
From multiple views to textured 3D meshes: a
GPU-powered approach

K. Tzevanidis, X. Zabulis, T. Sarmis, P. Koutlemanis,
N. Kyriazis, and A. Argyros

Institute of Computer Science (ICS)
Foundation for Research and Technology - Hellas (FORTH)

N.Plastira 100, Vassilika Vouton, GR 700 13
Heraklion, Crete, GREECE

{ktzevani, zabulis, argyros}@ics.forth.gr

Abstract. We present work on exploiting modern graphics hardware
towards the real-time production of a textured 3D mesh representation
of a scene observed by a multicamera system. The employed computa-
tional infrastructure consists of a network of four PC workstations each
of which is connected to a pair of cameras. One of the PCs is equipped
with a GPU that is used for parallel computations. The result of the
processing is a list of texture mapped triangles representing the recon-
structed surfaces. In contrast to previous works, the entire processing
pipeline (foreground segmentation, 3D reconstruction, 3D mesh compu-
tation, 3D mesh smoothing and texture mapping) has been implemented
on the GPU. Experimental results demonstrate that an accurate, high
resolution, texture-mapped 3D reconstruction of a scene observed by
eight cameras is achievable in real time.

1 Introduction

The goal of this work is the design and the implementation of a multicamera
system that captures 4D videos of human grasping and manipulation activities
performed on a desktop environment. Thus, the intended output of the target
system is a temporal sequence of texture mapped, accurate 3D mesh representa-
tions of the observed scene. This constitutes rich perceptual input that may feed
higher level modules responsible for scene understanding and human activity
interpretation.

From the advent of GPU programmable pipeline, researchers have made great
efforts to exploit the computational power provided by the graphics hardware
(i.e. GPGPUs). The evolution of GPUs led to the introduction of flexible comput-
ing models such as shader model 4.0 and CUDA that support general purpose
computations. Various GPU implementations of shape-from-silhouette recon-
struction have been presented in the recent literature [1, 2]. Moreover, following
past attempts on real-time reconstruction and rendering (e.g. [3, 4]), some recent
works introduce full 3D reconstruction systems [5, 6] that incorporate modern
graphics hardware for their calculations. The later implementations take as input

2 K. Tzevanidis et al.

segmented object silhouettes and produce as output voxel scene representations.
In contrast to these systems, the one proposed in this paper parallelizes the whole
processing pipeline that consists of foreground object segmentation, visual hull
computation and smoothing, 3D mesh calculation and texture mapping. The
algorithms implementing this processing chain are inherently parallel. We capi-
talize on the enormous computational power of modern GPU hardware through
NVIDIA’s CUDA framework, in order to exploit this fact and to achieve realtime
performance.

The remainder of this paper is organized as follows. Section 2 introduces the
system architecture both at hardware and software level. Section 3 details the
GPU-based parallel implementation of the 3D reconstruction process. Experi-
ments and performance measurements are presented in Sec. 4. Finally, Sec. 5
provides conclusions and suggestions for future enhancements of the proposed
system.

2 Infrastructure

2.1 Hardware Configuration

The developed multicamera system is installed around a 2 × 1m2 bench and
consists of 8 Flea2 PointGrey cameras. Each camera has a maximum framerate
of 30 fps at highest (i.e. 1280× 960) image resolution. The system employs four
computers with quad-core Intel i7 920 CPUs and 6 GBs RAM each, connected
by an 1 Gbit ethernet link. Figure 1 shows the overall architecture along with a
picture of the developed multicamera system infrastructure.

In our switched-star network topology, one of the four computers is declared
as the central workstation and the remaining three as the satellite workstations.
The central workstation’s configuration, includes also a Nvidia GTX 295 dual
GPU with 894GFlops processing power and 896 MBs memory per GPU core.
Currently, the developed system utilizes a single GPU core.

Each workstation is connected to a camera pair. Cameras are synchronized
by a timestamp-based software that utilizes a dedicated FireWire 2 interface
(800MBits/sec) which guarantees a maximum of 125µsec temporal discrepancy
in images with the same timestamp. Eight images sharing the same timestamp
constitute a multiframe.

