare circular
strings derived from image data confined to horizons. The latter
supply strong geometric cues related to the environment and have
been previously employed for navigation of roving and flying ro-
bots in outdoors settings, e.g. [13,1]. Thus, the LD determines the
order in which images should be processed and also provides
matches among them, from which their corresponding environ-
ment points can be recovered. Environment points need not be vis-
ible in all images in order to be recovered. Recovered points that
are visible in multiple images permit more images to be recon-
structed through resectioning, which in turn allows the recovery
of more points via triangulation and so on, until all images have
been included into the reconstruction. Periodic refinement of the
reconstruction with the aid of bundle adjustment, distributes the
reconstruction errors among images. The proposed approach does
not require any type of training. Furthermore, it has reasonable
computational requirements, therefore is amenable to a near
real-time implementation on ordinary hardware. An earlier version
of the approach has appeared in [23]. Compared to that, the pres-
ent description is more elaborate and encompasses a more rigor-
ous and rapid horizon matching algorithm [36], an automatic
mechanism for selecting the first two images that bootstrap the
reconstruction, a more efficient mechanism of ranking panoramic
images according to the spatial distance of their viewpoints and
more detailed experimental results that include investigations of
the method’s performance for various resolutions of input images
and in the presence of occlusions.

There are two major contributions from this work. First, it is
shown that the LD, an established string distance metric, can be
successfully applied to a fundamental problem in vision. Even at
low resolutions, the LD is shown to be able to support the ordering
of a set of images according to the spatial proximity of their view-
points and to provide reliable matches among points on their hori-
zons. Second, a method is proposed that relies on image horizons,
which in essence are 1D images, to effectively register an unor-
dered set of several panoramic images into a common coordinate
frame without any knowledge of their relative positions or orienta-
tions and by not requiring the environment to be specially struc-
tured or contain predefined features. The proposed method is
shown to be efficient and scalable, being capable of localizing sev-
eral images of large spaces whose visual appearance changes con-
siderably among viewpoints. Furthermore, and despite its use of a
limited amount of image data, the method is demonstrated to be
accurate and resilient to occlusions.

The rest of the paper is organized as follows. An overview of the
proposed method is provided in Section 2. Section 3 concerns im-
age matching using the LD and Section 4 deals with using the
established matches for reconstruction from multiple panoramic
images. Sample experimental results are reported in Section 5.
The paper concludes with a brief discussion in Section 6.
2. Method overview

Assume that a set of images is available that has been acquired
with a panoramic camera confined to move on a planar ground
with its optical axis perpendicular to the former and at a constant
height (cf. Fig. 3). It is desired to estimate the locations and orien-
tations (i.e. pose) of the image viewpoints on a plane parallel to the
ground, without any prior knowledge whatsoever of their relative
spatial arrangement.

Panoramic images are associated on the basis of matched
points. Under our assumed camera motion, the same planar ‘‘slice”
of the environment is projected to the horizons of all images. Dif-
ferently put, ground plane points at infinity project on the horizon
of each panoramic image, i.e. a vanishing circle which is analogous
to the vanishing line in a planar image. This implies that moving
from one viewpoint to another causes horizon points to move
along the horizon, but never away from it. This property is
exploited to turn the 2D image matching problem into a 1D hori-
zon matching one. More specifically, a string similarity measure
is employed to compare the pixel strings corresponding to the
horizons of the images to be matched, whereas pixels not on the
horizons are ignored. The chosen string similarity measure is the
Levenshtein distance [16], which corresponds to the minimum
number of letter transformations that transform one string to the
other and whose identification determines matches between string
letters. Solving the correspondence problem via string matching
was also proposed in [39] for the case of sparse corners. However,
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in contrast to ours, that approach has several limitations such as
the adoption of an approximate affine camera model, the assump-
tion that intensity profiles lie on locally planar patches and the
confinement of string matching to finding the longest common
substring of two strings, without any provision for letter deletions
and insertions due to corner detector failures.

Intuitively, images that have been acquired from nearby loca-
tions will have similar horizon pixel strings, therefore they will
yield a low LD. On the other hand, the horizons of distant images
will differ considerably, amounting to a large LD. Thus, the LD
can (a) assess the proximity of the viewpoints of the compared
images, coping even with wide baseline image pairs and (b) pro-
vide pixel correspondences between horizon pixel strings. Such a
combination of properties is not attained by the various affine
covariant region detectors compared in [25], which while being
capable of providing matches between disparate views, cannot
rank images according to the proximity of their viewpoints. Fur-
thermore, and in contrast to scan matching techniques such as
[3], computation of the LD does not require the relative pose of
the two underlying images to be known beforehand. Since a pano-
ramic horizon covers a 360� field of view, each pixel on it corre-
sponds to an azimuth angle around the camera optical axis.
Hence, pairs of matched horizon pixels allow the recovery of their
corresponding environment points via triangulation. Image match-
ing guides the reconstruction of image poses and the estimation of
structure. A pair of images that share a large number of matches
and a large baseline is selected first. This pair is used to recover
an initial reconstruction. Then, the image that has the smallest
LD with any of the reconstructed ones is added to the reconstruc-
tion by robustly estimating its pose from the known image to
reconstructed point correspondences. This newly added image is
used to reconstruct more points that are seen with sufficiently
large viewing angles. Sparse bundle adjustment is used every few
image insertions to jointly refine the motion and structure esti-
mates through the minimization of the reprojection error. Details
are elaborated in the following Sections 3 and 4.
3. Image matching

