
A platform for monitoring aspects of human
presence in real-time

X. Zabulis1, T. Sarmis1, K. Tzevanidis1,2, P. Koutlemanis1, D. Grammenos1,
and A. A. Argyros1,2

1Institute of Computer Science - FORTH Herakleion, Crete, Greece
2 Department of Computer Science, University of Crete

Abstract. In this paper, the design and implementation of a hard-
ware/software platform for parallel and distributed multiview vision pro-
cessing is presented. The platform is focused at supporting the monitor-
ing of human presence in indoor environments. Its architecture is focused
at increased throughput through process pipelining as well as at reduc-
ing communication costs and hardware requirements. Using this plat-
form, we present efficient implementations of basic visual processes such
as person tracking, textured visual hull computation and head pose es-
timation. Using the proposed platform multiview visual operations can
be combined and third-party ones integrated, to ultimately facilitate the
development of interactive applications that employ visual input. Com-
putational performance is benchmarked comparatively to state of the art
and the efficacy of the approach is qualitatively assessed in the context
of already developed applications related to interactive environments.

1 Introduction

Advances in several research and technological fields have increased the likeli-
hood of creating interactive environments that adapt to various aspects of human
presence. Towards such environments, vision based estimation of the location and
geometric attributes of the human body is of interest, as it unobtrusively conveys
information on user activities. Multiview scene observation enables accurate and
robust 3D reasoning, particularly in environments that are imaged distantly and
at which occlusions are frequent and spatially extended. The large volume of
generated data combined with high framerate requirements, calls for distributed
and parallel image acquisition and processing, as well as efficient communication
strategies. A multiview platform is proposed in this paper, whose architecture
aims at the reduction of computational and communication costs. The platform
provides functionalities for synchronized and distributed image acquisition and
visual processing. Moreover, its complexity is encapsulated utilizing a middle-
ware infrastructure so that the output of multiview visual computation can be
communicated to third-party applications.

Upon this platform, a set of key visual processes are implemented that esti-
mate aspects of human presence in real time, such as the volumetric occupancy

2 Zabulis, Sarmis, Tzevanidis, Koutlemanis, Grammenos, and Argyros

of the monitored environment, the textured visual hull of persons, their loca-
tion and their head pose. The corresponding implementations capitalize on the
proposed platform to pipeline processes and reduce communication costs. By en-
capsulating the platform functionalities implemented in a middleware infrastruc-
ture, pilot applications can be developed in simple programming environments,
transparently to the implementation of the platform.

The remainder of this paper is organized as follows. In Sec. 2, related work is
reviewed. Sec. 3, presents the setup and architecture of the proposed platform.
The implementation of key components of the system is described in Sec. 4. In
Sec. 5, the performance of the proposed platform is benchmarked and qualita-
tively assessed through pilot applications. Sec. 6 summarizes contributions and
provides directions for future research.

2 Related work

Although the use of camera clusters has been increasing, there exist only a few
platforms that facilitate the development, pipelining and integration of parallel
and distributed visual processes. Even fewer are the platforms that focus on
estimating person locations and geometric attributes of the human body. Some
multi-camera platforms gather and display input from multiple video streams,
and either process each stream individually (e.g. [1–3]), or perform simple multi-
view operations (i.e. stream mosaicing [2]). Such platforms are typically based on
centralized architectures, as they exhibit moderate computational requirements.

Multiview computations require significantly more the computational power
raising the need for parallel computation. Parallel and distributed platforms
(i.e. [4]) have been utilized to reconstruct a generic scene from multiple stereo
views computed in parallel. More relevant to this work are systems [5–7] that
reconstruct persons in the scene through their volumetric occupancy or the vi-
sual hull [8]. Although the reconstruction is approximate, i.e. concavities are not
represented, the approach is sufficient for tasks such as person detection and lo-
calization. The systems in [6, 7] compute the visual hull volumetrically, enabling
massive parallelization of computation and direct application of 3D linear oper-
ations (i.e. noise filtering) on the reconstructed volume. In contrast, [5] proposes
view-based parallelization, based on the silhouette extracted from each view, and
results in a mesh whose nodes are irregularly arranged in 3D space. Paralleliza-
tion is massive in [6, 7] which run on GPU(s), while [5] parallelizes computation
in dual-core CPUs and leads to increased hardware requirements.

3 Software platform

3.1 System setup

A typical physical setup of the system involves a 6 × 6 × 2.5m3 room, includ-
ing a large (i.e. 5× 2m2) backprojection display providing visual feedback. The
camera cluster consists of 8 Dragonfly2 Point Gray cameras, mounted near the

Lecture Notes in Computer Science 3

ceiling of the room viewing it peripherally and employs 2 or 4 computers with
an Intel i920 quad-core CPU and an NVIDIA GTX275 GPU each. Cameras
are evenly distributed to host computers and have a maximum framerate of
30 fps at 1280 × 960 image resolution. Synchronized image acquisition uses an
additional FireWire bus across computers and timestamps, guaranteeing a max-
imum of 125µsec temporal discrepancy among images with the same timestamp.
Henceforth, the set of the N simultaneously acquired images Ii is referred as a
multiframe, the projection matrices for each view i ∈ [1, 2, 3, ..., N] denoted as
Pi and corresponding camera centers as κi. The computers in each system are
connected by 1GB Ethernet in a star network topology, where one computer is
declared the central workstation and the rest as satellites.

