FORTH-ICS / TR-420 July2011

A GPU-powered computational framework for efficient 3D
model-based vision

Nikolaos Kyriazis, Iason Oikonomidis, Antonis A. Argyros

%% This work was partially supported by the IST-FP7-IP-215821 project GRASP.



A GPU-powered computational framework for efficient 3D
model-based vision

Nikolaos Kyriazis, Iason Oikonomidis, Antonis A. Argyros

Computational Vision and Robotics Laboratory
Institute of Computer Science
Foundation for Research and Technology — Hellas (FORTH)
N. Plastira 100, Vassilika Vouton
Heraklion, Crete, 700 13 Greece

Web: http://www.ics.forth.gr/cvrl
E-mail: {kyriazis | oikonom | argyros} @ics.forth.gr
Tel: +30 2810 391600, Fax: +30 2810 391601

Technical Report FORTH-ICS / TR-420— July2011

©Copyright 2011by FORTH



GPU-powered 3D model-based vision 1

Abstract

We present a generic computational framework that exploits GPU processing to cope
with the significant computational requirements of a class of model-based vision prob-
lems. We study the structure of this class of problems and map the involved processes to
contemporary GPU architectures. The proposed framework has been validated through
its application to various instances of the problem of model-based 3D hand tracking.
We show that through the exploitation of this framework near real-time performance is
achieved in problems that are prohibitively expensive to solve on CPU-only architec-
tures. Additional experiments performed in various GPU architectures demonstrate the
scalability of the approach and the distribution of the execution time among the involved
processes.

1 Introduction

In computer vision, several problems are solved by employing search and optimization meth-
ods. For example, in top-down model-based approaches, model instantiations are searched
for or fitted in observations, in specific contexts. In this work we are interested in the class
of top-down methods that estimate the pose and/or track the articulation of piecewise rigid
objects, based on multiple visual cues, such as color images, depth maps etc. Depending on
the employed model, the problem can be as simple as the recovery of the 3D position and
pose of a rigid object or as complex as the tracking of articulated objects such as the human
body or hand.

This broad class of problems is amenable to a generic formulation. For a given object
model, candidate hypotheses can be generated. Given a process that quantifies the com-
patibility of a hypothesis to the observations and a systematic approach for generating the
hypotheses, the problem can be solved by searching for the best scoring hypothesis. The
scoring process ultimately reduces to comparing model hypotheses and observations at the
pixel level, on a pre-defined feature space. The major drawback of this generic formulation
is its computational requirements stemming from the significant processing associated to the
scoring criterion as well as to the evaluation of mutliple hypotheses. Thus, the definition of an
efficient computational framework that addresses the computational requirements of related
methods is very important to their deployment in real-world applications. In this work, we
propose such a computational framework that is based on the careful mapping of the involved
processes to GPU architectures.

2 Relevant Work

Many computer vision tasks are susceptible to GPU acceleration. This is well understood
and has lately been availed by a number of researchers, who have proposed efficient solutions
for a variety of vision problems. For example, Choudhary et al. [1] were able to accelerate
bundle adjustment and perform faster large-scale 3D reconstruction through a CPU/GPU ar-
chitecture. Fulkerson and Soatto [5] provided a CUDA-based GPU implementation of the
exact quick shift algorithm that enables 10 — 50 times faster image segmentation compared

TR-420— FORTH-ICS, Jul.2011 1 Introduction



GPU-powered 3D model-based vision 2

to a CPU implementation. Gwosdek et al. [7] performed fast variational optic flow computa-
tions by accelerating the employed Fast Explicit Diffusion Solver on the GPU using CUDA.
Stithmer et al. [17] accelerated a Generalized Thresholding Scheme using CUDA, in order to
also perform variational optic flow, in real-time. Tzevanidis et al. [18] constructed textured
3D meshes from multicamera observations in real time, by means of an efficient CUDA-based
3D visual hull computation. Zhu et al. [20] studied GPU accelerated dense stereo computa-
tions and demonstrated that both accuracy preservation and speed increase can be achieved in
a transition from CPU-based to GPU-based algorithms.