2.2 Processing Pipeline

Cameras are extrinsically and intrinsically calibrated based on the method and
tools reported in [7]. The processing pipeline consists of the CPU workflow,
responsible for image acquisition and communication management and the GPU
workflow, where the 3D reconstruction pipeline has been implemented. Both
processes are detailed in the following.

CPU Workflow and Networking
Each workstation holds in its RAM a buffer of fixed size for every camera that

From multiple views to textured 3D meshes: a GPU-powered approach 3

Central Workstation

Satellite Workstations

(a) (b)

Fig. 1. The developed platform (a) schematic diagram (b) actual configuration.

is connected to it. Each buffer stores the captured frames after they have been
converted from Bayer Tile to RGB format. Moreover, prior to storing in buffer,
each image is transformed so that geometric distortions are cancelled out based
on the available calibration information. The rate of storing images into buffers
matches the camera’s acquisition frame rate. Image data are stored together with
their associated timestamps. To avoid buffer overflow as newer frames arrive,
older frames are removed.

Each time a new image enters a buffer in a satellite workstation, its times-
tamp is broadcasted to the central workstation. This way, at every time step the
central workstation is aware of which frames are stored in the satellite buffers.
The same is also true for central’s local buffers. During the creation of a multi-
frame, the central workstation selects the appropriate timestamps for each buffer,
local or remote. Then, it broadcasts timestamp queries to the satellite worksta-
tions and acquires as response the queried frames, while for local buffers it just
fetches the frames from its main memory. The frame set that is created in this
way constitutes the multiframe for the corresponding time step. The process is
shown schematically in Fig. 2.

GPU Workflow
After a multiframe has been assembled, it is uploaded on the GPU for further
processing. Initially, a pixel-wise parallelized foreground detection procedure is
applied to the synchronized frames. The algorithm labels each pixel either as
background or foreground, providing binary silhouette images as output. The
produced silhouette set is given as input to a shape-from-silhouette 3D recon-
struction process which, in turn, outputs voxel occupancy information. The oc-
cupancy data are then send to an instance of a parallel marching cubes algorithm
for computing the surfaces of reconstructed objects. Optionally, prior to mesh

4 K. Tzevanidis et al.

Satellite Workstation

 Local Camera Frame

Capturing

T
ra

n
s

fe
r Im

a
g

e
 a

n
d

T
im

e
-s

ta
m

p

 - Process Camera

 Data

 - Store Processed

 Data to Buffer

 - Broadcast Time-

 stamp to Central

 - Listen to Central

 Frame Queries

 - Respond to Cen-

 tral Queries

Recently Acquired Time-

stamp

Response to Frame Query

Issued Frame Query

(specific Time-stamp)

Central Workstation

 Local Camera Frame

Capturing

T
ra

n
s

fe
r Im

a
g

e
 a

n
d

T
im

e
-s

ta
m

p

 - Process Camera

 Data

 - Store Processed

 Data to Buffer

 - Select Appropri-

 ate Time-stamps

 - Broadcast Fra-

 me Queries

 - Collect Frames

 for Multi-frame

 Assembly

Fig. 2. Multiframe acquisition process.

 V
is

u
a

liz
a

tio
n

Input Marching Cubes

Smoothing Kernel

Smoothed Visual Hull

Shape-from-Silhouette

3D Reconstruction

Foreground

Segmentation

Silhouettes

Disambiguation

Strategy R
a

w
 O

u
tp

u
t

Multi-Frame Visual Hull

Mesh
Texture Mapping

Fig. 3. GPU workflow.

calculation, the voxel representation is convolved with a 3D mean filter kernel to
produce a smoothed output. Then, the texture of the original images is mapped
onto the triangles of the resulted mesh. During this step multiple texture coor-
dinate pairs are computed for each triangle. Each pair, projects the triangle’s
vertices at each view the triangle’s front face is visible from. A disambiguation
strategy is later incorporated to resolve the multi-texturing conflicts. Finally,
results are formatted into appropriate data structures and returned to the CPU
host program for further processing. In case the execution is intended for visual-
ization, the process keeps the data on the GPU and returns to the host process
handles to DirectX or OpenGL data structures (i.e. vertex and texture buffers).
These are consequently used with proper graphics API manipulation for onscreen
rendering. The overall procedure is presented schematically in Fig. 3.