3.1. The levenshtein distance

The Levenshtein distance, also known as the edit distance, is a
measure of the similarity between two strings of arbitrary lengths
[16]. Given a pair of strings referred to as the source (s) and target
ðtÞ, the LD corresponds to the minimum number of one-step edit
operations (defined as letter deletions, insertions and substitu-
tions), that are necessary to transform s into t. For example, for
s = ‘‘VISION” and t = ‘‘VISITOR”, LDðs; tÞ ¼ 2 since two changes suf-
fice to transform ‘‘VISION” to ‘‘VISITOR”, i.e. inserting a ‘‘T” before
the ‘‘O” and substituting ‘‘R” for ‘‘N”. Note that, although not nec-
essary, it was assumed that all edit operations are equiponderant
with a cost of 1. The LD can be computed in OðjsjjtjÞ time by a dy-
namic programming technique, known as the Levenshtein algo-
rithm. As a byproduct, this algorithm returns the pairs of letters
that have been matched while computing the LD. The Levenshtein
algorithm has the property of being order-preserving, that is
retaining the order of matched letters. Thus, if a letter at position
i in s matches the letter at position j in t, then letters in s at posi-
tions k > i can only match letters in t that are at positions l > j.
The LD has been employed in various domains in need of approx-
imate pattern matching, such as spell checking, pattern recogni-
tion, speech recognition, information theory, cryptology,
bioinformatics, etc. Regarding computer vision, use of the LD has
been rather limited and has concerned the comparison of graph
structures under edit operations, e.g. [28,42].
3.2. Horizon line matching

As already stated in Section 2, we assume color images acquired
by a central panoramic camera confined to move at a constant
height from a planar ground and with its optical axis perpendicular
to it. A panoramic image can be unfolded with a polar-to-Cartesian
isometry transformation that gives rise to a cylindrical image. Such
an image is represented by a rectangular grid (cf. Fig. 1, top), whose
vertical coordinates axis corresponds to a longitude that we will
refer to as the image or viewpoint orientation. It can easily be ver-
ified that under the assumed motion model, the vanishing line of
the ground plane corresponds to a straight horizontal line (i.e. a
line of fixed y-intercept) in the unfolded image, which will hereaf-
ter be referred to as the horizon line. Moreover, the assumed cam-
era motion guarantees that in the absence of occlusions, if an
environment point projects on the horizon line of one view, then
it appears on the horizon of any other view. Stated differently,
the epipolar constraint for all points on the horizon of a panoramic
image confines them to lie on the horizon line in any other pano-
ramic image acquired under the assumed camera motion. Prior
to extracting a horizon line, linear color normalization is per-
formed separately to each color band to account for possible illu-
mination changes. Furthermore, in order to allow for some
tolerance in the case that the image plane of the panoramic camera
is not exactly parallel to the ground, horizon lines are extracted
through convolution with an 1D Gaussian filter of r ¼ 2, oriented
vertically and centered on the line’s expected location.

Considering the effects camera motion has on the appearance of
the image horizon, pure translation is expected to expand the areas
around the focus of expansion giving rise to pixel insertions, shrink
areas around the focus of contraction resulting in pixel deletions
and shift pixels in other locations by an amount dependent on
scene structure [27]. Pure rotation is expected to introduce a con-
stant, horizontal shift to all horizon pixels. General motion will
have a combined effect. Pixel substitutions are also expected be-
cause of illumination changes, occlusion effects, imaging deforma-
tions and noise. Before applying the LD to the comparison of strings
consisting of horizon pixels, the costs incurred by each edit opera-
tion should be defined. In this work, pixel deletions and insertions
are assumed to have unit cost. The cost of a pixel substitution de-
pends on the absolute differences of the RGB components of the
pixels being compared. If any of these differences exceeds a certain
threshold T, the substitution is assigned a fixed cost of two. Other-
wise, the cost of substitution increases proportionally with the
sum of the three cubed differences and assumes values in the range
[0,2]. More precisely, the substitution cost for two color pixels with
RGB color components ðr1; g1; b1Þ and ðr2; g2; b2Þ and whose color
absolute differences are denoted by Dr ¼ jr1 � r2j; Dg ¼ jg1 � g2j
and Db ¼ jb1 � b2j, is defined as

SðDr;Dg;DbÞ ¼
2

3�T3 ðDr3 þ Dg3 þ Db3Þ if maxfDr;Dg;Dbg 6 T;

2 otherwise:

(

ð1Þ

The definition in Eq. (1) allows for some smoothness in the cost of
substitutions and assigns low values when replacing pixels whose
values differ slightly due to image noise and quantization effects.
A value of 25 for T has produced good results in practice.