GPU-based solutions have also been proposed for instances of the problems of pose esti-
mation and articulated object tracking, that is the class of problems relevant to this work. De
La Gorce et al. [2] employed a realistic textured 3D model of a human hand in order to track it
in image sequences. GPU acceleration came in the form of a straightforward rendering mech-
anism that was invoked in a per hypothesis basis. Hammer et al. [8] took GPU acceleration
further by considering multiple hypotheses simultaneously in tiled renderings, again with re-
spect to 3D hand tracking. Ganapathi et al. [6] followed a similar approach for the problem of
3D human body pose estimation. Although brief, the described GPU acceleration raises some
important issues that are also addressed in this work. Friborg et al. [4] reported a detailed
CUDA-based implementation of an inherently parallel likelihood computational scheme, in
the context of articulated object tracking.

Despite the significant amount of existing work, there has not been a generic CPU/GPU
framework that considers a class of problems rather than a single problem instance. Thus, in
this work, we systematically study the structure of a class of 3D model based vision problems
and we propose a generic CPU/GPU framework for addressing their significant computa-
tional requirements. In spite of the common trend, we select a GPU-independent software
architecture, Direct3D, that makes the application of our framework GPU invariant and, si-
multaneously, demonstrates that former GPU software pipelines are not obsolete. Still, we
do consider the potential benefits from graphics-free GPU architectures, such as CUDA and
OpenCL and we provide a brief discussion on their applicability and merits to our problem.
The usefulness of the adopted approach is documented through experimental results obtained
from the application of the proposed framework to various instances of the problem of 3D
hand tracking [12—14] which show that the proposed framework achieves almost real-time
performance in this type of problems. Additional experiments performed in various GPU ar-
chitectures demonstrate the scalability of the approach and the distribution of the execution
time among the involved processes.

3 Methodology

The high-level outline of the proposed framework is illustrated in Fig. 1. We assume that
an observation process that is executed on the CPU, feeds the framework with raw input
data. These data (acquired from a single or a multiple camera system and/or other sensing
modalities) are then transformed into visual cues, that are relevant to the task at hand, through
preprocessing (e.g., background subtraction, edge detection). Given the resulting visual cues,

TR-420— FORTH-ICS, Jul.2011 3 Methodology



GPU-powered 3D model-based vision

Hypotheses’

Scores

)

v

Feature-mapped

Search
Model ¥
( Hypotheses m [
+
Observation Decodi
ecoding
A ( »
A Renderables
mages : il A .-.-.-.-.-.-:
.: \ 4
0! Tiled
- Rendering
]
(]
A 4 ' : i
. M .E‘
Preprocessing H '
0, Rendered
: (] Hypotheses
"
Yy
4y
Y
Feature-mapped : : Feature
Observations [} ' .
", mapping
(]
"
'y
]
X :

mapping  t...:

Hypotheses

v

=
|

srccccccccccccccccccas |

P T T P R T R R R Y X T RN

A

3

Figure 1: The proposed computational framework. Every iteration of the defined loop

amounts to an efficient differentiation of observations and hypotheses, in a top-down, model-

based approach.

TR-420— FORTH-ICS, Jul.2011

3 Methodology



GPU-powered 3D model-based vision 4

a search process iteratively estimates the parameters of a preselected model by testing the
compatibility of various hypothesized model instances to the visual cues. The hypothesized
model instances are rendered and then feature-mapped, so as to be comparable to the obser-
vations at the pixel level. During each iteration of the search process, hypotheses rendering
is performed on a big tiled map by a tiled rendering process. Since the observed visual cues
and the rendered model hypotheses are comparable at the pixel level, their differentiation and
reduction results in a total observation-hypothesis distance. All computed distances are then
exploited by the search process so that better hypotheses can be further explored. The whole
process terminates as soon as a termination criterion (usually related to the achieved accuracy
and/or a predefined number of iterations) has been met.

3.1 Accelerated vs non accelerated processes

From the briefly described processes, observation is performed on the CPU and preprocess-
ing can be executed either on the CPU or on the GPU. It has been observed [12—14] that
these processes only consume a small fraction of the total execution time and therefore their
acceleration does not have a significant impact on the overall computational performance.

We consider the Black Box Optimization paradigm [9], according to which a search pro-
cess/heuristic investigates the hypothesis space of a model in order to identify the hypothesis
that optimally fits a set of observations. There is only marginal gain in accelerating the core of
such processes, as they are usually very fast. However, it is crucial to accelerate the hypothe-
sis evaluation phase, whose execution time is dominant. Search heuristics can be categorized
into serial and parallel, according to their evaluation scheme [16]. Serial heuristics are re-
stricted to evaluate a single hypothesis at a time, while parallel heuristics do not pose such
restrictions. Parallel heuristics allow for great acceleration gains in their objective function
evaluation phase.

