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Abstract This paper presents a computer vision system
that supports non-instrumented, location-based interaction
of multiple users with digital representations of large-scale
artifacts. The proposed system is based on a camera network
that observes multiple humans in front of a very large dis-
play. The acquired views are used to volumetrically recon-
struct and track the humans robustly and in real time, even
in crowded scenes and challenging human configurations.
Given the frequent and accurate monitoring of humans in
space and time, a dynamic and personalized textual/graph-
ical annotation of the display can be achieved based on the
location and the walk-through trajectory of each visitor. The
proposed system has been successfully deployed in an
archaeological museum, offering its visitors the capability
to interact with and explore a digital representation of an
ancient wall painting. This installation permits an extensive
evaluation of the proposed system in terms of tracking robust-
ness, computational performance and usability. Furthermore,
it proves that computer vision technology can be effectively
used to support non-instrumented interaction of humans with
their environments in realistic settings.
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1 Introduction

In the past few years, museums and expositions worldwide
have started exploring new ways for integrating interactive
exhibits [3,14,16,30,34], moving beyond the typical “multi-
media information kiosk” paradigm. The motivation behind
such efforts is to support constructive and engaging enter-
tainment in education (“edutainment”). The enhancement of
didactic content with captivating and immersive experiences
and the support of active visitor participation plays central
roles in the pedagogic value of such systems. In expositions,
additional value can be gained through engaging, interactive
informative sessions for multiple visitors. Towards this end,
large-scale digital displays are typically employed to present
large-scale artifacts in actual size or magnify smaller ones.

An interesting category of such displays are those offering
non-instrumented, location-based interaction capabilities. In
location-based interaction, the contents of the display are
dynamically updated based on the position of the visitor
relative to it. Location-based interaction is non-instrumented
if visitors are not required to carry any device measuring or
marking their location. Besides offering a much more natu-
ral interaction experience, this approach has simple logistics
(e.g. no need for a lending–return process), which is of prac-
tical importance for a museum or exhibition. In this paper,
the term large-scale refers to the size of the display whose
dimensions are in the order of meters.

One of the earliest examples of such interaction is Kids-
Room [6], an interactive playspace simulating a children’s
bedroom where young children are guided through an adven-
ture story. In [17], a multiplayer game was developed using
one top-view camera, mapping the estimated player 2D
motion to that of a digital character. Another example are
interactive floors (physical sensor-based like Magic Car-
pet [25], or vision-based like iGameFloor [12]), which are
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mainly employed in games. In the domain of museum appli-
cations, the work in [16] explored three different ways of
supporting location-based interaction: a coarse grained pas-
sive infrared sensor, pressure sensors embedded in the floor
or small staircases, and vision-based tracking. In Immersive
Cinema [35], one ceiling-mounted camera is used to track
the position of a single visitor on a floor that is conceptually
segmented in spatial regions. In [26], the same method was
employed to track a single person in front of a large display
and modulate the projected content according to his location.
In [30], a ceiling-mounted infrared camera was employed to
coarsely track human position and motion in groups. This
information is subsequently exploited to derive a flocking
behavior for browsing collections of photographs and texts.

The work presented in this paper is focused on the exploi-
tation of computer vision towards the development of large-
scale, multi-user digital displays with non-instrumented,
enhanced interaction capabilities that are based on the loca-
tion and walkthrough trajectories of users. We propose a
multicamera vision system that localizes and tracks visitors
in front of such displays (see Fig. 1). A camera network
is employed to image the area in front of the display. The
acquired images are used to compute a volumetric recon-
struction of the visitors in real time that is employed to
robustly track visitors, despite occlusions and challenging
person arrangements.

The capability to maintain the identity of visitors over long
periods of time is of key importance to the provision of per-
sonalized content. Thus, real-time, robust person tracking is
crucial in systems that support such interaction. Monocular
approaches to the problem [36,39] are based on the image
cues such as color and silhouette shape and employ sophisti-
cated tracking methods to cope with scene complexity. The
method in [8] utilizes a binocular camera system and com-
bines stereo, color, shape and face detection to improve track-
ing performance. More recently, it was shown that humans
can be tracked effectively by relying on RGB-D data [33].
Still, all single-view approaches suffer from visibility lim-
itations, due to the observation of the scene from a spe-
cific viewpoint. Multiview approaches simplify localization
because they acquire information from diverse perspectives
and treat occlusions systematically. On the other hand, the
large amount of data to be processed induces large computa-
tional demands, which is typically addressed through paral-
lel and distributed methods. Also, communication bandwidth
issues are raised because the input of more than a handful of
cameras needs to be distributed to multiple computers or bus
channels.