The LD involves the comparison of linear strings that have cer-
tain first and last letters. Panoramic horizons, however, are inher-
ently cyclic and their origins in cylindrical images are arbitrary.
Had the relative orientations of image viewpoints been known, this
could have been remedied by circularly rotating all horizon strings
so that their origins corresponded to the same absolute direction.
Since the proposed approach does not make any assumption on
the relative poses of panoramic views, the LD should be substituted



Fig. 1. Example of matches obtained by minimizing the LD between two horizon lines. Note that the bottom image is repeated twice. To improve readability, only one every
12 matches is shown and line segments of different colors are drawn between neighboring matching pixels.
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by the cyclic LD that can account for the arbitrary linearization of
horizons extracted from unfolded panoramic images. More specif-
ically, the cyclic LD for two strings s and t is defined as
minr2PðtÞ LDðs; rÞ, where PðtÞ denotes the set of all circular permu-
tations of string t. The problem of cyclic sequence matching has at-
tracted considerable interest and several algorithms have been
proposed for computing the cyclic LD in less than the Oðjsktj2Þ time
required by the trivial brute force algorithm comprised of comput-
ing the LD between s and every circular permutation of t. These
algorithms are based on the observation that the cyclic LD can be
computed as the minimum LD between s and any substring of
length jtj from t � t, i.e. the concatenation of t with itself. Towards
this end, they transform the problem into one of searching for min-
imum cost paths in a directed acyclic graph and employ dynamic
programming techniques that prune the search space by exploiting
previously computed paths. For instance, Maes [20] has developed
a divide-and-conquer algorithm that has Oðjsktjlog2jtjÞ complexity,
whereas Mollineda et al. [26] examine approximate algorithms. In
[23], we have used a heuristic approach. Very recently, Schmidt et
al. [36] proposed an algorithm to calculate the cyclic LD, which
while having a worst case performance similar to that of [20], per-
forms considerably faster in practice. Owing to its efficiency, the
algorithm of [36] was adopted in this work to deal with computing
the cyclic LD of horizon strings. For brevity, in the remainder of the
paper LD will actually imply cyclic LD.

To match two horizon strings of equal length n, the algorithm of
Schmidt et al. [36] works by first duplicating the target horizon
string next to itself, thus ensuring that it can be matched with
the source string without having to wrap around at string ends.
Restricting matching to continuous substrings of length n from
the duplicated target string excludes the possibility of matching
both a target string pixel and its duplicate to different source pix-
els, a contingency that would violate the uniqueness stereo prop-
erty. Fig. 1 provides two sample images of dimensions
1278 � 144 that were captured about 50 cm apart. Superimposed
lines indicate some of the horizon pixel pairs matched between
the two views as described above. Typically, the number of pixels
matched between two images of this resolution is from 900 to
1000. It is worth pointing out that the order-preserving property
of the Levenshtein algorithm that was mentioned in Section 3.1
also holds (in the cyclic sense) for cyclic matching. Therefore, the
stereo ordering constraint is automatically enforced when match-
ing horizon strings, ensuring that the order of matches is preserved
along horizon lines.

4. Camera pose and scene structure estimation

4.1. Angular alignment of images

This section is concerned with estimating the relative rotation
between two cylindrical images acquired at two different positions
and whose optical centers lie on the plane Z ¼ 0. Note that this
problem is more general compared to that of determining the rel-
ative orientation of two panoramic images acquired from the same
spatial position, which can be effectively dealt with using the shift
property of the Fourier transform as proposed in [29,22]. Fig. 2
shows two panoramic views at locations ðXc;YcÞ and ðX0c;Y

0
cÞ. At

first, we are interested in recovering the angle h that makes the
two views parallel. Following this, we are also interested in recov-
ering the angle / that permits the alignment of both views with the
direction of their relative translation.

Assume that the horizon lines of the image pair have been
matched as explained in Section 3.2. Considering the disparities
of horizon pixels, these have two components. The first, which var-
ies from pixel to pixel, depends on the relative translation of the
two images and the structure of the environment. The second de-
pends on the relative rotation between the images and is the same
for all pixels regardless of the environment. Thus, assuming that
the average of positive translational disparities is approximately
equal to the average of negative ones, the mean of all disparities
approximates the disparity due to rotation. The assumption that
positive and negative disparities cancel out boils down to an impli-
cit assumption regarding scene structure. Nevertheless, experi-
mental evidence indicates that this assumption is valid even in
settings with considerable depth variations of no particular struc-
ture and in the presence of occlusions. The sought h is simply the
estimated circular shift that is necessary to align the second hori-
zon line with the first.

Having canceled the rotation h between the two images, the
direction / of the translational motion of one with respect to the
other can be estimated based on the following observation. When
a camera moves along a straight path without rotating, horizon
pixels move so that positive and negative disparities define two
half circles. These half circles are separated by the foci of expansion
and contraction, which define the direction of translation [27].
Therefore, for two matched horizon lines with no relative rotation,
the two antidiametric points separating the horizon pixels into two
groups with opposite disparity signs yield the direction of transla-
tion / as the direction of the line passing through them. As will
shortly become clear, the angles h and / achieving the angular
alignment of images are needed only when localizing an initial pair
of reference images.