After sets of hypotheses have been proposed, they are decoded into renderable entities, i.e.
arbitrarily complex 3D geometric instances. Decoders are responsible for mapping a multi-
dimensional search space into a decomposition over geometries and their transformations
(e.g., kinematics). In the proposed architecture decoders are dynamic libraries, that are loaded
and selected at run-time. Decoding is worth accelerating since it involves series of matrix
multiplications (geometry transformations).

The described iterative process follows the map-reduce scheme [3]. During the mapping
phase, hypotheses are generated and paired to the corresponding observations (cross product
notation in Fig. 1). At the reduction phase, the differences of the defined pairs are reduced
into hypotheses scores that guide the search process. Both phases are GPU accelerated. Since
the architecture we propose is generic, in the following sections we only describe the design
requirements for each of the involved processes, emphasizing issues related to the GPU ac-
celeration and data communication. Still, in Sec.4, we also provide some details on how the
proposed framework is instantiated to efficiently solve various instances of the problem of 3D
hand tracking.

TR-420— FORTH-ICS, Jul.2011 3.1 Accelerated vs non accelerated processes



GPU-powered 3D model-based vision 5

Data Data explosion Vertex Pixel processing
upload Geometry Instancing Processing Multi-viewport clipping

Geometries

W
Transforms E*

e
_|
@ @®
®
(2)
(3)

S | ©

Projections — >
Observations . E
revwors (19) (0 (@) 9

Figure 2: The tiled rendering process. Unique data are uploaded to the GPU, exploded into

3)
3
(8

a tiled plan, processed in the vertex level and output in primary maps for later processing.
Although there might be overlap of projected geometry across tiles during vertex processing
this is remedied at the pixel-processing stage.

3.2 Tiled rendering

This process receives renderable entities and produces a set of primary outputs for further
processing. Renderable entities amount to 3D geometries and geometry transformations and
the primary outputs represent view-space 3D information, i.e. per pixel color, 3D position,
3D normal and depth. The input is provided by the decoder process. The outputs are post-
processed by feature mapping and are thus made directly comparable to the respective obser-
vations.

Contemporary GPU drivers, GPU architectures and rendering pipelines allow for surpris-
ingly fast parallel processing of massive data. Given proper design, linear increase of data
may induce sub-linearly increased execution times, thanks to efficient interleaving of pro-
cessing/reading/writing instructions [11]. We take parallelization to the limit by processing
multiple hypotheses simultaneously. Instead of rendering a single hypothesis at a time we
render multiple hypotheses in big tiled renderings. We separate the rendering and feature
mapping phases in favor of modularity, by employing deferred shading. We perform efficient
data communication and rendering by employing geometry instancing. Proper containment
of instantiated geometry in tiles is achieved through multi-viewport clipping.

3.2.1 Deferred shading

Deferred shading is a technique commonly used in computer graphics [15]. According to this
technique, 3D models are rasterized into a series of primary outputs such as color, position,
depth and surface normal maps. Essentially, each primary output is an image with each pixel
holding 3D information for the rendered models. It is characterized as “deferred” because
actual rendering is postponed and at this phase only primary output is produced. An example
of deferred shading is illustrated in Fig. 3. We employ deferred shading for two reasons:
(a) we need to isolate the feature mapping process from the rest of the processes for the sake
of modularity, (b) primary data may require multiple passes of processing but should not be

TR-420— FORTH-ICS, Jul.2011 3.2 Tiled rendering



GPU-powered 3D model-based vision 6

(a) (b) (© (d) @)

Figure 3: Deferred Shading. (a) the input of 3D model to be rendered and the primary outputs:
(b) color, (c¢) position, (d) depth and (e) normal maps.

multiply computed.

Deferred shading, as a conventional rendering process, involves two successive stages,
namely vertex shading and pixel shading. Given 3D models and view parameters, vertex
shading is responsible for transforming every vertex of the input geometry from world co-
ordinates to view coordinates. Then, triangles that are defined by the transformed vertices
are rasterized during pixel-processing. Additionally, z-buffering is used in order to produce
correct rasterizations of occluded geometry. Each stage is configurable through the integra-
tion of appropriate vertex and pixel shaders, i.e. callback routines, that perform the required
processing on the GPU. We implement such shaders in the proposed framework.