Cameras are automatically calibrated intrinsically and extrinsically, employ-
ing a checkerboard detector [9] to find reference points and passing them to a
standard calibration toolbox [10]. Corresponding reference points across views
are used to increase calibration accuracy, via bundle adjustment [11].

3.2 Architecture

The complexity of camera control and synchronized image acquisition is encap-
sulated in a software platform. The platform supports the synchronized commu-
nication of images and intermediate computation results across processing nodes
through a shared memory. Results of visual computations become available to
applications via integration with a middleware infrastructure.

A broad spectrum of camera types is supported, connected to host computers
by Direct Memory Access to RAM. Each host workstation maintains a fixed
RAM buffer for every view in which it stores captured frames after converting
them from Bayer Tile to RGB format and rectifying them for lens distortion. The
operations are implemented in the GPU of host computers with image storage
rate matching the camera framerate. Images are stored together with associated
timestamps and, as new frames arrive, older ones are removed.

Each time a new image enters a buffer, its timestamp is notified to the central
workstation. During the creation of a multiframe, the central workstation selects
the appropriate timestamps for each buffer, local or remote. Then, it broadcasts
timestamp queries to the satellite workstations and acquires the queried frames,
while for local buffers it fetches the frames from its RAM. This way, a frame that
is dropped at a view does not disturb synchronization and, also, the transmission
of a frame for a multiframe that will be eventually rejected is avoided.

Both images and intermediate computational results can be stored in a shared
memory at the central workstation where multiple processes may have simulta-
neous access. Processes can concurrently read the data from the shared mem-
ory without copying them to the process’ address space. By adding another
computer, the central workstation can be relieved from image acquisition and
preprocessing.

The platform is further integrated with a middleware infrastructure to facil-
itate the development of new visual processes through an API that supports the

4 Zabulis, Sarmis, Tzevanidis, Koutlemanis, Grammenos, and Argyros

C/C++, .NET, Java, Python, Delphi, and Flash/ActionScript programming lan-
guages. Through this middleware, the output of such visual processes (i.e. those
in Sec. 4), can be communicated to applications in the form of event notifica-
tions, hiding the details of network connections and data serialization. The same
middleware is also employed in the control of actuating components of the en-
vironment such as displays, illumination and sound. These capabilities simplify
the development of interactive applications and enable the integration of vision
processes with the reasoning and actuating components of the environment.

4 Key vision processes

Four processes that compute basic aspects of human presence have been im-
plemented. These constitute the core visual processes for developing pertinent
interactive applications. The processes compute the volumetric occupancy of per-
sons in the images environment, their textured visual hulls, their locations and
motion trajectories and their 3D head poses. To meet framerate requirements,
these implementations are designed to be distributed and massively parallel.

4.1 Volumetric occupancy

Volumetric occupancy of the imaged scene is represented in a voxel grid V .
Along with image rectification, background subtraction of images is performed
locally on the GPU of host computers. A pixelwise background subtraction [12]
is employed to parallelize the operation. In contrast to [6, 7] we do not perform
morphological operations to compensate for background subtraction errors, but
consider them in reconstruction. The results, images Bi, are transmitted in Run
Length (RL) encoding to shared memory.

The scene is reconstructed on the GPU of the central workstation by assigning
a thread per voxel v. A voxel V (v) is labeled as 1 if found to be occupied and 0
if not. To process volumes of arbitrary size, computation of V is partitioned and
results concatenated in shared memory, as opposed to [6, 7] where the dimensions
of V are constrained by the GPU’s memory capacity.

The value at V (v) is computed amongst the views i′ ∈ C ⊆ [1, 2, 3, ..., N],
that v projects within their visual field. Ideally, occupied voxels should project
in foreground regions in all Bi′ and vice versa. To compensate for errors in
background subtraction, a more lenient rule is applied, and a voxel is considered
as occupied if at least half of the views in which it is visible concur that it
projects in a foreground region. That is, V (v) is 1 if∑

i′

(
Bi′(Pi′ · [v; 1]T)

)
> card(C)/2 (1)

and 0 otherwise. Fig. 1(left), illustrates the process for a challenging scene. Op-
tionally, V can be filtered with a 3D kernel to suppress voxelization artifacts;
see Fig. 1(right).

Lecture Notes in Computer Science 5

Fig. 1. Left: Original images, background subtraction and volumetric reconstruction,
for a scene imaged by 4 cameras. Persons are imaged against cluttered background
and uneven illumination, resulting in inaccurate background subtraction. Persons oc-
clude each other in all views. Reconstruction is not accurate, but sufficient for person
tracking. Right: Visual hull (left), smooth visual hull (middle) and textured visual hull
(right), for a benchmark dataset [13].