4.2. Localization and map building

Horizon line matching as described in Section 3 supplies the
matched points required for image pose estimation and recon-
struction. Let L denote the set of images that have been localized
at some stage and U the set of those that remain to be localized.
Initially, a pair of reference images is selected and L is initialized
to containing them. More details on the choice of the reference
images are given in the next paragraph. The origin of the coordi-
nate system employed in the reconstruction is taken to coincide
with the location of the first of the reference images. Then, the
direction of translation of the second reference image with respect
to the first is estimated as detailed in Section 4.1. This direction de-
fines the angular coordinate of the second image; its radial coordi-
nate is arbitrarily set to unity and corresponds to an unknown
overall scale. After determining the relative positions of the two
reference images, an initial map of the environment is recovered



Fig. 2. The angles h and / define the relative orientation of two panoramic views. Angle x defines the absolute orientation (viz bearing) of the left view in a global coordinate
system and angle w corresponds to the azimuth angle to a horizon image pixel (see Section 4).
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from them by triangulation from matched horizon points. More
specifically, if an environment point is observed at an azimuth w
by a camera at position ðXc;YcÞ with a bearing angle x, its position
ðX;YÞ on the plane parallel to the floor is constrained by (see also
Fig. 2)

ðY � YcÞ � ðX � XcÞ tanðxþ wÞ ¼ 0: ð2Þ

For two corresponding points in two images, Eq. (2) provides two
linear constraints on ðX;YÞ from which the former can be
determined.

We are now in the position to describe the strategy for selecting
the two initial reference images. The first reference image is chosen
arbitrarily. The second reference image completing the pair should
be chosen so that a significant number of observed points can be
reliably reconstructed from it. It is well known that the accuracy
of point reconstruction via triangulation increases with the trans-
lational displacement between the employed images, i.e. their
baseline. This is because a large baseline amounts to a large con-
tained angle between the two backprojected rays originating at
the image centers and, therefore, to a more precise estimation of
their point of intersection. In this work, the second reference image
is selected as the one being as close to the first as possible in terms
of the LD and at the same time providing a large number of
matches distributed all over the horizon line and seen with suffi-
ciently large contained angles. These requirements translate to
two images sharing many matches and having a baseline that gives
rise to well-conditioned triangulation for most of them.

The availability of a map allows more images to be added to L
through resectioning. More specifically, the image I 2 U that is
closest to any of the images in L in terms of the LD is selected
and removed from U. Being close to at least one of the recon-
structed images ensures that I shares with it many points that have
already been reconstructed. Thus, known map to image correspon-
dences allow the location and pose of I to be estimated in a least
squares manner from constraints on Xc; Yc and x arising from
Eq. (2). Since this computation does not call for the estimation of
the epipolar geometry, it is insensitive to the size of the baseline
between I and its closest image from L, avoiding the frame selec-
tion problem that is common to many SaM algorithms [40]. To
safeguard against errors arising mainly from mismatched points,
the estimation of Xc; Yc and x is performed in a robust regression
framework with the aid of the least median of squares (LMedS)
estimator [32].

The process of directly comparing all cylindrical images in U
against those in L for identifying I can be quite time-consuming,
therefore an improvement over [23] consists in speeding it up by
shortening the horizon strings to be matched, as follows. First, a
coarse representation of each image is generated via repeated
Gaussian smoothing and subsampling by a factor of two. Compar-
ison of horizon lines is then performed at these coarse representa-
tions to determine I, i.e. the cylindrical image that is closest to one
of those already reconstructed. Eventually, horizon pixel matches
for I are determined by matching horizon strings at the original
fine resolution. The resolution at which the horizons are compared
might influence the order in which images are added to L, since the
image I determined at a coarse resolution occasionally differs from
the image J that would have been selected if the fine resolution was
employed. Nevertheless, it has been verified experimentally that
the shortest distances of both I and J from the images in L are very
similar, resulting in the recovery of practically identical recon-
structions upon termination. Yet another improvement to the per-
formance of the horizons comparison process consists in caching
the computed distances of images in U other than the chosen I to
images in L so that they can be reused in the comparisons required
during future iterations.

Once a new image I has been included in L, its matched points
that are not already reconstructed can be added to the map. A point
is reconstructed by examining all pairs of images in which its pro-
jections have been matched. Image pairs that give rise to small
contained angles for the backprojected rays are removed from fur-
ther consideration. A lower threshold of 15� is used to determine
when the contained angle for a pair of rays is sufficiently large or
not. Each of the remaining image pairs yields one estimate for
the coordinates of the point to be reconstructed and the median
of all such estimates provides a robust preliminary estimate. Final-
ly, the point’s coordinates are computed as the mean of the 70% of
the estimates that are closer to the median one. To improve stabil-
ity, a point is reconstructed only if it is visible in more than a min-
imum number of views, which is set to 7 in the current
implementation. Following the introduction of new points in the
map, the poses of all images in L are re-estimated in a robust fash-
ion with the LMedS estimator[32]. Points that are marked as outli-
ers in any of these estimations are removed from the map. Such
points might be reconstructed again later if new constraints on
their coordinates become available from the reconstruction of
more images observing them. Each time a certain number of
images (currently 5) have been added to the reconstruction, pose
and structure estimates are simultaneously refined by minimizing
their average image reprojection error through sparse bundle
adjustment. Minimization of the mean reprojection error evenly
distributes errors among reconstructed points and estimated im-
age poses. Bundle adjustment was performed using our sba pack-
age [18]. The above steps are repeated until U becomes empty, i.e.
all images have been localized.