3.2.2 Geometry instancing

It is beneficial to reduce communication between the CPU and the GPU in order to eliminate
the respective overhead in execution time. For several computational schemes it is common
that transferring data across memory spaces is more costly than processing itself. Best perfor-
mance is achieved when only a few data are transferred to GPU, which are then “exploded”
and processed and then “imploded” and transferred back to CPU.

In this work, each tile in a tiled rendering is associated with an actual camera view and a
hypothesis. Therefore, for each tile, the following information is required: (a) geometry to be
rendered, (b) world transform of this geometry, (c) projection matrix for the actual view and
(d) the coordinates of the tile’s viewport in the big rendering. However, in a tiled rendering,
multiple tiles might refer to the same geometry and/or the same camera view. Therefore,
there can be a lot of data reuse in the computations. This is amplified in the quite common
case where the geometry itself is so modular that its sub-parts are heavily reused as well
(e.g. as in [12], where the hand model consists of appropriate transforms of two geometric
primitives). In that case it is highly inefficient to replicate data wherever they are required.
Fortunately, in newer shader models (3 and above), hardware instancing enables an efficient
and implicit replication of heavily reused data. Thus, we only upload unique data to the GPU
once and explode them during processing by means of indexed referencing. The indexing
itself is also implicit as we only define a replication pattern rather than the indices themselves
(e.g., repeat datum every n tiles). The corresponding implosion occurs during the reduction
phase (Sec. 3.5).

TR-420— FORTH-ICS, Jul.2011 3.2 Tiled rendering



GPU-powered 3D model-based vision 7

3.2.3 Multi-viewport clipping

If multiple tiles are to be rendered simultaneously it must be guaranteed that the rendered
geometry is properly contained therein. That is, we want to avoid rendering the geometry of a
given tile over neighboring tiles. However, conventional rendering pipelines do not consider
this special case. While geometry clipping is traditionally performed at the vertex processing
stage it is complicating to do so in our case. This is because of irregularities in the amount of
data that survives clipping which would require an intricate remedy with respect to our target
platform.

We chose to perform multi-viewport clipping at the pixel-processing stage where it is
both convenient and efficient. After all geometry has been rasterized, a custom pixel shader
is invoked to produce the primary map outputs. During geometry instancing, viewport in-
formation is attached to every vertex (see Sec. 3.2.2). During rasterization, this information
is transferred to the pixels that result from the triangles formed from the processed vertices.
Therefore, at pixel-processing each pixel is associated with the viewport in which it should
be contained. A custom pixel shader clips pixels that are outside their pre-defined viewports
(see Fig. 2).

3.3 Feature mapping

The main task of this process is to make rendered hypotheses comparable to the observations.
This is performed by post-processing the 3D information that is contained in the primary
outputs of the rendering process. Exemplar feature mapping processes can be: (a) the com-
putation of occupancy from the position map, (b) the computation of edges from the normal
map, (c) the computation of discrete layers from the depth map, etc. Feature mapping, as a
straightforward rendering step, is a highly parallel pixel-wise mapping of the primary maps.

3.4 Differentiation

Differentiation is used to quantify the discrepancy between all feature-mapped observations
and the corresponding feature-mapped hypotheses. With geometry instancing (Sec. 3.2.2) al-
ready one part of the observation-hypothesis pairing has been computed: every hypothesis has
been associated to a part of a big tiled rendering which constitutes one operand of the differen-
tiation. The remaining operand needs to be computed in accordance with the aforementioned
pairing.

All observations are uploaded to the GPU in the form of multi-channel real-valued 2D
textures at appropriate predefined slots. Each texture is assigned to a zero-based slot index
that also constitutes its reference. During instancing this information is passed to each tile, so
that the contained hypothesis corresponds to an observation. Thus, two big GPU textures are
defined: (a) an explicit texture that holds the tiled rendering (first operand) and (b) an implicit
tiled texture that is defined by the observation textures (second operand). Those two textures
are now susceptible to any pixel-wise differentiation process that quantifies the discrepancy
between observations and hypotheses. The result of this differentiation is stored in a multi-
channel real-valued 2D texture.

TR-420— FORTH-ICS, Jul.2011 3.3 Feature mapping



GPU-powered 3D model-based vision 8

Input Operand textures
Observations/Hypotheses Implicit/Explicit

Differentiation Reduction

ing

Observations

H

Figure 4: The differentiation process. Primary maps are mapped to the observations’ feature
space. Observations are implicitly tiled so as to match the tiled rendering of all hypotheses.
A pixel wise differentiation is applied and the result is finally summed over the logical tiles
by means of subsampling (data implosion).