Multiview human localization methods perform 3D recon-
struction of the imaged persons to register them to a map of
the workspace. The method in [37] fuses the results obtained
by existing single-view tracking methods that are applied
individually to each of the views. However, the limitations

of single view methods in handling occlusions still affect
the fused results. The methods in [10,15,20,23,28], employ
multiple views and a planar homography constraint to map
imaged persons to the ground plane. In [18], a voxel grid is
utilized to represent the 3D reconstruction and computation
is distributed in the GPUs of four computers. For each voxel,
a partial estimate of its occupancy is obtained, transmitted
centrally, and fused with the rest of estimates for this voxel.
Communication cost is significant as the amount of data to
be communicated is proportional to the number of voxels.
The system in [32] eliminates the communication cost by
mounting all cameras to a single computer and centralizing
computation. This approach does not scale with the number
of views which, in this case, is limited to four.

This work follows a multiview approach to person track-
ing and utilizes a volumetric 3D reconstruction of persons to
increase localization robustness but it does not require that the
number of tracked persons is a priori known, as in [10]. Com-
putational efficiency is achieved by the proposed parallel and
distributed computer architecture, whose implementation is
based on the software platform in [42]. In this work, parallel-
ization is not limited to 3D reconstruction but extends to other
operations such as image rectification and background sub-
traction. The computation of pertinent volumetric data struc-
tures, such as volumetric occupancy and a mapping of this
occupancy on the ground plane, is achieved in smaller execu-
tion time relatively to corresponding state-of-the-art systems.
By optimizing execution time, more detailed spatial repre-
sentations are obtained at larger framerates. We strive for
efficient 3D reconstruction because this way, besides reduc-
ing system response time, tracking also becomes more robust.
The reason is that as person motion becomes more densely
sampled in time, it also becomes less ambiguous to track.

As a case study, we developed a computer vision system
that was installed in front of a large display that is used for the
interactive exploration of an ancient wall painting. The pro-
posed system is used to present a personalized restoration of
the artifact and provide detailed information on the persons
and activities illustrated in the painting. The presented infor-
mation depends on the location of individual visitors relative
to the display, as well as on what information has already been
presented to them. The proposed approach extends previous
ones such as [16] and [35] through the support of multiple
visitors and the provision of personalized content and inter-
action capabilities.

Several laboratory tests but also the real-life installation
of the developed system at an archaeological museum pro-
vide the basis of the evaluation of the proposed approach in
terms of tracking robustness, computational efficiency and
usability. An early version of the supported cultural heritage
application can be found in [40]. The obtained results show
that the developed computer vision system can be used effec-
tively to enhance user experience. The real-life deployment
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of the system revealed another benefit that was not antici-
pated originally. The developed system provides an invalu-
able tool for acquiring statistics regarding the behavior of
visitors over long periods of time. Based on this evidence, an
informed redesign of an exhibit can be performed towards
optimizing user experience.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the infrastructure that is necessary for the oper-
ation of the proposed system. Section 3 focuses on the core
computer vision modules comprising the proposed vision
system. In Sect. 4, the application mediating user interaction
with the system is described. In Sect. 5, the evaluation of the
system is presented. Finally, Sect. 6 summarizes this work
and provides key directions for future work.

2 Infrastructure

A typical setup of the system involves a 4×4.5×2.5 m room
(see Fig. 2), in which a 4.2×1.58 m2 dual backprojection dis-
play is mounted at the wall opposite from its entrance. Addi-
tional installations employed a 25 m2 (Fig. 4) and a 36 m2

(Fig. 1) terrain and correspondingly larger displays.

2.1 Multicamera vision system

The computer vision system employs a set of cameras that
image the scene from multiple views. It also includes one or
more computers that acquire the corresponding images, pro-
cess them, and extract a spatial representation of the persons
in the room. A middleware layer casts this representation
available to the module that runs the application scenario.

In a typical setup, eight cameras (Dragonfly, Point Gray
Research) are evenly distributed to two computers. The two
computers are connected by a 1 Gbit Ethernet link. Each of
them is equipped with an Intel i920 quad-core CPU, and a
NVIDIA GTX 275 programmable GPU.

The cameras are placed evenly on the walls of the room and
are mounted at the ceiling height, overlooking the workspace.
As a background model will be acquired for each view, cam-
eras that are opposite to the display are posed so as to avoid
imaging a large portion of the screen. If this is not possible, a
validity mask in the frame grabber discards the corresponding
image region. The cameras are spatially calibrated by imag-
ing a checkerboard calibration pattern at multiple postures.
The employed calibration method [31] automatically detects
the calibration pattern and extracts reference points. Camera
calibration is further refined through bundle adjustment [21].