From multiple views to textured 3D meshes: a GPU-powered approach 5

3 GPU Implementation

In this section, the algorithms implemented on the GPU are presented in detail.

3.1 Foreground Segmentation

The terms foreground segmentation and background subtraction refer to methods
that detect and segment moving objects in images captured by static cameras.
Due to the significance and necessity of such methods a great number of ap-
proaches have been proposed. The majority of these approaches define pixel-wise
operations [8]. The most straightforward of those subtract the average, median
or running average within a certain time window from static views. Others utilize
kernel density estimators and mean-shift based estimation [9, 10].

A very popular approach [11] that achieves great performance defines each
image pixel’s appearance model as a mixture of Gaussian components. This
method is able to model complex background variations. Targeted at systems
operating in relatively controlled environments (i.e., indoor environments with
controlled lighting conditions) this work is based on the parallelization of the
background modeling and foreground detection work of [12] which considers the
appearance of a background pixel to be modeled by a single Gaussian distribu-
tion. This reduces substantially both the memory requirements and the overall
computational complexity of the resulting process. Moreover, the assumption
that pixels are independent, indicates the inherent parallelism of this algorithm.
In addition, our implementation incorporates a technique for shadow detection
that is also used in [13] and described thoroughly in [14]. Detected shadows are
always labeled as background.

Formally, let I(t) correspond to an image of the multiframe acquired at times-
tamp t, and let x(t) be a pixel of this image represented in some colorspace. The
background model is initialized by the first image of the sequence (i.e. I(0)) and
is given by

p̂(x|x(0), BG) = N(x; µ̂, σ̂2I), (1)

with µ̂ and σ̂2 being the estimates of mean and variance of the Gaussian, respec-
tively. In order to compensate for gradual global light variation, the estimations
of µ and σ are updated at every time step through the following equations:

µ̂(t+1) ← µ̂(t) + o(t)αµδµ
(t) (2)

σ(t+1) ← σ(t) + o(t)ασδσ
(t), (3)

where δµ = x(t) − µ(t), δσ = |µ(t) − x(t)|2 − σ(t) and aµ, aσ are the update
factors for mean and standard deviation, respectively, and

o(t) =

{
1 if x(t) ∈ BG
0 if x(t) ∈ FG.

(4)

A newly arrived sample is considered as background if the sample’s distance to
the background mode is less than four standard deviations. If this does not hold,

6 K. Tzevanidis et al.

an additional condition is examined to determine whether the sample belongs
to the foreground or it is a shadow on the background:

T1 ≤
µ · x(t)

|µ|2
≤ 1 and

∣∣∣∣∣
(
µ · x(t)

|µ|2

)
µ− x

∣∣∣∣∣
2

< σ2T2

(
µ · x(t)

|µ|2

)2

, (5)

where T1, T2, are empirically defined thresholds that are set to T1 = 0.25, T2 =
150.0.

The above described foreground detection method has been parallelized in a
per pixel basis. In addition, because there is a need to preserve the background
model for each view, this is stored and updated on GPU during the entire life-
time of the reconstruction process. In order to keep the memory requirements
low and to meet the GPU alignment constrains, the background model of each
pixel is stored in a 4-byte structure. This representation leads to a reduction
of precision. Nevertheless, it has been verified experimentally that this does not
affect noticeably the quality of the produced silhouettes.

3.2 Visual Hull Computation

The idea of volume intersection for the computation of a volumetric object
description was introduced in the early 80’s [15] and has been revisited in several
subsequent works [16–18]. The term visual hull, is defined as the maximal shape
that projects to the same silhouettes as the observed object on all views that
lay outside the convex hull of the object [19].

To compute the visual hull, every silhouette image acquired from a given mul-
tiframe, is back-projected and intersected into the common 3D space along with
all others, resulting to the inferred visual hull, i.e. a voxel representation contain-
ing occupancy information. In this 3D space, a fixed size volume is defined and
sampled to produce a 3D grid, G =

{
G0, G1, . . . , Gn

}
where Gc = (Xc, Yc, Zc).