3.5 Reduction

Once the mapping phase has been completed, the pixel-wise differences (Sec. 3.4) must be re-
duced to a single value for each tile, that ultimately represents the corresponding hypothesis’
distance from the respective observation. We perform this reduction by means of pyramidal
computations. Reduction is performed iteratively by subsampling the difference texture with
a reduction operator (most commonly the sum operator). This scheme corresponds to the
computation of a given MIP (Multo In Parvo, i.e., “much in a small space”) level of the dif-
ferences texture [19]. Reduction stops at the level at which the dimensionality of the resulting
texture matches the dimensionality of the hypotheses’ grid. For the sake of efficiency we se-
lect square render and tile sizes that are powers of two. For this process two textures are used
that are exchanged in the positions of the input and the output in every subsampling iteration.

4 Applications

The proposed framework has been employed in [12-14], where different instances of the 3D
hand tracking problem are treated. In order to exemplify the use of the proposed CPU/GPU
architecture, we select the works in [14] and [13] because they differ in the observation model,
the employed visual cues and, consequently, in the differentiation and reduction phases. Thus,
they are the most diverse from a computational point of view. In both works different vari-
ations of the PSO algorithm [10] have been employed as the search process. PSO follows a
parallel evaluation scheme which is favorable to the employment of the presented framework.
The rendering process is the same in both cases, thanks to the decoder process.

In [14], the model accounts for a 3D articulated human hand and a parametric 3D object

TR-420— FORTH-ICS, Jul.2011 3.5 Reduction



GPU-powered 3D model-based vision 9

(ellipsoid, cylinder, cuboid) that amount to a total of 34 — 35 DoFs. The observation process
produces multi-frames of up to 8 RGB images per invocation. During preprocessing, input
multi-frames are transformed into multi-frames of skin detection results m and multi-frames
of edge detection results mpr that have undergone a Distance Transform. The decoding
phase maps the 34 — 35 DoFs (depending on the number of DoFs of the object model) to
appropriately transformed instances of ellipsoids, cylinders and cuboids. The results of the
rendering process are feature-mapped to (a) occupancy images m. that are produced from
the primary color map and correspond to skin detection results and (b) edge detection results
me, that are produced from the primary normal map and correspond to the edge detection
results. The differentiation process generates 4 outputs: (a) ms V me, (b) mgs A me, (C) me
and (d) mpr - me, where all operations are pixel-wise. Each such output is then reduced,
in a per-tile basis, in order to provide tuples of 4 values for each hypothesis, using the sum
operator. Each tuple is transformed (more details in [14]) into a single value that represents the
distance between a given observation and a hypothesis. The employment of our framework
in this application induces a performance of 2 fps on an Intel Core i7 950 @ 3.07G H z with
a NVIDIA GeForce GTX 580 GPU. Sample video results are available at http://youtu.
be/N3ffgj1bBGw.

In [13], the model accounts for a 3D articulated hand of 26 DoFs (6 for the hand global
position and pose and 20 for hand articulation). The observation process generates a frame
set that is composed of a RGB image mprap and a depth map mp. During preprocessing,
skin detection is applied to mrgp and its result is used to filter out depths, that do not regard
the observed hand from mp, in a new depth map m/,. The decoding phase maps the 26
DoFs to appropriately transformed instances of ellipsoids and cylinders. The depth primary
map that results from the rendering process is subtracted from m/,, and these differences are
summed over each tile to provide the observation-hypothesis distances. The employment of
our framework in this application induces a performance of 15fps on an Intel Core i7 950
@ 3.07GH z with a NVIDIA GeForce GTX 580 GPU. Sample video results are available at
http://youtu.be/Fxad3gcmlC4.

S Experiments

The accuracy and computational performance of the proposed framework has been evaluated
already in the context of the computer vision problems in which it was employed [12-14]. In
this paper, further experiments were designed to highlight the strengths and weaknesses of this
framework. More specifically, we show that our framework is able to perform in the order
of tens of thousands evaluations of complex 3D hypotheses per second, even on mediocre
hardware. Moreover, we identify a bottleneck in the pixel-processing stages, which leaves
room for further improvement in performance.