Camera synchronization is performed with the Multi-
Synch software [29] and is based on timestamps and a
dedicated FireWire bus across computers. The technical com-
plexity of synchronized image acquisition and communica-
tion is reduced by employing the software platform in [42].
This platform supports the communication of synchronized
images and intermediate processing results across process-
ing nodes that reside on the same or different computers,
through a shared memory. Thus, when multiple computers
are available, per view processing (i.e. preprocessing, back-
ground subtraction) is distributed at the computers hosting
the cameras increasing computational speedup and reducing
communication among computational nodes (see Sect. 3.1).

Finally, communication between visual processing and the
application layer is facilitated by a custom middleware layer
that hides the details of network and inter-process communi-
cation. This layer is accessible through an API compatible to
a wide range of programming languages (C/C++,.NET, Java,
Python, Flash/ActionScript). In this way, the application can
be reprogrammed for different scenarios, independently of
the visitor tracking infrastructure.

2.2 Display system

The employed display covers one of the room’s walls
and is created by combining the output of two bright

Fig. 1 Left visitors in front of a display that presents a large-scale
artifact in actual size, while augmenting the display with personalized
content in the form of visual and textual annotations. Right the display

segment in front of each visitor is updated according to the visitor’s
distance from the display and his/her past walk-through trajectory
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Fig. 2 Real-world installation at the Archaeological Museum of Thessaloniki, Greece. Floor plan (left) and two actual views (right). Due to the
tracking of visitors, linguistic preferences are associated with each visitor, presenting textual information at the language of choice

Fig. 3 Combining two projections in a seamless display. Projected image before applying any adjustments (left), rectified projection (right)

(3000 lm) 1024 × 768 short-throw projectors. The projec-
tions are parallel and partially overlapping (≈10%). The rea-
son for employing wide FOV projectors is to retain a small
backprojection area. The disadvantage of this setup is that an
intense projection distortion is induced, so, projected images
need to be rectified. Vision-based projector lens calibration
(i.e. as in [9]) requires an additional camera imaging the pro-
jection that complicates the hardware setup. To avoid this, the
projections are fused by employing a piecewise linear trans-
formation. More specifically, the projected image is divided
into four overlapping quadrants. Geometrically, prior to pro-
jection, each quadrant is transformed through a homogra-
phy determined by four control points. Visual markers in
the overlapping regions indicate the corresponding control
points that should, ideally, coincide. During system setup,

a software tool allows the displacement of these control
points across the display. By adjusting these markers to make
them coincide, the four quadrants are stitched without any
visible trace of a seam in the projection. Projections are
photometrically blended in overlapping regions as in [27].
An example outcome of this process is shown in Fig. 3.

3 Volumetric human detection, localization and tracking

The core of the proposed system consists of a method for
volumetric reconstruction of the humans in front of the large-
scale display and the exploitation of this information for their
accurate tracking in challenging situations. The rest of this
section describes the proposed methods in more detail.
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3.1 Scene reconstruction

Reconstruction employs the notion of the visual hull [19] that
is computed based on a foreground detection process. The
method computes the visual hull of all visitors on a voxel
occupancy grid V . A voxel in V has the value of 1 if it is
occupied by a person and 0 otherwise.

Each time a synchronized set of images is acquired (a
multiframe), a 3D reconstruction of the scene is performed.
This computation is divided in two stages. The first stage
concerns preprocessing and foreground segmentation that is
performed on each of the acquired images. This computa-
tion is distributed among the computers hosting the cam-
eras. In the second stage, the binary images resulting from
foreground detection are compressed and transmitted to a
single computer which performs the volumetric reconstruc-
tion. Both stages are parallelized on the individual comput-
ers where they are performed, capitalizing on programmable
GPU hardware.

3.1.1 Preprocessing and foreground detection

At each workstation, the images acquired by the hosted cam-
eras are stored in RAM and processed locally, increasing the
distribution of computational load. Each workstation holds
a fixed-size buffer for every camera that is connected to it.
Each buffer stores the captured frames after they have been
converted from Bayer Tile to RGB format. The rate of stor-
ing images into buffers matches the camera’s acquisition
frame rate. Image data are stored together with their asso-
ciated timestamps. To avoid buffer overflow as newer frames
arrive, older frames are removed.