Let Ci be the calibration matrix of camera i and Ri, Ti the corresponding rota-
tion matrix and translation vector respectively, in relation to the global world-
centered coordinate system. The general perspective projection of a point G
expressed in homogeneous coordinates (i.e. (Xc, Yc, Zc, 1)) to the ith view plane
is described through the following equation

(xc, yc, fc)
T

= Ci [Ri|Ti] (Xc, Yc, Zc, 1)
T
, (6)

where Pi = Ci [Ri|Ti] is the projection matrix of the corresponding view. Each
point can be considered to be the mass center of some voxel on the defined 3D
volume. We also define two additional functions. The first, labels projections
falling inside the FOV of camera i as

Li(x, y) =

{
1 1 ≤ x ≤ wi ∧ 1 ≤ y ≤ hi
0 otherwise,

(7)

where wi and hi denote the width and height of the corresponding view plane,
respectively. The second function measures the occupancy scores of each voxel

From multiple views to textured 3D meshes: a GPU-powered approach 7

0

1

2

3

4

5

6

7

8

(a) (b)

Fig. 4. Each figure presents a xy plane slice of the voxel space. (a) The intersection
of the projected silhouettes in slice Zslice = 90cm. (b) The voxel space defined in this
example is much larger than the previous, visibility factor variations are shown with
different colors. Dark red denotes an area visible by all views.

via its projected center of mass, as

O(Xk, Yk, Zk) =

{
1 s = l > |C|

2

0 otherwise
, ∀k ∈ [0, n], (8)

where |C| is the number of views. l is the visibility factor, s the intersection
factor and are defined as

l =
∑
i∈C

Li

(
xik
f ik
,
yik
f ik

)
, s =

∑
i∈C

Si

(
xik
f ik
,
yik
f ik

)
, (9)

with
(
xik/f

i
k, y

i
k/f

i
k

)
be the projection of (Xk, Yk, Zk) at view i and Si(x, y) is the

function that takes value 1 if at view i the pixel (x, y) is a foreground pixel and
0 otherwise (i.e. background pixel). Figure 4 illustrates graphically the notion of
l and s.

The output of the above process is the set O(Xk, Yk, Zk) of occupancy val-
ues that represent the visual hull of the reconstructed objects. It can also be
conceived as the estimation of a 3D density function. Optionally, the visual hull
can be convolved with a 3D mean filter to smooth out the result. Due to its
high computational requirements, this method targets the offline mode of 3D
reconstruction.

The above described 3D reconstruction process has been parallelized on a
per 3D point basis. More specifically, each grid point is assigned to a single GPU
thread responsible for executing the above mentioned calculations. To speed
up the process, shared memory is utilized for storing the static per thread block
calibration information, silhouette images are preserved in GPU texture memory
in a compact bit-per-pixel format and occupancy scores are mapped to single
bytes.

8 K. Tzevanidis et al.

1

5

2

6

4 7

60

9

5

10

1

4 6

11

72

3

8

0

v7 | v6 | v5 | v4 | v3 | v2 | v1 | v0

1 0 0 0 0 0 0 0

(a) (b)

Fig. 5. (a) Marching Cubes fundamental states. (b) Byte representation and indexing.

3.3 Marching Cubes

Marching cubes [20, 21] is a popular algorithm for calculating isosurface descrip-
tions out of density function estimates. Due to its inherent and massive data
parallelism it is ideal for GPU implementation. Over the last few years, a lot
of isosurface calculation variates that utilize GPUs have been proposed [22–26].
In this work we employ a slightly modified version of the marching cubes im-
plementation found at [27] due to its simplicity and speed. More specifically,
the occupancy grid resulting from 3D visual hull estimation is mapped into a
CUDA 3D texture. Each voxel is assigned to a GPU thread. During calculations,
each thread samples the density function (i.e. CUDA 3D texture) at the vertices
of it’s corresponding voxel. The normalized (in the range [0, 1]), bilinearly in-
terpolated, single precision values returned by this step, represent whether the
voxel vertices are located inside or outside a certain volume. We consider the
isosurface level to be at 0.5. Values between 0 and 1, also show how close a voxel
vertex is to the isosurface level. Using this information, a voxel can be described
by a single byte, where each bit corresponds to a vertex and is set to 1 or to 0 if
this vertex lays inside or outside a volume, respectively. There are 256 discrete
generic states in which a voxel can be intersected by an isosurface fragment,
produced from the 15 fundamental cases illustrated in Fig. 5a.