We performed a set of experiments on 3 distinct systems of varied computational power:
(a) an Intel Core 2 6600 @ 2.4G H z with a NVIDIA GeForce 9600 GT GPU, (b) an Intel
Core 17 950 @ 3.07G H z with a NVIDIA GeForce GTX 580 GPU and (c) an Intel Core i7
930 @ 2.8G H z with a NVIDIA GeForce GTX 295 GPU. The third system has a dual GPU

TR-420— FORTH-ICS, Jul.2011 5 Experiments



GPU-powered 3D model-based vision 10

4 0.02 1

ElRender time ElRender time ElRender time
[T IMapping time [IMapping time [IMapping time
~“|[IEReduction Time| EllReduction Time| o o M Reduction Time|

Time in sec
Timein sec

Time in sec

256 512 1024 2048 409
Output resolution

12 1024 2048 4096

28 25€ 2 28 256 512 1024 2048 4096
Output resolution Output resolution

(@) (b) (©

Figure 5: Performance profiling of the GPU evaluation. Batches of 64 3D hand hypotheses are
evaluated over output textures of increasing dimensions. Figures (a), (b) and (c¢) correspond
to systems (a), (b) and (c). Interestingly, in (a) and (c) and for a resolution of 4096 x 4096,
87.46% and 92.69% of the time is spent on reduction. This suggests that, for these cases,
smaller batches are preferable.

but for the experiments only one of them was used. The three systems vary in GPU core count
(96 for system (a), 512 for (b) and 240 for (c)) and represent different GPU generations.

During all experiments we used a geometry that represents an articulated hand. The hand
consists of 22 homogenous transformations of a spherical mesh and 15 homogenous transfor-
mations of a cylindrical mesh. Each sphere consists of 2 - st - sl triangles and each cylinder
consists of 2 - st - sl + 2 - sl triangles, where sl represents slice count and st represents stack
count in a geometry sampling grid. Unless otherwise stated, the values of s/ = 10 and st = 10
were used, so, the total triangle count per hypothesis was 7700. For more details the reader
is referred to [12]. To consider a challenging scenario regarding rendering computational re-
quirements, wherever a renderable hypothesis was required, one supplied with a hand fully
occupying the viewport (open hand facing a virtual camera). For observations we used syn-
thesized renderings of the same hypothesis (the content of the observations does not influence
the computational performance). For the mapping and reduction processes, routines similar
to those in [12] were used. Each reported measurement is the mean value of 20 successive
iterations of the associated process. The timing operations themselves affect performance
negatively as they define multiple synchronization points that break pipelining.

In a first line of experimentation we tested the method’s computational efficiency under
increasing resolution requirements for the tiled rendering, and thus put more weight on the
pixel-processing phase. Batches of 64 hypotheses were rendered on a 8 x 8 grid and on square
textures whose dimension was 128, 256, 512, 1024, 2048 and 4096. Respectively, the dimen-
sion of the square tile was 16, 32, 64, 128, 256 and 512. We considered the execution times of
rendering, mapping and reduction separately. A total of 64 x 7700 = 492800 triangles were
rendered in each batch. The obtained results are illustrated in Fig. 5. It can be verified that as
the resolution increases, the processing time of the pixel-processing stages (rasterization dur-
ing rendering, mapping, reduction) increases, too. For higher resolutions, reduction becomes
the bottleneck, followed by mapping. The graceful degradation of performance for system
(b) and for a resolution of 4096, as opposed to systems (a) and (c), is most probably due to

TR-420— FORTH-ICS, Jul.2011 5 Experiments



GPU-powered 3D model-based vision 11

8>< 10

—+NVIDIA GeForce GTX 295
S 7. - =—NVIDIA GeForce GTX 580
g —— . —4—NVIDIA GeForce 9600 GT
O 6
()] |
%]
5 ° )

¢

o 4 -

o,
3 . .
o3 -
c o
52 =
o
2 \
1 u“*‘m:X:X:bt—H—g_.

6

(=]

o

2 4
Number of triangles x 10°

Figure 6: Rendering throughput against geometry complexity. 256 3D hand hypotheses are
rendered on a 4096 x 4096 texture. Although 3D model detail increases with respect to
triangle count, performance degradation is graceful due to hardware instancing.

improved memory architecture.

We also tested the rendering performance for increasing complexities of the 3D geometry
and thus put more weight in the vertex processing phase. We repeated the previous line
of experimentation, excluding mapping and reduction and fixing the tile dimension to 256
and the total dimension to 4096 (hypothesis count is thus 256). We varied the sl and st
counts simultaneously in the range [3, 20]. This resulted in batches of triangle counts in the
range [193536, 7731200]. Plots that demonstrate the graceful degradation of the performance
are shown in Fig. 6. As the detail of the model increases, more vertices are required to be
processed. Also, the tight spacing between small triangles in high levels of detail stresses
the rasterization process, which has to also resolve more depth conflicts. Because of the
simultaneous issuing of all geometry and due to efficient interleaving, the GPU performs
well.