The image Ii from camera i is read into the GPU and trans-
formed so that geometric distortions are canceled out based
on the available calibration information. Foreground detec-
tion is performed also based on a GPU implementation of the
method presented in [43] that parallelizes computation at the
pixel level. This results in a binary image Bi . In contrast to
[18,32] and aiming at efficiency, segmentation errors are not
smoothed out by applying morphological filtering but taken
into account later on. All Bi s are gathered at a single com-
puter for the next computational step. Before transmission,
Bi s are compressed using Run Length Encoding.

3.1.2 Volumetric reconstruction

To compute the occupancy grid V , images Bi are gathered at
the GPU of a single computer. The value of each voxel of V
is independently computed as follows. Let the 3D location
�x be called potentially visible from view i if its projection,
Pi (�x), occurs within the field of view of view i . Then, if no
errors would occur during the foreground segmentation, an
occupied voxel �x would project only to foreground regions

of the views i ′ that it is potentially visible from. In this case,
it would hold that:

s(�x) =
∑

i ′
(Bi ′(Pi ′(�x))) = max(i ′), (1)

for all voxel centers �x within the visual hull of the visitors,
while for any other location, s(�x) would have a smaller value.
To compensate for errors in foreground segmentation a more
lenient rule is applied. A voxel is considered as occupied if
it projects to a foreground region in all but µ views that it is
potentially visible from. Thus, V (�x) is set to ‘1’ if it holds
that s(�x) ≥ max(i ′) − µ and to ‘0’ otherwise. By employ-
ing this rule, up to µ views may have a foreground detection
error at pixels Bi ′(Pi ′(�x)). In some cases this might dilate
the visual hull by a voxel. Considering the intended use of
the visual hull computation, we found this inaccuracy to be
acceptable in terms of person localization. Conversely, if this
relaxed constraint is not employed, a failure to segment a per-
son from the background in a single view could annihilate its
3D reconstruction.

The proposed methodology for 3D reconstruction and
its implementation result in an efficient and scalable sys-
tem. The achieved rate of updating V (10–30 Hz, depend-
ing on hardware configuration) allows for the assumption of
motion continuity during tracking. At the same time, the sys-
tem can support reconstructions of relatively high resolution,
thereby facilitating robust disambiguation of visitors. A more
detailed analysis of the implementation and its performance
evaluation can be found in [38]. Figure 4 illustrates the result-
ing reconstruction for a case where the persons occlude each
other in all views and failures of foreground detection are
multiple.

3.2 Visitor detection and localization

Visitors are localized based on the information provided in
V . As in [10,15,20,23,28], a 2D image F is formed from V
that is aligned with the ground plane and V . Essentially, F is
a 2D histogram: a pixel (or bin) in F counts the occupied vox-
els in V along a direction perpendicular to the ground plane.
Persons appear in F as intense and size-dominant blobs, with
their intensities and areas proportional to the volume they
occupy. The sum of intensities within a blob is proportional
to the occupied volume by the visual hull that gives rise to
the blob. Localizing a blob in F is equivalent to register-
ing the location of each human in the ground floor reference
frame.

Depending on the number and the placement of the cam-
eras, voxels of V are visible from a different number of cam-
eras (see Fig. 5). In the corresponding regions, the signal in
F becomes weaker as voxels are summarized along a smaller
height. To compensate for such variations, the values in F
are normalized as follows. A normalization map S of equal
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Fig. 4 Original images Ii , foreground images Bi and volumetric recon-
struction for a challenging scene imaged by four cameras. Persons
occlude each other in all views and are imaged against cluttered

background and uneven illumination, resulting in inaccurate foreground
detection. Nevertheless, the obtained reconstruction accuracy is suffi-
cient for robust person tracking

Fig. 5 Visual coverage and person tracking. When the visitor is at loca-
tion A he gives rise to more occupied voxels than when in location B,
as in B his torso is not visible by any view and is not reconstructed

dimensions to F is computed at initialization time. Each pixel
in S summarizes the number of voxels along height which
are potentially visible by µ or more views. At run time, the
value of each pixel �q in F is normalized as:

Fn(�q) =
{

F(�q)/S(�q) i f S(�q) �= 0
0 otherwise.

(2)

Noise is initially suppressed in Fn by thresholding small val-
ues, followed by Gaussian smoothing. In the resulting image,
conventional connected component labeling is performed to
detect blobs. Blobs that correspond to very small volumes
are filtered out, as they are typically due to reconstruction
errors. Figure 6 demonstrates the steps of this operation.
The detected blobs are directly localized as persons on the
ground plane of the scene and their centroids and silhouettes
are the measurements passed on to the tracking module (see
Sect. 3.3).