4.2 Person localization and tracking

A multiview approach is adopted for person localization as such approaches
typically outperform single-view [14, 15], due to the systematic treatment of
occlusions. As in [16–20], we employ a planar homography constraint to map
imaged persons to the ground plane, but we consider the occupied volume instead
of the projection area. As in [19], we also utilize volumetric occupancy to increase
the localization robustness, but do not require that the number of tracked persons
is a priori known.

A GPU process projects V on the ground plane and sums occupied voxels
along the direction perpendicular to the floor. This results in a 2D buffer F ,
registered to the ground plane. Image F is transferred to shared memory where
it is collected by a tracker [21] that establishes temporal correspondence of person
locations. In F , persons appear as intensity blobs, which are tracked only if they
exhibit a sufficient amount of volume, as measured by their intensity sum in F .
New persons are detected as new blobs that exhibit a temporal persistence over
a few frames. The tracker is implemented in CPU and modified to track intensity
blobs, rather than skin-colored blobs in color images for which it was originally
formulated. It is robust to transient localization failures and, most importantly,
designed to retain the tracking of blobs even if those appear merged for long
temporal intervals. This way, tracking succeeds even if subjects are close to each
other forming a single connected component in V (see Fig. 2).

Tracking robustness is supported by the high frame rate (> 10Hz) of op-
eration and, also, by fine granularity of volumetric representation (1cm3). High
framerate casts blob motion in F smooth and simpler to track. Fine granular-
ity increases the precision of blob localization in F . To conserve communication

6 Zabulis, Sarmis, Tzevanidis, Koutlemanis, Grammenos, and Argyros

Fig. 2. Person localization and tracking. Estimated person location is marked with
colored circles. Tracking is successful although in some frames visual hulls are merged.
Occurring transiently, the spurious structure in frame 2 is disregarded by the tracker.

cost, middleware events are created upon change of person location, or when
persons enter and leave the scene.

4.3 Textured visual hull

Collecting the output of volumetric occupancy from shared memory (Sec. 4.1),
a GPU process estimates the visual hull of persons and, optionally, textures it.
The hull is computed as the 0-isosurface in V , by a parallel implementation of
the “Marching Cubes” algorithm [22]. To benefit from operations optimized on
GPU hardware, V is treated as a 3D texture. A thread is assigned to each voxel
and accesses V ’s values at the locations of mesh vertices by interpolating the 3D
texture at the corresponding locations; further details can be found in [23]. The
isosurface represents the visual hull and is encoded as a mesh M of triangles in
shared memory.

Texture mapping on each triangle j of M also makes use of GPU-optimized
operations. Initially, the views in which j is visible are identified, by employing
a depth buffer Zi for each view i. Each pixel in Zi encodes the distance of κi to
the surface that is imaged at that pixel. Buffer Zi is computed by calculating the
distance δij = |τ j −κi| for each triangle, where τ j is the triangle’s 3D centroid.
Triangles are projected on Zi and the minimum distance that is imaged in each
pixel of Zi is assigned to that pixel. Let ∆ the length of a voxel’s side. Then,

|δij − Zi(Pi · [τ j ; 1]T)| < ∆, (2)

is a criterion that indicates if triangle j is indeed imaged at location of view i; (2)
is false, if triangle j is occluded in view i. Threshold ∆ is sufficient as M ’s trian-
gles are contained within voxel size. This criterion also facilitates parallelization
since, otherwise, the sequential maintenance of the list of triangles imaged at
Zi(Pi · [τ j ; 1]T) would be required to cope with pixels imaging multiple triangles
along the images of M ’s vertices. Aiming at efficiency, the number of considered
triangles is reduced by disregarding those whose normal forms an angle greater
than π/2 with the optical axis of view i. Texture coordinates of triangle nodes,
Pi · [τ j ; 1]T , have been already computed during the evaluation of (2) and are
retrieved instead of recomputed.

Lecture Notes in Computer Science 7

To resolve multi-texturing conflicts in triangles visible in multiple views, tex-
tures are blended according to a weighting factor proportional to the size of the
projected area, on a pixel shader of the GPU, so that distal and oblique views
are weighted less. Further details can be found in [23]. Figure 1(right) visualizes
the obtained results.

4.4 Head pose estimation

Head pose estimation provides information about the direction at which a person
is facing at. The task is challenging in wide areas, because faces are imaged in
poor resolution and are often occluded. The multiview head pose estimation
method in [24] is parallelized and employed to provide an estimate of 3D head
center location c and the 3 rotational pose components (pitch, yaw, roll).

The method exhibits increased accuracy in the context of distant viewing,
over other head pose estimation methods that fuse single-view pose estimates
[25–27] and yield only 2 pose components. It method utilizes the textured visual
hull M to collect all available facial texture fragments and resolve occlusions,
which is received as input from the module of Sec. 4.3.