Parallel marching cubes uses two constant lookup tables for its operation.
The first lookup table is indexed by the voxel byte representation and is utilized
for determining the number of triangles the intersecting surface consists of. The
second table is a 2D array, where its first dimension is indexed by the byte
descriptor and the second by an additional index trI ∈ [0, 3Niso − 1] where Niso
is the number of triangles returned by the first lookup. Given a byte index,
sequential triplets accessed through successive trI values, contain the indices of
voxel vertices intersected by a single surface triangle. An example of how the
voxel byte descriptor is formed is shown in Fig. 5b. This figure also presents the

From multiple views to textured 3D meshes: a GPU-powered approach 9

Calibration Data

Mesh

Compact Stream

Compact Stream

Compute Visible

Triangles
Per Triangle

Compute Depth

Map
Per Triangle

Compute Mean

Distance - CC
Per Triangle

Cull Projections

Out of Bounds
Per Triangle

Project to View

Plane
Per Triangle

Cull Backfaces/

Parallel
Per Vertex

Calculate

Normals
Per Triangle

Compact Stream

Input

Output

Fig. 6. Computation of texture coordinates.

vertex and edge indexing along with an example of an intersecting isosurface
fragment that consists of a single triangle.

To avoid applying this process to all voxels, our implementation determines
the voxels that are intersected by the iso-surface and then, using the CUDA data
parallel primitives library [28], applies stream compaction through the exclusive
sum-scan algorithm [29] to produce the minimal voxel set containing only in-
tersected voxels. Finally, lookup tables are mapped to texture memory for fast
access.

3.4 Texture Mapping

Due to the fact that the employed camera setup provides multiple texture
sources, texture mapping of a single triangle can be seen as a three step proce-
dure: a) determine the views from which the triangle is visible, b) compute the
corresponding texture coordinates and c) apply a policy for resolving multitex-
turing ambiguities (i.e. texture selection). The current implementation carries
out the first two steps in a per view manner i.e.: a) determines the subset of
triangles that are visible by a certain view and b) computes their projections on
view plane. The third step is applied either on a per pixel basis through a pixel
shader during the visualization stage, or is explicitly computed by the consumer
of the offline dataset.

Specifically, given the calibration data for a view and the reconstructed mesh,
a first step is the calculation of the triangle normals. Then, the direction of each
camera’s principal axis vector is used to cull triangles back-facing the camera
or having an orientation (near-)parallel to the camera’s view plane. The trian-
gle stream is compacted excluding culled polygons and the process continues
by computing the view plane projections of the remaining triangles. Projec-
tions falling outside the plane’s bounds are also removed through culling and
stream compaction. Subsequently, the mean vertex distance from the camera
center is computed for each remaining triangle and a depth testing procedure
(Z-buffering) is applied to determine the final triangle set. The procedure is
shown schematically in Fig. 6. This figure also shows the granularity of the de-
composition in independent GPU threads. During depth testing, CUDA atomics
are used for issuing writes on the depth map. The reason for the multiple culling

10 K. Tzevanidis et al.

Image resolution Multiframe acquisition Foreground segmentation

320× 240 30 mfps 22.566, 3 fps / 2.820, 8 mfps

640× 480 13 mfps 6.773, 9 fps / 846, 4 mfps

800× 600 9 mfps 4.282, 6 fps / 535, 3 mfps

1280× 960 3, 3 mfps 1.809, 9 fps / 226, 2 mfps
Table 1. Performance of acquisition and segmentation for various image resolutions.

iterations prior to depth testing is for keeping the thread execution queues length
minimal during serialization of depth map writes.