3.3 Person tracking

A blob tracker is applied to Fn in order to identify blobs and
associate them with individual visitors. More specifically,
the tracker in [2] is modified to track intensity blobs in Fn ,
rather than skin-colored blobs in color images for which it
was originally developed. This tracker may track a poten-
tially varying number of targets and is robust to transient
localization failures. Even more importantly, it is designed

Fig. 6 Visibility based normalization of F . From left to right, normalization map S, F, Fn and Fn after thresholding and Gaussian smoothing.
The normalization of blobs at regions of relatively lower visibility (top and bottom right ) increases tracking robustness
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Fig. 7 Person localization and tracking. Original images from one out
of eight views (top row), blob tracking in Fn (middle row), and 3D
reconstruction (bottom row), for frames 150, 156, 164, 179, and 475 of
a sequence (left–right). Tracking results are rendered as circles, super-
imposed on Fn and on the ground plane of the 3D reconstruction. Circle

colors correspond to track ids. In the example, first two and then three
persons produce a single connected component in V . Tracking retains
the correct id for all persons although the visual hulls of certain indi-
viduals are merged (color figure online)

to retain the tracking of blobs even if they occur merged for
long temporal intervals. In this way, person tracking is robust
even if visitors come close enough to give rise to a single con-
nected component in V and Fn (see Fig. 7). The output of the
tracker is a list of person ids and the associated user location
estimates. This is transmitted to the application through the
use of a custom middleware layer.

The robustness of tracking has been further enhanced by
exploiting contextual information relevant to the particular
application domain. First, a person may appear and disappear
in the scene only at the entrance/exit of the room. Hence, the
id of a tracked person that is lost elsewhere, is not immedi-
ately removed from further consideration. If, later on, a blob
that is not already associated with the id of another tracked
person appears close-by, then the id of the temporarily lost
person is assigned to this blob (Fig. 8). Second, when visi-
tors enter the room clustered together (e.g., holding hands,
a child being carried by a parent, etc), the tracker assigns
to them a single identity. If later on the corresponding blob
splits into different ones, then the tracker assigns to them
separate identities, which, nevertheless, inherit the properties
(i.e., history, language) of the id from which both originated
(see Fig. 9). To avoid false positive person detections due to
transient reconstruction artifacts, the presence of new blobs
is required to show sufficient temporal persistence (i.e. 2–3 s)
to be assigned with an id.

The robustness of tracking also improves with increasing
the density in temporal sampling, as well as with increasing
the spatial resolution of the reconstruction. Observing the
scene at a high framerate (>10 Hz) casts blob motion in Fn

smooth and continuous and, thus, supports the unambiguous
tracking of blobs. Fine granularity (1 cm3) in occupancy esti-
mation is important as proximate blobs will merge in Fn only
if they occur closer than voxel size. Therefore, the computa-
tional efficiency achieved by the reconstruction approach in
Sect. 3.1 is not only important to brisk system response but
also to tracking robustness.

4 Interactive application

In a prototype installation, the developed system was used
for the multi-user interactive exploration of the “Wall-paint-
ing of the Royal Hunt”. This painting was found in the tomb
of Philip II at Vergina, ancient Aigai. To date, this is the
largest ancient Greek painting that has been found, its length
exceeding 5.5 m. It is of great archaeological significance
and widely admired as a rare masterpiece of ancient Greek
art. It is in a quite deteriorated state and depicts ten hunters
chasing five different animals in a complex landscape.

The digital representation of the painting is conceptu-
ally separated in five zones perpendicular to the display,
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Fig. 8 Tracking example, showing the temporal evolution of Fn (left–
right) with tracking results superimposed. The white rectangle marks
the entrance of the room and circles correspond to tracked blobs. The
visitor marked with a green circle (left image) is temporarily lost by the

tracker (middle image). This is signified by an additional circle. How-
ever, in a subsequent frame (right image) the visitor is again visible and
the system reassigns the same id to the closest re-appearing blob

Fig. 9 Tracking example (left–right). Two persons enter the room clus-
tered together, forming a single connected component in Fn and V . Top
row original images from a system camera, out of a total of eight views.
Middle row blob tracking in Fn . Bottom row 3D reconstruction. Track-
ing results are also rendered in the 3D reconstruction as circles on the

ground plane. When the blob under the red circle is split into two, the
tracker assigns a new id to the new blob, but only after this new blob
persists for a sufficient time interval. This is represented as a thickening
of the green circle, in the images of the middle row (color figure online)

based on a semantic interpretation of the themes that appear
in the painting. The room is also conceptually separated
in four rows parallel to the display, which correspond to
different distances of observation. Figure 10 presents an
illustration of the resulting grid. To prevent from contin-
uous alternation in the case of visitor lingering across the
boundary of a cell of the grid, the cell size is assumed