At this point, it should be pointed out that an alternative ap-
proach for determining image poses would be to first estimate
rotations as detailed in Section 4.1, then cancel their effect by dero-
tation and finally use a reconstruction method such as the ones in
[11,31,12] that assume pure translation and estimate the camera
locations and environment structure in closed form. However,
and despite their elegance, the batch operation mode of such
methods precludes their use in cases where not all images to be
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localized are available beforehand. Sample such cases, for example,
are exploratory navigation scenarios in robotics and continuous
pose estimation for augmented reality applications. Furthermore,
batch translation-only techniques such as [11,31,12] have their
own share of limitations, namely they require fairly long feature
tracks to overcome problems with noise, minimize algebraic in-
stead of physically meaningful geometric cost functions, have sca-
lability problems with the number of available images and points,
etc.

5. Experimental results

This section presents experimental evidence regarding the per-
formance of a C++ implementation of the proposed method applied
to cluttered indoor environments. The experiments reported in
Sections 5.1–5.3 were carried out in a laboratory room, a CAD
floorplan of which is shown in Fig. 7(a). Sample panoramic images
from this room are illustrated in Fig. 4. The experiment of Section
5.4 used another room and its adjacent corridor. Sample images for
that environment are shown in Fig. 11. The panoramic images uti-
lized in all experiments were acquired with the aid of a central
catadioptric color camera with a resolution of 640 � 480 pixels.
This camera has a single effective viewpoint and is made up of
an ordinary pinhole camera combined with a convex mirror. The
y-intercept of horizon lines in the employed images was specified
manually. The coarse resolution used for comparing the spatial dis-
tance corresponding to the viewpoints of horizon lines was 8 times
lower than that of the input images, i.e. 80 � 60 pixels. The follow-
ing subsections provide experimental evidence concerning differ-
ent aspects of the proposed method.

5.1. LD compared to viewpoint distance

The first of the conducted experiments aims to verify a claim
made in Section 2, namely that the magnitude of the LD depends
upon the Euclidean distance between the viewpoints of the images
being compared. To achieve this, a set of images whose pose can be
Fig. 3. Imaging setup used for the experiments of Sections 5.1–5.3. The central
catadioptric camera is attached to a rotating rigid rod, mounted horizontally on the
vertical pole.
determined fairly accurately was acquired as follows. The central
catadioptric camera was rigidly attached to a rotating horizontal
rod mounted on a vertical pole at a height of about 1.7 m above
the floor (see Fig. 3). Rotating the rod with known angles effec-
tively moved the camera along a circle. By varying the position
of the camera along the rod and then completing a full revolution,
more concentric circular trajectories were traced. In total, 48
images were captured, arranged on three concentric circles with
radii 0.4, 0.9 and 1.4 m, each of which contained 16 images. For
an arbitrarily chosen image on the inner circle, Fig. 5 plots the LD
between it and every other image against the image locations that
are within a square of side 3 m. To aid in visualization, a 3D surface
interpolating the distances is drawn. This surface has a funnel-like
shape, confirming that increasing Euclidean distances correspond
to smoothly increasing the LDs. For future reference, the image
set employed in this experiment will be referred to as ‘‘set 1”.

5.2. Accuracy of camera localization

The ‘‘set 1” images employed in the experiment of Section 5.1
were also used to quantify the accuracy of the camera poses esti-
mated with the proposed method. Known circle radii and relative
camera orientation angles provide the ground truth for the image
poses, which can be compared to the camera pose estimated for
each image by the proposed method. Fig. 6(a) facilitates the visual
comparison of the estimated camera poses and the ground truth
values. The estimated camera locations are shown with red circles
while the true locations are shown with blue squares. Short lines
on circles or squares indicate the orientations of the corresponding
cameras. Clearly, the two sets of poses are in close agreement, as
confirmed by the mean and standard deviation of the distance of
the estimated camera locations from their true positions which
are, respectively, 3.8 and 2.3 cm. The orientation error has a mean
of 0.56� and a standard deviation of 0.98�. The 867 points recon-
structed during localization are shown in Fig. 6(b). Note that no
points lying on the walls that are far from the camera viewpoints
are reconstructed, either because they are not seen by enough
cameras with sufficiently large baselines or because they did not
give rise to reliable image matches.

To test the method when the camera moves on a less regular
trajectory, another experiment was conducted using an image set
that will be denoted as ‘‘set 2”. During this experiment, the camera
was attached directly on the vertical pole which was then moved
to 61 distinct positions covering most of the free space of the room.
Application of the method to the acquired images recovered the
camera positions and the map of reconstructed environment
points shown in Fig. 7(b). A total of 2069 points were recon-
structed. Circles are again used to represent the camera locations
and short line segments the camera orientations. As can be seen
by comparing this with the floorplan of Fig. 7(a), the layout and
proportions of the room’s walls have been reconstructed quite
accurately, despite the presence of large textureless wall regions
and significant variations of the amount of external light coming
through the windows. It should be noted that the method has been
able to reconstruct the pillar that exists in the middle of the room,
overcoming ambiguities due to occlusions. The increased errors in
the top left and right parts of the map are due to the lack of any
texture on these areas of the walls that renders horizon matching
more error-prone for them. No ground truth for the camera loca-
tions is available for this experiment due to the practical difficul-
ties involved in measuring them in a global coordinate system.
However, the distance of each camera location from its two nearest
locations has been measured during image acquisition. Using the
estimated camera locations, the mean and standard deviation of
the distances to neighboring locations error were 1.8 and 1.7 cm,
respectively. Overall, the reconstruction results are very satisfac-



Fig. 4. Sample panoramic views of the room employed in the experiments of Sections 5.1–5.3. With reference to its floorplan shown in Fig. 7(a), image (a) is located in the
right, (b) in the top left and (c) in the bottom left. The red line in each of these images corresponds to the location of the horizon.