There is a number of approaches that one can use to resolve multitextur-
ing conflicts. Two different strategies have been implemented in this work. The
first assigns to each triangle the texture source at which the projection area is
maximal among all projections. The second blends all textures according to a
weighting factor, proportional to the size of the projected area. A special case
is the one where all weights are equal. This last approach is used during online
experiments to avoid the additional overhead of computing and comparing the
projection areas, while the others are used in offline mode for producing better
quality results. In online mode the process is applied through a pixel shader im-
plemented using HLSL and shader model 3.0. Visualizations of a resulted mesh
are shown in Fig. 7. The supplemental material attached to this paper shows
representative videos obtained from both online and offline experiments.

4 Performance

Given a fixed number of cameras, the overall performance is determined by
the network bandwidth, the size of transferred data, the GPU execution time
and the quality of the reconstruction. In online experiments, camera images are
preprocessed, transferred through network and finally collected at the central
workstation to construct a synchronized multiframe. This is performed at a rate
of 30 multiframes per second (mfps). To achieve this performance, original images
(i.e. 1280 × 960) are resized during the CPU preprocessing stage to a size of
320× 240. Further reduction of image resolution increases the framerate beyond
real-time (i.e. ≥ 30mfps) at the cost of reducing the 3D reconstruction quality.
Table 1 shows the achieved multiframe acquisition speed.

Table 1 also shows that, as expected, foreground segmentation speed is lin-
early proportional to image size. These last reported measurements do not in-
clude CPU/GPU memory transfers.

The number of voxels that constitute the voxel space is the primary factor
that affects the quality of the reconstruction and overall performance. Given a
bounded voxel space (i.e., observed volume), smaller voxel sizes, produce more
accurate estimates of the 3D density function leading to a reconstruction out-
put of higher accuracy. Moreover, higher voxel space resolutions issue greater
numbers of GPU threads and produce more triangles for the isosurface that, in
turn, leads to an increased overhead during texture mapping. The performance

From multiple views to textured 3D meshes: a GPU-powered approach 11

(a) (b) (c)

Fig. 7. 3D reconstruction of a single multiframe: (a) no smoothing, (b) smoothed re-
construction and (c) smoothed and textured output.

graph of Fig. 8a shows the overall performance impact of voxel space resolution
increment in the cases of a) no smoothing of the visual hull, b) smoothed hull
utilizing a 33 kernel and c) smoothed hull utilizing a 53 kernel. The graph in Fig.
8b presents computational performance as a function of smoothing kernel size.
In both graphs, multiframe processing rate corresponds at the processing rate
of the entire GPU pipeline including the CPU/GPU memory transfer times. It
is worth mentioning that although image resolution affects the quality of the re-
construction and introduces additional computational costs due to the increased
memory transfer and foreground segmentation overheads, it does not have a
significant impact on the performance of the rest of the GPU reconstruction
pipeline.

Table 2 presents quantitative performance results obtained from executed ex-
periments. In the 3rd and 4th columns, the performance of 3D reconstruction and
texture mapping are shown independently. The 3D reconstruction column corre-
sponds to the processes of computing the visual hull, smoothing the occupancy
volume and creating the mesh, while texture mapping column corresponds to the

Voxels Smoothing 3D reconst. Text. mapping Output

Online Experiments

120× 140× 70 No 136, 8 mfps 178, 0 mfps 64, 0 mfps

100× 116× 58 No 220, 5 mfps 209, 9 mfps 84, 5 mfps

Offline Experiments

277× 244× 222 Kernel: 33 7, 7 mfps 27, 5 mfps 5, 0 mfps

277× 244× 222 Kernel : 53 4, 7 mfps 28, 9 mfps 3, 5 mfps

277× 244× 222 No 11, 4 mfps 25, 3 mfps 6, 2 mfps
Table 2. Quantitative performance results obtained from representative experiments.
Image resolution is set to 320× 240 for online and 1280× 960 for offline experiments.