magnified by 10% comprising a grid of partially over-
lapping slots. At the room entrance, signs guide English-
speaking visitors to enter the room by moving rightwards
and Greek-speaking visitors to enter the room by mov-
ing leftwards. The corresponding textual annotation for
each distance is presented at the bottom of the screen (see
Fig. 11).
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Fig. 10 Modulation of projected content (top) based on visitor loca-
tions (bottom). The top image shows the content presented on the dis-
play, for the arrangement of visitors that is illustrated at the green grid
at the bottom. The grid at the bottom corresponds to the ground floor
of the room and illustrates the spatial extent of the regions and the state
of the application. Matrix cells represent the 5 × 4 interaction slots and
circles visitor locations. In this example, the 2nd and 3rd cells from the
left are inactive, as visitors are located at columns 1, 4 and 5 (color
figure online)

Within the context of a zone, the presented content is var-
ied graphically and conceptually according to the distance
of observation. When a visitor enters a zone, the presented
content matches the viewing distance. The visitor has the
capability to explore the corresponding theme by stepping
back to get a more abstract view or step closer and focus on
the details of the exhibit. This capability is communicated
to visitors through real-time visual feedback (see Fig. 11),
which helps them perceive the distance they have to walk
in order to move to the adjacent row. When idle and upon
visitor entrance, the system presents the wall-painting in its
current state (Fig. 11a). As one or more visitors approach
the display, graphical outlines are superimposed to the cor-
responding region(s) of the display reviving the deteriorated
forms (Fig. 11b). In the next row, the system presents a fully
restored version of the painting (Fig. 11c). In the closest
row, the restored version is grayed out, and a specific detail
is highlighted, using a combination of color and animation
(Fig. 11d).

When multiple visitors stand in the same zone (i.e. in the
same column of the grid in Fig. 10), the person closest to
the display determines the content of the presented textual
annotation. When this person leaves, the next in line (if any)
becomes the closest one to the display. An adjustment of
system response introduced after evaluation (Sect. 5.3), con-
cerned latency in performing updates on the display. It was
observed that visitors may rapidly cross the room, e.g., to
join a friend or move to a specific point of interest, thereby
causing an update of all intermediate display segments. Thus
a minimum dwell time was adopted, for granting control over
a location.

Fig. 11 Graphical presentation of a vertical segment of the display
based on its distance from the visitor. Left to right: a initial state,
b intonated outlines, c restoration, d detail highlight. Next to the textual
information, three rectangles and a yellow arrow are presented. The
triangle represents the visitor’s distance from the wall, while the rect-

angles represent the three available rows of information. The active slot
is presented in green color, while the inactive ones in red. The triangular
marker is updated in real-time providing visual feedback to the visitor
(color figure online)

123



328 X. Zabulis et al.

By tracking visitors and assigning a unique identi-
fier to each one, the system also retains attributes for
each corresponding blob in Fn . Using an attribute for the
language, which is set upon visitor entrance, the textual com-
ponents of the presented content are provided in the language
selected by each visitor. Similarly, the system keeps track of
the slots visited by each user and provides additional and
more detailed information when a visitor has viewed all con-
tent in a zone and revisits it. Several “pages” of information
are assigned to each slot of a zone and presented when a
visitor revisits the slot or after a predefined time period has
passed; correspondingly, the system keeps track of the pages
each visitor has seen. Finally, the time each visitor has spent
in each slot is logged in order to gather and visualize statis-
tical data concerning the visits.

5 Evaluation

In this section, we present the results of experiments eval-
uating the proposed system from three perspectives. First,
the computer vision system is evaluated with respect to its
accuracy and precision in visitor tracking. Second, the vision
system is benchmarked as to its computational performance.
Third, the integrated application is evaluated in terms of
usability.

During this evaluation, some of the experiments were per-
formed based on a laboratory prototype. However, most of the
testing and evaluation was performed through the installation
of a final prototype at the Archaeological Museum of Thes-
saloniki, Greece. This prototype, “Macrographia”, is part of
a permanent exhibition of prototypical interactive systems
with themes drawn from ancient Macedonia. This installa-
tion resulted in a series of in situ experiments with visitors
and museum staff in real-life conditions. Demonstration vid-
eos of system operation and information about the exhibition
are available online [22].

5.1 Visitor tracking

Two experiments were performed to evaluate the computer
vision system in terms of tracking accuracy and robustness.
The first experiment was performed by employing the labo-
ratory prototype, where the recording of data and the subse-
quent annotation of these data with ground truth was possible.
The second experiment was based on field data acquired at
the museum installation. This experiment inquires the effi-
cacy of tracking from the application perspective, i.e. whether
the visitor encountered a system failure or not. An inquiring
parameter in the above experiments was also a quantification
of the limitations of the approach and setup.