(a)

(b)

Fig. 5. Side (a) and top (b) views of the surface defined from the LD of image at
location (�0.4,0) on the inner circle to all other images, plotted against the
locations of image viewpoints.
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tory, especially when considering the limited visual acuity of the
employed camera. More specifically, the unfolded images are of
dimensions 1278 � 144 pixels, which amount to approximately
3.5 pixels per degree. For comparison, assuming that the same
imaging sensor was used for acquiring ordinary perspective images
with a field of view equal to 50�, one degree would be imaged on
12.8 pixels. A video illustrating the progress of camera localization
and structure estimation during this experiment can be found on-
line at http://www.ics.forth.gr/~lourakis/panoloc.

The method has also been tested on the image set consisting of
109 views that resulted from the union of ‘‘set 1” and ‘‘set 2” em-
ployed in the previous experiments. It is worth mentioning that
these two image sets have been acquired on different days that
were about 2 weeks apart. Fig. 8 shows the camera poses and
environment map recovered for the combined set. Computing the
localization error in this case is not possible since the reference
localization data for the two individual sets were measured inde-
pendently, employing different coordinate frames. Nevertheless,
and despite the larger number of images to be localized, the local-
ization errors for the images of ‘‘set 1” and ‘‘set 2” within the com-
bined set were found to be at the same level as those computed
after separately localizing the individual sets. The number of recon-
structed points totaled 2413. A related video illustrating the ad-
vance of localization is also available at http://www.ics.forth.gr/
~lourakis/panoloc.

The three image sets employed for obtaining the reconstruc-
tions of Figs. 6–8 were reused in a set of experiments aimed at
comparatively evaluating the performance of localization. More
specifically, this set of experiments measured the processing
times of three variants of the localization method, namely the
one employing the heuristic algorithm for horizon matching that
was described in our earlier description [23] (denoted in the fol-
lowing as ‘‘OMNIVIS”), the one employing the efficient matching
algorithm of [36] at a single resolution (denoted as ‘‘ONERES”)
and that improving the former by performing matching at two
resolutions as described in Section 4 (denoted as ‘‘TWORES” and
being the one actually proposed in this paper). Furthermore,
and in order to test the performance of the three variants with
different resolutions for the input images, the former were ap-
plied to localizing the images resulting from repeatedly halving
the original 640 � 480 ones by subsampling, down to a resolution

http://www.ics.forth.gr/~lourakis/panoloc
http://www.ics.forth.gr/~lourakis/panoloc
http://www.ics.forth.gr/~lourakis/panoloc


(a)

(b)

Fig. 6. (a) Estimated (circles) and true (squares) camera poses for a set consisting of
48 images captured with a camera moving on three concentric circles. (b) The
reconstructed camera poses and environment points computed from the images of
(a). The color of camera locations varies from red to blue in the order that the
corresponding images were automatically selected for reconstruction. The color of
reconstructed points varies from red to green according to the number of images
from which they have been reconstructed. Red corresponds to points reconstructed
from few images, green to those from many.

(a)

(b)

Fig. 7. (a) In scale floorplan of a laboratory room. The actual dimensions of the
room are 9.4 � 10.5 m. (b) Reconstructed camera poses and environment points for
the room of (a). The ratio of dimensions for the reconstructed room was 0.87, which
compares favorably to a true value of 0.89 obtained from (a).

Fig. 8. Reconstructed camera poses and environment points when employing the
two combined sets of images. Note that due to the choice of different initial
reference images for the reconstruction, the scale and coordinate system origin
differs from that of Fig. 7(b).
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of 80 � 60 pixels. For each run corresponding to a certain resolu-
tion, the ‘‘OMNIVIS” and ‘‘ONERES” variants operate exclusively
on images at that resolution. On the other hand, a run of the
‘‘TWORES” variant for some resolution employs the coarsest res-
olution (i.e. 80 � 60) for ranking images according to their spatial
proximity, combined with the resolution at hand for determining
horizon matches. The processing times for each image set, resolu-
tion and method variant are summarized in the bar graphs of
Fig. 9. Each vertical bar corresponds to the sum of the total time
spent for horizon matching (including the time required to rank
images according to the LD) and the total time spent for recon-
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Fig. 9. Processing times obtained from three variants of the localization method applied to three image sets at four resolutions. Notice that the reconstruction times are very
similar for all three localization variants.
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struction. All timing measurements were collected on a laptop
computer equipped with an AMD Turion 64 processor running
at 1.6 GHz. As can be seen from Fig. 9, the processing times of
‘‘OMNIVIS” and ‘‘ONERES” are dominated by the time required
for horizon matching. Adopting the faster matching algorithm of
[36] in ‘‘ONERES” results in up to a twofold speedup over ‘‘OMN-
IVIS” for matching. However, even more dramatic performance
improvements have been achieved by the combined use of a
coarse and fine resolution by ‘‘TWORES”. In this case, the time
for matching is almost negligible and the time for reconstruction
becomes the primary performance bottleneck. Overall, the
‘‘TWORES” variant was found to require on average a few seconds
per input image. An indication of the influence of image resolu-
tion on the accuracy of localization is provided by the localization
errors pertaining to the experiments of Fig. 9(a) and (b), which
are included in Table 1. Evidently, the accuracy of the localization
results produced by the three variants at all resolutions between
Table 1
Mean and standard deviation for the localization error in centimeters and at various reso

Image set Input resolution OMNIVIS

Mean Std. dev.