12 K. Tzevanidis et al.

0 2 4 6 8 10 12 14 16

x 106

0

10

20

30

40

50

60

70

80

Voxels

M
ul

ti−
fr

am
e

pr
oc

es
si

ng
 ra

te
 (p

er
 s

ec
on

d)
No Smoothing
Kernel Size 33

Kernel Size 53

0 1 2 3 4 5 6 7 8 9
10

15

20

25

30

35

40

45

50

Kernel Size

M
ul

ti−
fr

am
e

pr
oc

es
si

ng
 ra

te
 (p

er
 s

ec
on

d)

Voxel Space Size: 1283

(a) (b)

Fig. 8. Performance graphs. Image resolution is set to 640 × 480 in all experiments.
(a) Performance impact of voxel space descretization resolution. (b) The performance
effect of 3D smoothing kernel size.

performance of the process depicted in Fig. 6. Finally, in the output column, as in
the previous experiments, the performance of the entire reconstruction pipeline
is measured including foreground segmentation and memory transfers. It can be
seen that keeping the voxel space resolution at a fixed size, the multiframe pro-
cessing rate of 3D reconstruction drops significantly when the smoothing process
is activated. On the contrary, texture mapping is actually accelerated due to the
fact that the smoothed surface is described by less triangles than the original
one. Online experiments present clearly the effect of the voxel space resolution
in overall performance.

5 Conclusions - Future Work

In this paper, we presented the design and implementation of an integrated,
GPU-powered, multicamera vision system that is capable of performing fore-
ground image segmentation, silhouette-based 3D reconstruction, 3D mesh com-
putation and texture mapping in real-time. In online mode, the developed system
can support higher level processes that are responsible for activity monitoring
and interpretation. In offline mode, it enables the acquisition of high quality 3D
datasets. Experimental results provide a quantitative assessment of the system’s
performance. Additionally, the supplementary material provides qualitative ev-
idence regarding the quality of the obtained results.

The current implementation utilizes a single GPU. A future work direction
is the incorporation of more GPUs either on central or satellite workstations,
to increase the system’s overall raw computational power in terms of GFlops.
In this case, an intelligent method for distributing the computations over the
entire GPU set must be adopted, while various difficult concurrency and syn-
chronization issues that this approach raises must be addressed. Furthermore,

From multiple views to textured 3D meshes: a GPU-powered approach 13

performance gains could be achieved by transferring the image post-acquisition
CPU processes of Bayer Tile-to-RGB conversion and distortion correction to
GPUs as they also encompass a high degree of parallelism. Finally, mesh defor-
mation techniques instead of density function smoothing and advanced texture
source disambiguation/blending strategies that incorporate additional informa-
tion (e.g. edges) can be utilized in order to further augment the quality of the
results.

Acknowledgments

This work was partially supported by the IST-FP7-IP-215821 project GRASP
and by the FORTH-ICS internal RTD Programme “Ambient Intelligence and
Smart Environments”.

References

1. Kim, H., Sakamoto, R., Kitahara, I., Toriyama, T., Kogure, K.: Compensated
visual hull with gpu-based optimization. Advances in Multimedia Information
Processing-PCM 2008 (2008) 573–582

2. Schick, A., Stiefelhagen, R.: Real-time gpu-based voxel carving with systematic
occlusion handling. In: Pattern Recognition: 31st DAGM Symposium, Jena, Ger-
many, September 9-11, 2009, Proceedings, Springer-Verlag New York Inc (2009)
372

3. Matusik, W., Buehler, C., Raskar, R., Gortler, S.J., McMillan, L.: Image-based
visual hulls. In: SIGGRAPH ’00: Proceedings of the 27th annual conference
on Computer graphics and interactive techniques, New York, NY, USA, ACM
Press/Addison-Wesley Publishing Co. (2000) 369–374

4. Matsuyama, T., Wu, X., Takai, T., Nobuhara, S.: Real-time 3d shape reconstruc-
tion, dynamic 3d mesh deformation, and high fidelity visualization for 3d video.
Computer Vision and Image Understanding 96 (2004) 393–434

5. Ladikos, A., Benhimane, S., Navab, N.: Efficient visual hull computation for real-
time 3d reconstruction using cuda. In: IEEE Conference on Computer Vision and
Pattern Recognition, Workshops 2008. (2008) 1–8

6. Waizenegger, W., Feldmann, I., Eisert, P., Kauff, P.: Parallel high resolution real-
time visual hull on gpu. In: IEEE International Conference on Image Processing.
(2009) 4301–4304

