Efficient Model-based Tracking of the Articulated Motion of Hands

Iason Oikonomidis, Nikolaos Kyriazis, Antonis A. Argyros

Institute of Computer Science, FORTH, Greece

AND

Department of Computer Science, University of Crete, Greece

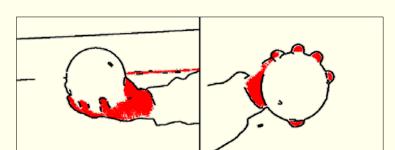
PRORI EM STATEMENT

Track the 3D position, orientation and full articulation (26 DoFs) of a human hand that possibly manipulates an object, given a sequence of either multiview or RGB-D frames of the scene.

MOTIVATION

The markerless tracking of hand articulations is a challenging problem with diverse applications such as H.C.I., understanding human grasping, robot learning by demonstration, etc.

MAIN IDEA

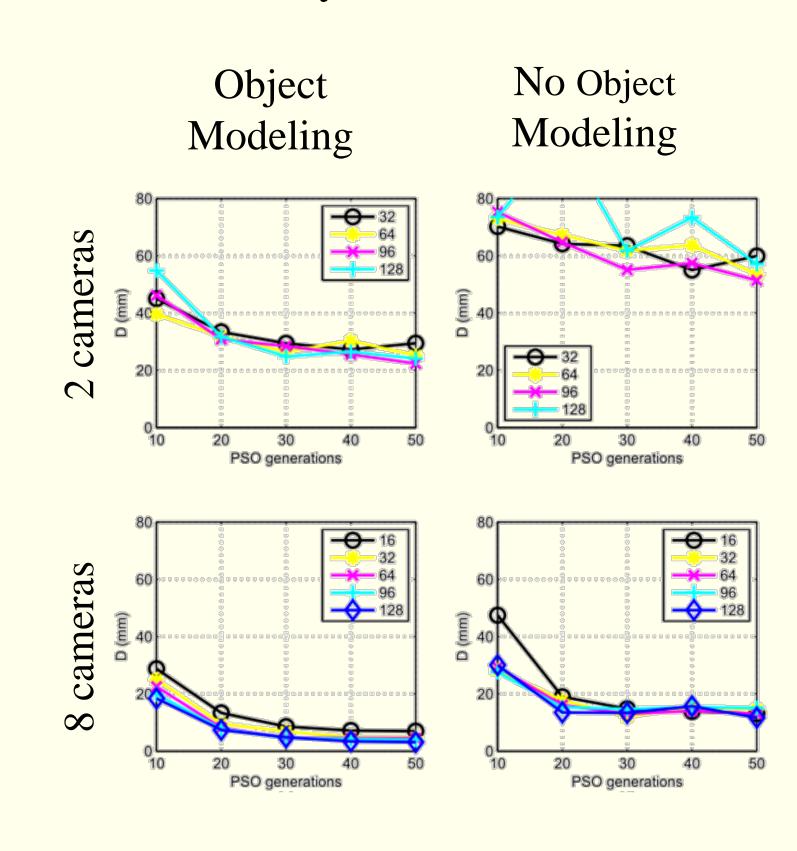

Jointly consider the observed scene: extract full-image features and produce full hypotheses about it. Compare hypotheses and observed features in parallel [4]. Use these scores to drive an iterative optimization process using Particle Swarm Optimization (PSO) [5].