An instance of this method is applied independently on each person detected
by the module in Sec. 4.2. For each person, head center c is tracked by a variant
of the Mean Shift [28] algorithm, using a 3D spherical kernel S matched to the
part of M that reconstructs the persons head. The system broadcasts c to host
workstations which perform concurrently face detection [29] within the areas αi

of Ii where S projects. Per-view orientation estimates (pitch, yaw) are obtained
as ok = fk − ck, where k enumerates the views where a face was detected in
αk; fk is the intersection of M with the ray from camera k through the face’s
detection in αk. Estimates ok are fused at the central workstation into a median
vector oc.

The texture of the visual hull is then projected on S, with c being the center
of projection to form a spherical image Is, an operation optimized on the GPU
as texture mapping. By construction, exactly one frontal face occurs in Is and,
thus, a generic CPU-based frontal face detector [29] suffices for its detection. To
form Is, only areas αi of Ii are transmitted to the central workstation. Orien-
tation o is provided by the face center p ∈ Is using a look up table to find its
3D correspondence on S. The orientation γ of the face in Is provides the roll
component of 3D pose and is optionally computed by optimizing a correlation-
based symmetry operator in the [0, π) range. The availability of the precomputed
estimate oc simplifies the above process as follows. S is in-place rotated by R,
R · [1 0 0]T = oc, so that the projected face occurs approximately (a) at the
equator of S, where spherical distortions are minimized and (b) at the center of
Is thus reducing the area were a face is searched for.

The output, head center c and 3 pose angles, is communicated through mid-
dleware and associated to the tracking id of the person as this has been derived
in Sec. 4.2. Representative head pose estimation results are illustrated in Fig. 3.

8 Zabulis, Sarmis, Tzevanidis, Koutlemanis, Grammenos, and Argyros2
Z

A
B

U
L

IS
etal.:3D

H
E

A
D

PO
SE

E
ST

IM
A

T
IO

N
FR

O
M

M
U

LT
IPL

E
D

ISTA
N

T
V

IE
W

S

γκ →

Figure
1:

M
ethod

overview
.

Top
row

:
inputim

ages.
B

ottom
row

:
visualhullw

ith
face

tex-
ture

m
apped

on
a

localized
hypotheticalsphericalhead

(left);sphericalhead
im

age
(m

iddle);
visualhull(right).3D

head
pose

results
are

superim
posed,in

3D
illustrations.

occlusions,by
collecting

allvisible
facialtexture

fragm
ents

in
a

single
im

age,w
here

exactly
one

frontalview
of

the
face

is
guaranteed

to
appear

ata
know

n
spatialscale.

T
his

notonly
provides

substantially
better

support
for

FD
n

but
also

sim
plifies

it,
as

only
a

frontal
face

appearance
is

sought.
T

he
proposed

m
ethod

is
overview

ed
in

Fig.1.
T

he
visualhullof

a
person

is
obtained

from
im

ages
acquired

synchronously
from

m
ultiple

view
points.W

hile
m

oving,the
person’s

head
is

tracked
in

3D
.T

he
texture

on
the

surface
ofthe

hullis
collected

from
m

ultiple
view

s
and

projected
on

a
hypotheticalsphere

S
thatis

concentric
to

the
person’s

head.
T

his
form

s
a

sphericalim
age

Is
of

the
head,containing

one
frontalface

appearance
ata

know
n

spatial
scale.

D
etecting

the
face

center
~κ

in
Is ,yields

an
estim

ate
of

the
head’s

3D
orientation

~o,
w

hose
sphericalcoordinates

are
the

pitch
and

yaw
com

ponents
ofan

absolute
pose

estim
ate.

T
he

2D
orientation

γ
of

the
face

in
the

spherical
im

age
yields

vector~r,w
hich

determ
ines

the
rollcom

ponentof
this

estim
ate.

To
reduce

the
sphericalim

age
distortions

com
plicating

FD
n,the

param
eterization

ofS
is

continuously
rotated

so
thatthe

centerofthe
face

projects
on

its
equator.In

addition,FD
n

in
the

originalim
ages

supports
pose

estim
ation

by
providing

a
coarse

orientation
estim

ate,w
hich

accelerates
the

m
ethod

and
im

proves
robustness.

T
he

rem
ainderofthis

paperis
organized

as
follow

s.In
Sec.2,related

w
ork

is
review

ed.
In

Sec.
3,

the
m

odules
that

support
the

proposed
m

ethod,
are

presented.
In

Sec.
4,

the
proposed

m
ethod

for
3D

head
pose

estim
ation

is
form

ulated
and,

in
Sec.

5,
is

evaluated
through

severalexperim
ents.Sec.6

sum
m

arizes
this

w
ork.

2
R

elated
w

ork
T

his
section

review
s

pertinent
w

ork
in

head
localization

and
pose

estim
ation.

A
recent

overview
ofhead

pose
estim

ation
in

com
putervision

is
provided

in
[7].

Tow
ards

solving
the

head
pose

estim
ation

problem
,severalm

ethods
assum

e
thatthe

face
occupies

m
ostof

the
im

age.
T

hese
m

ethods
encounter

significantchallenges
w

hen
applied

to
distantview

s
ofa

hum
an

subject.Tem
plates

[24]and
detector-arrays

[16],w
hich

coarsely
pose-classify

the
observed

face,require
extensive

training
and

exhibita
large

rate
ofspurious

detections;
[10,25]

use
3D

inform
ation

to
reduce

this
rate.