Finally, we tested the scalability of the proposed framework in order to highlight the ben-
efit from considering batches of hypotheses simultaneously. We fixed the dimension of the
tile to 128 and considered batches of 1, 4, 16, 64, 256 and 1024 hypotheses. This generated
a requirement for output textures of dimensions 64, 128, 256, 512, 1024, 2048 and 4096,
respectively. For each batch size we measured the hypothesis evaluation throughput by di-
viding its size with the required processing time. The results are shown in Fig. 7. Given
the requirement for the evaluation of many hypotheses, it is evidently beneficial to consider
larger batches for simultaneous evaluation. However, as the batch sizes grow, the required
resolution is increased and the whole process becomes pixel-processing bound. Systems (a)
and (c) were affected negatively, but system (b) remained unaffected.

In order to cope with batch sizes that are not power-of-two we processed them by se-
quential decomposition in power-of-two batches. The results of the previous experiment but
for non-power-of-two batch sizes are shown in Fig. 8. Performance presents a pattern across
sizes, due to the decomposition, and remained good for batch sizes that required few decom-

TR-420— FORTH-ICS, Jul.2011 5 Experiments



GPU-powered 3D model-based vision 12

5 X 10 ‘ ‘
o] /
c
o4
o
@
n
2 s ——NVIDIA GeForce GTX 295/
1) —=—NVIDIA GeForce GTX 580
Gug 5 == NVIDIA GeForce 9600 GT
)
=
) o
21
>
z m

I L

O,

10° 10" 10° 10° 10*

Hypotheses per batch

Figure 7: Evaluation throughput against batch sizes. Each hypothesis is evaluated on a 64 x 64
tile. As the batch size increases the evaluation throughput increases as well. The deterioration
of performance for 1024 hypotheses for systems (a) and (c) is due to the requirement for an
output texture of 4096 x 4096, which, as shown in Fig. 5, is problematic.

5 X 104

—NVIDIA GeForce GTX 295
'g ——NVIDIA GeForce GTX 580
© 4//=—NVIDIA GeForce 9600 GT
o
5
6 3 ll
o
n
e A AN
g 2 \
£ \
o
Q1
>
T

o

10" 10° 10’ 10°
Hypotheses per batch

=
o

Figure 8: The same experiment as in Fig. 7, but for batch sizes that are not powers of two.

TR-420— FORTH-ICS, Jul.2011 5 Experiments



GPU-powered 3D model-based vision 13

positions. State changes, like the requirement for different sizes of output textures in the same
batch, affected performance negatively.

In every case, we were able to evaluate tens of thousands of complex 3D hypotheses
per second. This has been most beneficial for the works in [12—14], where near real-time
performance was achieved for different challenging instances of the problem of 3D hand
tracking.

6 Conclusions

In this paper we provided a detailed description of a CPU/GPU framework that targets a class
of computer vision problems. We demonstrated the computational benefits of this framework
in a series of experiments performed on various GPU systems. The proposed framework
is not restricted to a single application and has already been employed in three similar, yet
essentially different problems. It has been shown that an effective GPU-invariant solution
is realizable. More specifically, it has been demonstrated that the proposed framework can
evaluate tens of thousands of elaborate 3D hypotheses per second. The efficiency of the
proposed architecture makes it a likely candidate for several other real-time 3D computer
vision applications.

Still, there is room for further improvements. We selected Direct3D as the rendering
platform because the class of problems we are interested in optimally maps to the features
provided by this platform. However, by also being graphics-oriented, the selected platform in-
duces restrictions and limitations: (a) Direct3D, although GPU-invariant, is not OS-invariant,
(b) data-parallel, non-graphics-oriented tasks have to be forced through a graphics-oriented
pipeline, which induces unnecessary overheads, (¢) numbers need to be powers-of-two in or-
der to achieve optimal performance in a platform that does not favor elaborate gather/scatter
operations. Preliminary tests have shown that further speedup can be achieved by comple-
menting or replacing Direct3D with other platforms, such as CUDA, OpenCL etc. For ex-
ample, a 20x speed-up on the pixel-processing stages (Fig. 5), which was achieved through
CUDA, might offer an overall 2 — 10x speed-up for large resolutions (see Fig. 5).