11

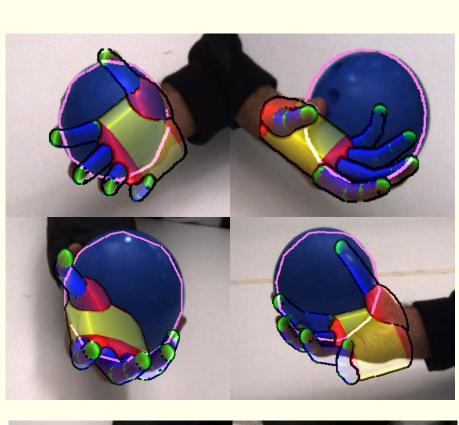
Input

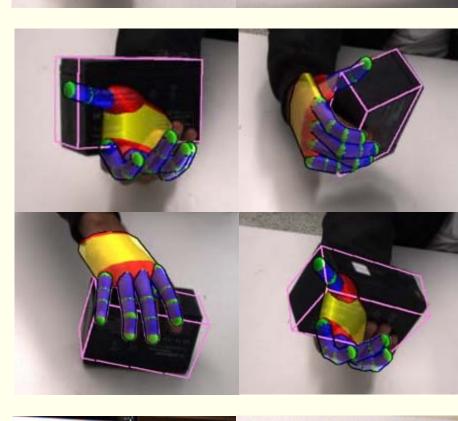
- Frames are acquired by a multi-camera setup or a Kinect.
- Edge (black) and skin color (red) cues are extracted for the multiview case.

• For the case of Kinect, skin color and depth cues, along with the **temporal continuity** assumption are used to **segment** the hand.


Fit model to data

- Employ a parametric hand model [1].
 □ Comprised of 15 cylinders and 22 spheres.
 □ 26 DoFs: 6D global pose, 20 kinematics angles.
 + For the hand-object case, add a parametric object (9 or 10 DoFs).
- From a full configuration (all 26 DoFs of the hand model plus potentially the object DoFs), a **skin occupancy map**, an **edge map** and a **depth map** can be **synthesized** by means of rendering.
- These maps are used to quantify the discrepancy between observation and hypothesis (objective function).
- The objective function also **penalizes physically implausible** configurations (hand-hand and hand-object collision checking).
- A variant of the **PSO** method [5] searches in the model parameter space for the best scoring configuration.
 - ☐ Efficient evaluation of multiple hypotheses on the GPU [4].
- Candidate poses for the **next frame** are obtained by **perturbing** the solution of the **previous frame**.


EXPERIMENTAL RESULTS


Input from a Multi-view System

Quantitative evaluation on synthetic data

64 particles and 40 generations for 4 views yield 2fps on a modern PC

Input from Kinect

Single-view depth image Hand in isolation

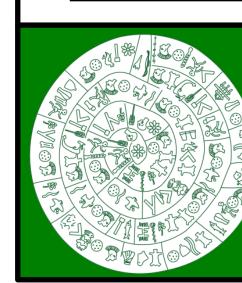
64 particles and 30 generations yield
15fps on a modern PC

STRENGTHS OF THE APPROACH

rendering

- Occlusions serve as visual cues through modeling.
- Joint optimization: no simplifying assumptions over the problem structure, simultaneous consideration of all parameters.
- Careful design and exploitation of parallelism in a GPU implementation [4] lead to a computationally efficient system that accepts input of multiple modalities [1-3].
- Minimally invasive markerless approach.

KEY REFERENCES


- 1. Oikonomidis, I., Kyriazis, N., Argyros, A. A. "Markerless and Efficient 26-DOF Hand Pose Recovery". *ACCV*, 2010.
- 2. Oikonomidis, I., Kyriazis, N., Argyros, A. A. "Full DOF Tracking of a Hand Interacting with an Object by Modeling Occlusions and Physical Constraints". *ICCV*, 2011.
- 3. Oikonomidis, I., Kyriazis, N., Argyros, A. A. "Efficient Model-based 3D Tracking of Hand Articulations using Kinect". *BMVC*, 2011.
- 4. Kyriazis, N., Oikonomidis, I., Argyros., A. A. "A GPU-powered Computational Framework for Efficient 3D Model-based Vision". *Technical Report TR420, ICS-FORTH*, 2011.
- 5. Kennedy, J., Eberhart, R. "Particle swarm optimization". *International Conference on Neural Networks*, 1995.

reduction

AND Operation

generation