N
onlinear

regression
[27]

and
m

anifold
em

bedding
[3,

12,
17]

m
ethods,

vectorize
the

face
im

age
region

or
its

features
[8,27]

into
a

space
w

here
coordinates

correspond
to

head
poses.

H
ow

ever,in
w

ide
range

im
aging,itis

difficultto
accurately

segm
entthe

face
and

align
itw

ith
the

vectorized
im

age

2
Z

A
B

U
L

IS
etal.:3D

H
E

A
D

PO
SE

E
ST

IM
A

T
IO

N
FR

O
M

M
U

LT
IPL

E
D

ISTA
N

T
V

IE
W

S

γκ →

Figure
1:

M
ethod

overview
.

Top
row

:
inputim

ages.
B

ottom
row

:
visualhullw

ith
face

tex-
ture

m
apped

on
a

localized
hypotheticalsphericalhead

(left);sphericalhead
im

age
(m

iddle);
visualhull(right).3D

head
pose

results
are

superim
posed,in

3D
illustrations.

occlusions,by
collecting

allvisible
facialtexture

fragm
ents

in
a

single
im

age,w
here

exactly
one

frontalview
of

the
face

is
guaranteed

to
appear

ata
know

n
spatialscale.

T
his

notonly
provides

substantially
better

support
for

FD
n

but
also

sim
plifies

it,
as

only
a

frontal
face

appearance
is

sought.
T

he
proposed

m
ethod

is
overview

ed
in

Fig.1.
T

he
visualhullof

a
person

is
obtained

from
im

ages
acquired

synchronously
from

m
ultiple

view
points.W

hile
m

oving,the
person’s

head
is

tracked
in

3D
.T

he
texture

on
the

surface
ofthe

hullis
collected

from
m

ultiple
view

s
and

projected
on

a
hypotheticalsphere

S
thatis

concentric
to

the
person’s

head.
T

his
form

s
a

sphericalim
age

Is
of

the
head,containing

one
frontalface

appearance
ata

know
n

spatial
scale.

D
etecting

the
face

center
~κ

in
Is ,yields

an
estim

ate
of

the
head’s

3D
orientation

~o,
w

hose
sphericalcoordinates

are
the

pitch
and

yaw
com

ponents
ofan

absolute
pose

estim
ate.

T
he

2D
orientation

γ
of

the
face

in
the

spherical
im

age
yields

vector~r,w
hich

determ
ines

the
rollcom

ponentof
this

estim
ate.

To
reduce

the
sphericalim

age
distortions

com
plicating

FD
n,the

param
eterization

ofS
is

continuously
rotated

so
thatthe

centerofthe
face

projects
on

its
equator.In

addition,FD
n

in
the

originalim
ages

supports
pose

estim
ation

by
providing

a
coarse

orientation
estim

ate,w
hich

accelerates
the

m
ethod

and
im

proves
robustness.

T
he

rem
ainderofthis

paperis
organized

as
follow

s.In
Sec.2,related

w
ork

is
review

ed.
In

Sec.
3,

the
m

odules
that

support
the

proposed
m

ethod,
are

presented.
In

Sec.
4,

the
proposed

m
ethod

for
3D

head
pose

estim
ation

is
form

ulated
and,

in
Sec.

5,
is

evaluated
through

severalexperim
ents.Sec.6

sum
m

arizes
this

w
ork.

2
R

elated
w

ork
T

his
section

review
s

pertinent
w

ork
in

head
localization

and
pose

estim
ation.

A
recent

overview
ofhead

pose
estim

ation
in

com
putervision

is
provided

in
[7].

Tow
ards

solving
the

head
pose

estim
ation

problem
,severalm

ethods
assum

e
thatthe

face
occupies

m
ostof

the
im

age.
T

hese
m

ethods
encounter

significantchallenges
w

hen
applied

to
distantview

s
ofa

hum
an

subject.Tem
plates

[24]and
detector-arrays

[16],w
hich

coarsely
pose-classify

the
observed

face,require
extensive

training
and

exhibita
large

rate
ofspurious

detections;
[10,25]

use
3D

inform
ation

to
reduce

this
rate.

N
onlinear

regression
[27]

and
m

anifold
em

bedding
[3,

12,
17]

m
ethods,

vectorize
the

face
im

age
region

or
its

features
[8,27]

into
a

space
w

here
coordinates

correspond
to

head
poses.

H
ow

ever,in
w

ide
range

im
aging,itis

difficultto
accurately

segm
entthe

face
and

align
itw

ith
the

vectorized
im

age

Fig. 3. 3D head pose estimation. On the left, shown is the visual hull with facial texture
projected on S, for a benchmark dataset [13]. To its right the generated spherical image
Is is shown, with a the green vector indicating the face center and its 2D orientation
in Is. In the right panel, shown are two views of the visual hull of a subject during our
experiments and the estimation result superimposed on some of the images Ii.