Acknowledgments

This work was partially supported by the IST-FP7-1P-215821 project GRASP.

References

[1] Siddharth Choudhary, Shubham Gupta, and PJ Narayanan. Practical time bundle adjust-
ment for 3d reconstruction on the gpu. In ECCV’2010 Workshop on Computer Vision
on GPUs (CVGPU2010), 2010.

[2] M. de La Gorce, N. Paragios, and DJ Fleet. Model-based hand tracking with texture,
shading and self-occlusions. In CVPR 2008), pages 1-8. IEEE, 2008.

TR-420— FORTH-ICS, Jul.2011 6 Conclusions



GPU-powered 3D model-based vision 14

(3]

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.
Communications of the ACM, 51(1):107-113, 2008.

R.M. Friborg, Sg ren Hauberg, and Kenny Erleben. GPU Accelerated Likelihoods for
Stereo-Based Articulated Tracking. In ECCV’2010 Workshop on Computer Vision on
GPUs (CVGPU2010), 2010.

Brian Fulkerson and Stefano Soatto. Really quick shift: Image segmentation on a GPU.
In ECCV’2010 Workshop on Computer Vision on GPUs (CVGPU2010), 2010.

V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun. Real time motion capture using a
single time-of-flight camera. In CVPR 2010, pages 755-762. IEEE.

Pascal Gwosdek, Henning Zimmer, Sven Grewenig, A. Bruhn, and J. Weickert. A highly
efficient GPU implementation for variational optic flow based on the Euler-Lagrange
framework. In ECCV’2010 Workshop on Computer Vision on GPUs (CVGPU2010),
2010.

H. Hamer, K. Schindler, E. Koller-Meier, and L. Van Gool. Tracking a hand manipulat-
ing an object. In ICCV 2009), pages 1475-1482. IEEE, 2009.

N. Hansen, A. Auger, R. Ros, S. Finck, and P. Po§ik. Comparing results of 31 algorithms
from the black-box optimization benchmarking bbob-2009. In Proceedings of the 12th
Annual Conference Companion on Genetic and Evolutionary Computation, pages 1689—
1696. ACM, 2010.

J. Kennedy. Swarm intelligence. Handbook of Nature-Inspired and Innovative Comput-
ing, pages 187-219, 2006.

Nvidia. Compute unified device architecture programming guide. NVIDIA: Santa Clara,
CA, 83:129, 2007.

I. Oikonomidis, N. Kyriazis, and A. Argyros. Markerless and efficient 26-dof hand pose
recovery. In ACCV 2010, pages 744—757. Springer, 2010.

I. Oikonomidis, N. Kyriazis, and A. Argyros. Efficient model-based 3d tracking of hand
articulations using kinect. In BMVC 2011. BMVA, 2011.

I. Oikonomidis, N. Kyriazis, and A. Argyros. Full dof tracking of a hand interacting
with an object by modeling occlusions and physical constraints. In /ICCV 2011. IEEE,
2011.

M. Pharr and R. Fernando. Gpu gems 2: programming techniques for high-performance
graphics and general-purpose computation. 2005.

R. Storn and K. Price. Differential evolution—a simple and efficient heuristic for global
optimization over continuous spaces. Journal of global optimization, 11(4):341-359,
1997.

TR-420— FORTH-ICS, Jul.2011 REFERENCES



GPU-powered 3D model-based vision 15

[17] J. Stiihmer, Stefan Gumbhold, and Daniel Cremers. Parallel Generalized Thresholding
Scheme for Live Dense Geometry from a Handheld Cameral. In ECCV’2010 Workshop
on Computer Vision on GPUs (CVGPU2010), 2010.

[18] K. Tzevanidis, X. Zabulis, T. Sarmis, P. Koutlemanis, N. Kyriazis, and A. Argyros.
From multiple views to textured 3d meshes: a gpu-powered approach. In ECCV’2010
Workshop on Computer Vision on GPUs (CVGPU2010), pages 5-11, 2010.

[19] L. Williams. Pyramidal parametrics. In ACM SIGGRAPH Computer Graphics, vol-
ume 17, pages 1-11. ACM, 1983.

[20] Ke Zhu, Matthias Butenuth, and Pablo Angelo. Comparison of Dense Stereo using
CUDA. In ECCV’2010 Workshop on Computer Vision on GPUs (CVGPU2010), 2010.

TR-420— FORTH-ICS, Jul.2011 REFERENCES