5.1.1 Laboratory experiments

The laboratory setup is essentially identical to that of the
museum installation (see Fig. 3). During the experiment, the
system was storing the acquired images (achieved at a rate
of 11 fps) which enabled the subsequent annotation of these
data with ground truth.

System precision was quantified using the MOTP met-
ric [4] on datasets where visitors were instructed to walk at
marked spots on the floor, whose locations were a priori mea-
sured. For three and five persons, the localization error was in
the order of 2–4 cm, respectively. In effect, voxel size is suf-
ficiently small with respect to localization requirements. On
the other hand, although precision is sufficient, small fluc-
tuations of visitor location estimation upon a cell boundary
are possible and are addressed at the application layer (see
Sect.4).

Tracking accuracy was quantified with the MOTA met-
ric [4] on four datasets of increasing complexity. Initially,
a baseline dataset D0 was recorded where a single visitor
enters the setup, visits practically all of its locations, and
exits. In the D1 dataset (662 frames, 1181 tracked objects),
two visitors walk together and then one of them walks at a
corner of the room that constitutes a blind spot (not suffi-
ciently visible to be reconstructed). The other visitor repeat-
edly walks towards and away from him. In the D2 dataset
(904 frames, 1,909 tracked objects), four persons visit the
installation and perform typical walkthroughs that visitors
perform in the museum installation. Often, a visitor stands
at a corner of a room while another passes closeby or is in
contact, thus increasing the possibilities of a tracking mis-
match. Finally, the D3 dataset (1,011 frames, 4,945 tracked
objects) is overly challenging as seven persons move rap-
idly, getting in contact sometimes altogether and constantly
occluding each other.1 We included this overly difficult data
set in order to demonstrate the performance of the proposed
human tracking approach in situations that go beyond a typ-
ical museum scenario.

Based on the ground truth annotations, we measured the
tracker’s misses, false positives and mismatches in all frames
of datasets D0–D3. A distance threshold of 0.5 m indicated
whether a tracking error would be considered as a tracking
miss rather than tracking imprecision.

Figure 12 shows characteristic images from these data-
sets and Table 1 reports the obtained MOTA values, as well
as tracking misses, mismatches, and false positives. In D0, no
misses, false positives, or mismatches occurred, even when
the visitor entered and exited blind spots. Hence MOTA was
1 for this dataset. Regarding D1 and D2, although the tracker
is able to correctly assign the ids, there exist occasions where

1 Datasets D1, D2 and D3 can be downloaded at http://www.ics.forth.
gr/~zabulis/tracking.html
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Fig. 12 Characteristic snapshots from datasets D1, D2 and D3 (left, middle and right column, respectively)

Table 1 Quantitative evaluation of tracking performance for the ground
truth datasets (see text)

Dataset MOTA Miss Mismatch False positive

D0 1.000 0.000 0.000 0.000

D1 0.935 0.000 0.000 0.643

D2 0.986 0.007 0.020 0.002

D3 0.712 0.149 0.019 0.147

lack of visibility produces false-positive detections (assign-
ment of a tracking hypothesis to a non-existing person in the
scene). These false-positives are mainly due to a volumet-
ric artifact occurring at the dynamic occlusion of an area,
which has been studied in [13]. Due to the adequate number
of views these errors are rare and mainly occur when visitors
are almost in contact with a wall. In this case, a spurious blob
occurs between the visitor and the wall (see [13]) and inherits
the attributes of its parent (see Sect. 3.3); the blob disappears
when the user leaves the location. These false positives do not
affect the system’s response, as such a falsely-detected “vis-
itor” has the same location and preferences with the original
user. The increased complexity of D3 results in lower MOTA
values for this dataset. In addition to the above error, in data-
sets with multiple persons, mismatches occur when visitors
are lost by the tracker in a low visibility region of the scene
and are, then, mismatched with another close-by visitor. In
this case, mismatches in id tracking of blobs case apparent
errors in system response.

An interesting case is encountered when visitors enter the
room clustered together, which initially evokes a single blob
in the tracker’s representation, Fn . The blobs resulting after
the split of such blobs inherit the attributes of the parent
blob (see Sect. 3.3) and, thus, corresponding users obtain the
intended system response. Though not affecting system per-
formance, this tracking failure reduces the MOTA score, as
during the presence of a single blob, misses are counted.