7. Sarmis, T., Zabulis, X., Argyros, A.A.: A checkerboard detection utility for intrinsic
and extrinsic camera cluster calibration. Technical Report TR-397, FORTH-ICS
(2009)

8. Piccardi, M.: Background subtraction techniques: a review. In: IEEE International
Conference on Systems, Man and Cybernetics. Volume 4. (2004) 3099–3104

9. Elgammal, A., Harwod, D., Davis, L.: Non-parametric model for background
subtraction. In: IEEE International Conference on Computer Vision, Frame-rate
Workshop. (1999)

10. Han, B., Comaniciu, D., Davis, L.: Sequential kernel density approximation
through mode propagation: applications to background modeling. In: Asian Con-
ference on Computer Vision. (2004)

14 K. Tzevanidis et al.

11. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time
tracking. In: IEEE Conference on Computer Vision and Pattern Recognition.
(1999) 246–252

12. Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: Real-time track-
ing of the human body. IEEE Transactions on Pattern Analysis and Machine
Intelligence 19 (1997) 780–785

13. Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtrac-
tion. In: International Conference on Pattern Recognition. (2004)

14. Prati, A., Mikic, I., Trivedi, M.M., Cucchiara, R.: Detecting moving shadows:
Algorithms and evaluation. IEEE Transactions on Pattern Analysis and Machine
Intelligence 25 (2003) 918–923

15. Martin, W., Aggrawal, J.: Volumetric descriptions of objects from multiple views.
IEEE Transactions on Pattern Analysis and Machine Intelligence (1983)

16. Srinivasan, P., Liang, P., Hackwood, S.: Computational geometric methods in
volumetric intersection for 3d reconstruction. Pattern Recognition 23 (1990) 843
– 857

17. Greg, F.P., Slabaugh, G., Culbertson, B., Schafer, R., Malzbender, T.: A survey
of methods for volumetric scene reconstruction. In: International Workshop on
Volume Graphics. (2001)

18. Potmesil, M.: Generating octree models of 3d objects from their silhouettes in a
sequence of images. Computer Vision, Graphics, and Image Processing 40 (1987)
1–29

19. Laurentini, A.: The visual hull concept for silhouette-based image understanding.
IEEE Transactions on Pattern Analysis and Machine Intelligence 16 (1994) 150–
162

20. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface con-
struction algorithm. Computer Graphics 21 (1987) 163–169

21. Newman, T.S., Yi, H.: A survey of the marching cubes algorithm. Computers and
Graphics 30 (2006) 854– 879

22. Klein, T., Stegmaier, S., Ertl, T.: Hardware-accelerated reconstruction of polygonal
isosurface representations on unstructured grids. In: PG ’04: Proceedings of the
Computer Graphics and Applications, 12th Pacific Conference, Washington, DC,
USA, IEEE Computer Society (2004) 186–195

23. Pascucci, V.: Isosurface computation made simple: Hardware acceleration, adaptive
refinement and tetrahedral stripping. In: In Joint Eurographics - IEEE TVCG
Symposium on Visualization (VisSym. (2004) 293–300

24. Reck, F., Dachsbacher, C., Grosso, R., Greiner, G., Stamminger, M.: Realtime
isosurface extraction with graphics hardware. In: Proceedings of Eurographics.
(2004)

25. Goetz, F., Junklewitz, T., Domik, G.: Real-time marching cubes on the vertex
shader. In: Proceedings of Eurographics. Volume 2005. (2005)

26. Johansson, G., Carr, H.: Accelerating marching cubes with graphics hardware. In:
In CASCON 06: Proceedings of the 2006 conference of the Center for Advanced
Studies on Collaborative research, ACM, Press (2006) 378

27. NVIDIA. GPU Computing SDK (2009) http://developer.nvidia.com/object/gpu
computing.html.

28. Harris, M., Sengupta, S., Owens, J. CUDA Data Parallel Primitives Library (2007)
http://code.google.com/p/cudpp/.

29. Sengupta, S., Harris, M., Zhang, Y., Owens, J.D.: Scan primitives for gpu com-
puting. In: Graphics Hardware 2007, ACM (2007) 97–106