‘‘set 1” 640 � 480 3.4 1.8
320 � 240 5.0 3.0
160 � 120 7.0 4.5
80 � 60 46.0 21.0

‘‘set 2” 640 � 480 1.9 1.9
320 � 240 2.6 3.4
160 � 120 4.0 3.7
80 � 60 7.3 9.0
the original one down to and including that of 160 � 120 is quite
adequate. The small discrepancies observed in localization accu-
racy among the three methods are due to the different methods
employed for computing the cyclic LD in each case. Specifically,
‘‘OMNIVIS” employs a heuristic, approximate matching method,
whereas ‘‘ONERES” relies on an exact technique. Thus, given a
certain horizon pair, slightly different matches might arise, which
in turn yield slightly different reconstructed points. Compared to
‘‘ONERES”, ‘‘TWORES” employs low-resolution, subsampled
images to rank the horizon lines of not yet reconstructed images
according to their proximity to the horizon lines of already recon-
structed ones. During subsampling, some image data are lost and
only low frequency texture information persists, thus the afore-
mentioned ranking is determined from different inputs and can
be slightly different between ‘‘ONERES” and ‘‘TWORES”. Hence,
these images might be included in the reconstruction in different
orders, ending up in slightly different final maps.
lutions, computed for the experiments of Fig. 9(a) and (b).

ONERES TWORES

Mean Std. dev. Mean Std. dev.

3.4 2.3 3.8 2.3
6.0 3.6 6.0 3.6
6.8 3.6 7.0 3.2

16.0 9.0 16.0 9.0

1.9 1.9 1.6 1.6
2.5 2.7 2.4 2.9
4.0 3.9 4.2 5.5
6.7 7.6 6.7 7.6



Fig. 10. Example of matches established between the horizons of two images in the presence of occlusion. In the bottom image, which is repeated twice, the horizon has been
occluded in the area marked with the thick white line. Note that very few matches have been obtained in the occluded area.
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5.3. Robustness under occlusions

A series of experiments focusing on the study of the robustness
of image localization under occlusions is described next. Occlu-
sions can be due to either the structure of the environment or tran-
sient moving objects such as people. The first case, also known as
kinetic occlusion, can be effectively handled assuming that the
available image matches provide sufficient environment coverage.
In this study, we focus on the second type of occlusions which can
give rise to image matches that do not conform to rigid environ-
ment structure and are, therefore, more difficult to handle.

For our purposes, occluding a cyclic horizon string is taken to
amount to substituting a substring from it with arbitrary pixel val-
ues, not appearing in the same order in any of the remaining hori-
zon lines (see also Fig. 10). Three are the factors describing the
amount of occlusion in an image set: First, the fraction f of images
that contain occlusions, second the size (i.e. subtended visual an-
gle) of occlusions and third the color statistics of occluding pixels.
To quantitatively assess the localization accuracy when systemat-
ically varying those factors, the following simulation approach was
adopted. Initially, an image set is selected for which some prior ref-
erence data for the localization are available. Then, several sets
with occlusion are generated synthetically from it by controlling
the factors pertaining to occlusion: Images that will be occluded
are selected randomly and in a manner ensuring that they amount
to a fraction f of the total number of available images. The locations
of occluded areas in the horizon strings of those images are deter-
mined by a uniformly distributed discrete random variable. The
sizes of occluded areas are determined by constraining a random
variable following a Gaussian distribution to lie within one stan-
dard deviation from its nonzero mean m. Color triplets for the
occluding pixels are drawn from a trivariate Gaussian distribution
whose mean and covariance matrix are estimated from the popu-
lation consisting of the corresponding occluded pixels.

The proposed localization method (i.e. ‘‘TWORES”) was applied
to each of the generated sets with occlusions and the correspond-
ing localization error was measured from the known reference
data. The occlusion experiments reported here employed the 61
images in ‘‘set 2”, with the fraction f varying from 10% to 100%
and the sizes of occlusions being modeled by Gaussian distribu-
tions whose means m varied between 50 and 300 pixels (equiva-
lent to a visual angle range between 14� and 85�) and their
standard deviation equaled 10. Note that an occluded area around
300 pixels corresponds to an occluding object covering approxi-
mately one-fourth of the whole visual field. To ease the effect
on the localization results of the exact choices made when syn-
thesizing a particular image set, each experiment was run 20
times, each time using a different set of images occluded accord-
ing to the chosen values for f and m. The average localization er-
rors computed from all these runs are listed in Table 2. As can be
clearly seen from them, the proposed method is remarkably resil-
ient, being little affected by small and moderate amounts of
occlusion. Likewise, the method manages to deliver reasonable
location estimates even under severe occlusions. In this last case,
it has been observed experimentally that the poorer performance
of the method was due to the fact that occlusions prevented the
projections of a significant fraction of environment points to be
matched across the horizons of sufficiently many images. This,
in turn, gave rise to the recovery of maps that were split into
multiple parts which lacked global consistency despite satisfacto-
rily capturing the local structure.