5 Experiments

5.1 Computational performance

The evaluated system consists of 8 cameras, using 1, 2 or 4 computers and
full or lower resolution versions of Ii. Columns a - f in Table 1 benchmark the
performance of the proposed implementations and compare it with pertinent
methods (left three columns), for visual hull computation, for the same amount
of voxels. In columns T1 and T2 the performance of computing the textured
visual hull is reported. The 1st row marks the achieved framerate, the 2nd the
amount of computational power utilized, the 3rd the number of voxels in V ,
the 4th the resolution of Iis, and the 5th the number of computers employed.
Analytical performance measurements in more conditions and for intermediate
operations (i.e. lens distortion compensation, background subtraction) can be
found in [23]. The latency between a person’s motion and the reception of the
corresponding event is ≈ 140ms and localization accuracy is ≈ 4 cm.

Table 1. Performance measurements and comparison (see text).

[6] [7] [30] a b c d e f T1 T2

Hz 25 14 30 23.8 34 40 98.1 71.4 103.2 25.3 24.1
G FLOPS 1614 933 836 437 437 894 894 1788 1788 1788 1788

voxels 211 211 211 211 211 211 211 211 211 224 224

pixels 5× 27 5× 27 5× 27 5× 27 5× 26 5× 27 5× 26 5× 27 5× 26 5× 27 5× 28

computers 5 1 11 1 1 2 2 4 4 4 4

In [6], the computation of V is distributed in the GPUs of multiple computers.
For each v, a partial estimate of V (v) is computed and transmitted centrally, to

Lecture Notes in Computer Science 9

be fused with the rest of estimates. Albeit the RL compression, communication
overhead is significant as it corresponds to N times the number of voxels in V .
The increased performance of the proposed method stems both from the paral-
lelization of the background subtraction stage and, most importantly, from the
transmission of (RL encoded) images Bi that requires significantly less capacity.
In [5], a minimal communication cost is obtained, by transmitting only the sil-
houettes in Bis, but then only per-view parallelization is achieved, as opposed to
per-voxel. The system in [7] eliminates this communication cost by centralizing
all computation in one computer. This solution does not scale well with the num-
ber of views (the online version is limited to four). In contrast to [6], increasing
granularity of V does not increase communication cost, as transmission cost of
images Bi is constant.

Regarding head pose estimation, coarse orientation estimation oc runs at
≈ 10Hz and drops to ≈ 2Hz when estimating 3D pose to the precision of 1◦,
for 8 views in 2 computers. Accuracy experiments replicate the ≈ 3◦ accuracy
reported in [24] for Is of 1280 × 960 resolution, but accuracy drops to ≈ 5◦

when Ii are 640 × 480. The bottleneck of the whole process is face detection
which is implemented in the CPU. To parallelize it, the task is distributed to
the computers hosting the cameras.

Overall, results indicate improvement of state of the art in performance, effi-
cient use of computational resources and linear scaling of computational demands
with respect to reconstructed volume and number of views.

5.2 Pilot applications

Pilot applications were developed to evaluate (a) the proposed system in interac-
tive scenarios and (b) the development process based on the proposed platform.
Interactivity is supported by audiovisual feedback, provided by wall mounted
displays and a surround audio system. Applications are implemented in Flash
Action Script and communicate with the platform through the middleware.

In a cultural heritage application, a fresco is projected on a wall of the room.
Visitors observing the projection are localized and their position in front of the
projection is tracked (Fig. 4, bottom). Depending on current and previous user
locations, the display is augmented with visual and textual information in the
language of each individual user. The application utilizes person localization
events to implement the interaction scenario, which also incorporates contex-
tual environmental constraints, i.e. further information about the fresco region
is provided if a user re-visits a particular location. More details on the above
scenario can be found in [31].

Using the middleware layer, the visual processes in Sec. 4 can be customized.
For example, in a gaming application called footprints, as players move around,
the contact area of their feet with the floor is used to virtually paint the floor. The
method in Sec. 4.2 is employed to determine user location and then, the method
in Sec. 4.1 is re-invoked at higher voxel tessellation only at the corresponding
volumes to reconstruct the volume around the feet of the user. The increased
reconstruction accuracy is also employed in walkman, where alternating black

10 Zabulis, Sarmis, Tzevanidis, Koutlemanis, Grammenos, and Argyros
computed as the intersection of a person’s hull with the
floor plane. In particular, the values of voxels in V for
which z = 0 are utilized to form an image. In this image,
footprints are extracted as blobs by a CCL process. This
way, a footprint is obtained only when the foot of a person
is in contact with the floor. Finally, footprints are associ-
ated with persons through the particular 3D bounding box
within which they occur. In Fig. 2, footprint extraction is
demonstrated for the presice dancing figures of a person, in
a reference dataset1.

Figure 2. Footprint extraction. The obtained footprints over 20
frames are shown superimposed in an original image (left) and
drawn on a virtual canvas (right), as would appear from a top
view.

To be able to perform the necessary computations at an
acceptable frame rate, the above operations are parallel-
ized and pipelined. Each video stream originating from a
camera is assigned to a separate CPU that performs back-
ground subtraction and morphologic image filtering
operations. The output images Bi are run-length encoded to
be efficiently transmitted to another CPU for the compu-
tation of the visual hull. Once this transmission is complete

1 Downloaded from https://charibdis.inrialpes.fr

the original CPU initiates the background subtraction
processing of the next frame.

The computation of the visual hull is also performed in
parallel, by partitioning voxel space V and assigning of
each partition to a different CPU. Within each partition, the
computation is accelerated by performing the AND opera-
tion in a “view-first” order. Specifically, the operation
initially evaluates all voxels in V for the first two views
and stores this intermediate result in a voxel space V’. For
each remaining view, the AND operation is performed only
for the voxels for which V’ is 1 and stores the result in V’,
overwriting it. The last V’ is copied back to V.

In the implementation, 8 CPU cores are employed in
total, equally distributed in two computers. A dedicated
local area network link of 1GB bandwidth is reserved for
their communication. A frame rate of 10 Hz has been
achieved when employing 4 views in a resolution of
960�1280 pixels and a V of 5�5�2.5 m2 tessellated in
voxels of 1 cm3. Increasing the number of employed views
to 8 while using the same number of CPU cores, reduces
the frame rate to 8 Hz. Note that given more CPU cores the
level of parallelization and, thereby, the frame rate can be
increased.

In practice, it was observed that four cameras provide

adequate coverage for 3 persons it the above area. More
than four cameras are employed when players are more
than 3, or when increased localization accuracy is required
(e.g. in the footprint scenario). The error in localization is
in the order of 5 cm for 4 cameras. In the footprints ap-
plication, 8 cameras allow for finer user-control when
drawing on the virtual canvas.

Figure 3. (a) Room layout; (b) – (f) The user interfaces of the mini-games.

271

Fig. 4. Pilot applications. Top: The display is updated based on the location and walk-
through trajectories of visitors. Bottom-left: footprint extraction; obtained footprints
over 20 frames are shown superimposed. Bottom-right: the interactive game’s interface
is projected on the wall providing visual feedback to the users, as they play music by
stepping in appropriate spots.

and white areas on the floor represent piano keys and players can play music by
stepping on them. Similarly, the cultural application above has been extended
to collaborate with the method in Sec. 4.4 to determine the fresco region that
each user is facing at. Using the result of person localization, only the volume
around the person’s head is reconstructed at high resolution.

Pilot applications were evaluated and showcased to more than 100 persons,
which exhibited diversity in age, gender, cultural and professional background
(see [31] for more details on this usability evaluation). The overall impression
was that due to brisk system response the applications are considered as exciting
and engaging and, thus, system response was adequate towards supporting the
aforementioned interactive applications.

6 Conclusions

This paper presented a multiview platform that facilitates the development and
integration of parallel and distributed visual processes. On top of this platform,
basic visual processes have been efficiently implemented. The functionalities of
the platform become accessible via an integrating middleware layer that com-
municates high-level visual computation results to the application layer. The

Lecture Notes in Computer Science 11

efficacy of the proposed implementation and architecture is assessed by the de-
velopment, in a simple prototyping language, of pilot applications that utilize
the developed infrastructure. The proposed system is characterized by increased
robustness in tracking persons at high framerate, and its reduced requirements
in computational hardware. The requirements are linearly related to the volume
of required computation, or otherwise, the spatial extent of the area to be cov-
ered and the number of views. System architecture adapts to the availability of
resources, few or abundant, and system performance scales linearly with respect
to them.

Future work regards the adoption of GPU implementation of the face de-
tection process (i.e. [32], the adoption of occlusion maps so that room furniture
can be accounted in visibility computation [7]. Additionally, we plan to expand
the set of available visual processes (e.g., by implementing gesture recognition)
in order to enrich the repertoire of interaction capabilities and facilitate the
development of more elaborate applications over the proposed platform.

Acknowledgements

This work was partially supported by the FORTH-ICS internal RTD Programme
“Ambient Intelligence and Smart Environments”.

References

1. Ramachandran, U., Nikhil, R., Rehg, J., Angelov, Y., Paul, A., Adhikari, S.,
Mackenzie, K., Harel, N., Knobe, K.: Stampede: a cluster programming middleware
for interactive stream-oriented applications. IEEE Trans. Parallel and Distributed
Systems 14 (2003) 1140 – 1154

2. Gualdi, G., Prati, A., Cucchiara, R., Ardizzone, E., Cascia, M.L., Presti, L.L.,
Morana, M.: Enabling technologies on hybrid camera networks for behavioral
analysis of unattended indoor environments and their surroundings. In: ACM
Multimedia Workshops. (2008) 101–108

3. Chen, P., Ahammad, P., Boyer, C., Huang, S., Lin, L., Lobaton, E., Meingast, M.,
Oh, S., Wang, S., Yan, P., Yang, A., Yeo, C., Chang, L., Tygar, J., Sastry, S.:
CITRIC: A low-bandwidth wireless camera network platform. In: ACM/IEEE Int.
Conference on Distributed Smart Cameras. (2008) 1–10