5.4. Application to an image sequence

The proposed method was also applied to an image sequence
obtained in an environment different from the laboratory room
depicted in the images of the previous experiments. This se-
quence was captured by mounting the panoramic camera on
top of a mobile robot that moved smoothly along an L-shaped
trajectory. More specifically, the robot started at one end of an
oblong room, traversing it with constant velocity towards the
opposite end on which the room’s entrance is located. When
the robot approached the entrance, it decelerated and exited
the room into a corridor. Subsequently, the robot rotated in
place for about 90� to align with the corridor and then moved
along it. The baselines between successive images varied consid-
erably and were around 30 cm when the robot moved with max-
imum velocity, decreased as it approached the door, became
zero as the robot rotated in place and finally increased again
up to roughly 30 cm as the robot moved along the corridor.
The total distance traveled was about 16 m and a total of 71
images were acquired. A few selected images from the sequence
are shown in Fig. 11. As can be observed, the appearance of the
scene undergoes substantial changes along the followed trajec-
tory. This is especially true during the transition from the room
into the corridor, where most of the room’s walls become oc-
cluded. Furthermore, large areas on the walls and especially at
the level of the horizon, lack texture for providing strong match-
ing cues. These factors combined with the fact that the camera
undergoes small vibrations due to the robot’s motion, contribute
towards rendering the localization of the images in the sequence
quite challenging.

These images were localized with the ‘‘TWORES” variant, treat-
ing them as an unordered set, i.e. without taking advantage of
their known spatial order. Fig. 12 shows the reconstructed camera
poses and environment points. As it can be confirmed from the
colors assigned to camera locations that gradually change from
red to blue, the order of reconstruction is identical to the natural
order of the image sequence. The lack of ground truth measure-
ments for the robot’s trajectory precludes a quantitative evalua-
tion for the performance of localization. Nevertheless, it is clear
that the environment’s ground plan has been adequately recov-
ered and, as expected, the reconstructed camera locations are ini-
tially evenly separated, then become denser as the robot
decelerates and then increase again in the corridor. A total of
2760 points were reconstructed and the running time required
for the whole sequence was approximately 10 min. A video illus-
trating the progress of camera localization combined with the im-
age sequence can be found online at http://www.ics.forth.gr/
~lourakis/panoloc.

http://www.ics.forth.gr/~lourakis/panoloc
http://www.ics.forth.gr/~lourakis/panoloc


Table 2
Average localization error in centimeters corresponding to various amounts of occlusion in the images of ‘‘set 2”. For comparison, the localization error in the absence of any
occlusion is 1.6 cm.

Occlusion fraction f (%) Subtended visual angle mean m in pixels (degrees)

50 (14.1) 100 (28.2) 150 (42.3) 200 (56.3) 250 (70.4) 300 (84.5)

10 1.88 1.90 2.03 1.86 2.36 4.85
30 2.01 2.19 2.75 3.78 6.08 108.38
50 1.98 2.14 4.46 6.59 12.75 106.44
70 2.23 2.67 4.88 32.08 60.20 90.52
100 2.09 3.17 11.38 45.94 50.35 97.67

Fig. 11. Sample images from the sequence employed in the experiment of Section 5.4. The robot starts in one end of the room (a), moves towards the door (b), exits into the
corridor (c), rotates to align with it (d) and moves along its center (e) and (f). Notice the very sparse texture of the corridor walls.

Fig. 12. Reconstructed camera poses and environment points for a robot moving in
an oblong room and corridor. Notice that the reconstructed camera locations are
initially evenly separated, then become denser as the robot decelerates and then
increase again in the corridor. The ‘‘bump” in the recovered lower right corner of the
room is caused by the protruding books on the shelf in that area that can be seen in
the right middle part of Fig. 11(b). The physical dimensions of the room are
10.5 � 4.5 m and the corridor is 2.06 m wide.
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6. Conclusion

This paper has presented an efficient and robust method for
simultaneously localizing an unordered set of panoramic images
and recovering a map of the environment. Matching a limited
amount of image data confined to horizon lines has been shown
to suffice for registering the images in a common coordinate frame
and partially reconstructing the environment. The proposed meth-
od provides high quality results and can be employed to automat-
ically determine the spatial arrangement of a set of panoramic
cameras that comprise a distributed network, possibly being not
observable from each other (i.e. invisible cameras in the terminol-
ogy of [9]). In robotics terms, the proposed method works by per-
petually solving the kidnapped robot problem, in which a mobile
robot needs to be relocalized after having undergone an arbitrary
motion that teleports it to some unknown location. Thus, it can
be employed as a compact, low-cost, and odometry-free means
for accurate optical positioning on moving platforms such as auto-
mated guided vehicles (AGVs) and mobile robots. Unlike tech-
niques that rely on environment modifications in the form of
buried wires, fluorescent paint strips or magnetic lines, our ap-
proach can determine position and orientation in two dimensions
over wide, unmodified areas, thus enabling precise autonomous
navigation, guidance and path following.
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