4. S.H. Jung, R.B.: A framework for constructing real-time immersive environments
for training physical activities. Journal of Multimedia 1 (2006) 9–17

5. Allard, J., Franco, J., Menier, C., Boyer, E., B., R.: The Grimage platform: A
mixed reality environment for interactions. In: ICCVS. (2006)

6. Ladikos, A., Benhimane, S., Navab, N.: Efficient visual hull computation for real-
time 3d reconstruction using CUDA. In: CVPR Workshops. (2008) 1–8

7. Schick, A., Stiefelhagen, R.: Real-time GPU-based voxel carving with systematic
occlusion handling. In: DAGM Symp. on Pattern Recognition. (2009) 372–81

8. Laurentini, A.: The visual hull concept for silhouette-based image understanding.
PAMI 16 (1994) 150–162

12 Zabulis, Sarmis, Tzevanidis, Koutlemanis, Grammenos, and Argyros

9. Sarmis, T., Zabulis, X., Argyros, A.A.: A checkerboard detection utility for intrinsic
and extrinsic camera cluster calibration. Technical Report TR-397, FORTH-ICS
(2009)

10. Bouguet, J.Y.: Camera calibration toolbox for Matlab.
(http//www.vision.caltech.edu/bouguetj/calib doc)

11. Lourakis, M., Argyros, A.: SBA: A software package for generic sparse bundle
adjustment. ACM Transactions on Mathematical Software 36 (2009)

12. Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtrac-
tion. In: International Conference on Pattern Recognition. (2004) 28–31

13. INRIA Perception Group http://4drepository.inrialpes.fr/.
14. Tran, S., Lin, Z., Harwood, D., Davis, L.: UMD VDT, an integration of detection

and tracking methods for multiple human tracking. In: CLEAR. (2008)
15. Wu, B., Singh, V., Kuo, C., Zhang, L., Lee, S., Nevatia, R.: CLEAR’07 evaluation

of usc human tracking system for surveillance videos. In: CLEAR. (2008) 191–196
16. Khan, S., Shah, M.: A multiview approach to tracking people in crowded scenes

using a planar homography constraint. In: ECCV. (2006) 133–146
17. Mittal, A., Davis, L.: M2tracker: A multi-view approach to segmenting and tracking

people in a cluttered scene. In: IJCV. (2003) 189–203
18. Reddy, D., Sankaranarayanan, A., Cevher, V., Chellappa, R.: Compressed sensing

for multi-view tracking and 3-D voxel reconstruction. In: ICIP. (2008) 221–224
19. Fleuret, F., Berclaz, J., Lengagne, R., Fua, P.: Multicamera people tracking with

a probabilistic occupancy map. PAMI 30 (2008) 267–282
20. Liem, M., Gavrila, D.: Multi-person tracking with overlapping cameras in complex,

dynamic environments. In: BMVC. (2009)
21. Argyros, A., Lourakis, M.: Real time tracking of multiple skin-colored objects with

a possibly moving camera. In: ECCV. Volume 3. (2004) 368–379
22. Lorensen, W., Cline, H.: Marching cubes: A high resolution 3D surface construction

algorithm. In: SIGGRAPH. (1987) 163–169
23. Tzevanidis, K., Zabulis, X., Sarmis, T., Koutlemanis, P., Kyriazis, N., , Argyros,

A.: From multiple views to textured 3d meshes: a gpu-powered approach. In:
ECCV Workshops. (2010) 5–11

24. Zabulis, X., Sarmis, T., Argyros, A.A.: 3D head pose estimation from multiple
distant views. In: BMVC. (2009)

25. Voit, M., Nickel, K., Stiefelhagen, R.: Neural network-based head pose estimation
and multi-view fusion. In: CLEAR. (2007) 291–298

26. Zhang, Z., Hu, Y., Liu, M., Huang, T.: Head pose estimation in seminar room
using multi view face detectors. In: CLEAR. (2007) 299–304

27. Tian, Y., Brown, L., Conell, J., Pankanti, S., Hapapur, A., Senior, A., Bolle, R.:
Absolute head pose estimation from overhead wide-angle cameras. In: AMFG.
(2003) 92–9

28. Comaniciu, D., Meer, P.: Mean shift : A robust approach toward feature space
analysis. PAMI 24 (2002) 603–619

29. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple
features. In: CVPR. (2001) 511–8

30. Franco, J., Menier, C., Boyer, E., Raffin, B.: A distributed approach for real time
3D modeling. In: CVPR Workshops. (2004) 31

31. Zabulis, X., Grammenos, D., Sarmis, T., Tzevanidis, K., Argyros, A.A.: Explo-
ration of large-scale museum artifacts through non-instrumented, location-based,
multi-user interaction. In: VAST. (2010)

32. Naruniec, J.: Using GPU for face detection. In: SPIE. Volume 7502. (2009) 204–206