5.1.2 Experiments with field data

Another quantitative evaluation of the human detection and
tracking performance was obtained based on the museum
installation of the prototype. The experiments were per-
formed after more than three months of continuous opera-
tion of the installation. A period of 186 days (4 February
2011–18 August 2011) of normal museum operation was
considered. During this period, 9,873 museum visitors vis-
ited “Macrographia”, with the average visit duration being
165 s. A significant percentage of the visitors were school
students in organized visits that gave rise to a crowded work-
space and challenging visitor configurations. Overall, visitors
ranged considerably in their nationality, gender, education
and, most importantly, age. Museum visitors were unaware
of the execution of this experiment. In that sense, the experi-
mental conditions constitute an unbiased, real-life field test.
To automate the process of data gathering and assessment,
during this test the behavior of the tracker was logged. Then,
we considered the following failure cases:
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Table 2 Quantitative assessment of detection and tracking errors (see
text)

Error type Count Percentage

A 513 5.1

B 566 5.7

C 1,197 12.1

• Type A errors: The first occurrence of a visitor id is
observed in the inner part of the workspace and not in the
entrance; i.e., a detected visitor never enters the room.

• Type B errors: The last occurrence of a visitor id is
observed in the inner part of the workspace and not in the
exit (i.e., a detected visitor never exits the workspace).

• Type C errors: A visitor is observed to perform unlikely
motions between two frames. Assuming a maximum vis-
itor speed, such situations are attributed to tracking fail-
ures, i.e. misses.

Note that the case of a visitor appearing and disappearing in
the workspace without ever entering and exiting it (spurious
visitor detections) are already counted in type A and B errors.
Table 2 summarizes the errors detected in this experiment.

Though marked as tracking failures, in practice, we have
observed that less than a third of the instances of the above
errors lead to failures to the user experience. For example,
type A errors include blob split that occurs when two persons
enter the room together (see Sect. 3.3) without necessarily
implying an application error. In addition, even though a sin-
gle person may be initially detected further than the exit,
the system recovers in most cases by assigning the linguistic
preference according to the closest entrance point. Similarly,
type B errors are counted even for cases of visitors exiting
the installation together, where a tracking loss has no conse-
quences to the users’ visit. Finally, type C errors are mainly
encountered when a visitor is transiently lost by the tracker
but eventually kept tracked by the system. As the system
recovers from such errors, they either have no effect in sys-
tem behavior or experienced as a transient system delay.

Furthermore, in Fig. 13, the number of these errors is plot
as a function of the number of visitors within the workspace
at the time instance that the error occurred. It can be veri-
fied that most errors occur when the workspace is crowded.
Errors for six and seven visitors are fewer, as usually, up to
five persons enter the room. Overall, human detection and
tracking performs very well, especially if someone consid-
ers the challenging experimental conditions. The tests also
demonstrate that four cameras are sufficient to disambiguate
three persons even if clustered closely, while with eight cam-
eras, up to seven visitors can be adequately tracked. As the
number of required cameras scales with the number of visi-
tors, it is important that the required computational resources
scale in a linear relation, a fact that is verified in Sect. 5.2.

Finally, as an indirect, yet vivid indication of the human
localization accuracy, Fig. 14 (top) shows a color-encoded
histogram of visitor localization results. More specifically,
the map shown in this figure corresponds to the floor map
of the workspace. Warm colors correspond to workspace
locations where visitors spent most of their time during the
full 186 days field experiment. The structure of this map
bears a close resemblance to the defined application grid (see
Fig. 10).

The logging of such data provided an additional visuali-
zation tool of visitor behavior. This is quite important to the
museum as these data can be used to optimize the presenta-
tion and, consequently, the user experience.

5.2 Computational performance

To evaluate the computational performance and the scalabili-
ty of the proposed approach, we have considered several sys-
tem configurations. This performance evaluation is focused
on the volumetric 3D reconstruction because this accounts
for more than 95% of the total system computational load.

Table 3 summarizes the execution time of the proposed 3D
volumetric reconstruction method in four different configu-
rations. The reported figures correspond to the time required
to process a multiframe (in milliseconds) as a function of the
number of employed computers and image resolution. The
results confirm that execution time on the GPU scales well
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Fig. 13 Number of errors as a function of the number of persons in the workspace when the error occurs. Histograms from left to right correspond
to error types A, B, and C, respectively (see text)
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Fig. 14 Top A view of
workspace “hot-spots” during
the 186-day field test. Warm
colors correspond to the most
visited workspace locations.
Dashed lines indicate the limits
of the workspace slots and
zones. The display is on the top
boundary of the figure, while
the entrance on its bottom
boundary. The thin continuous
line near the top of the figure,
indicates the closest distance at
which visitors are allowed to
approach the display. Bottom
sample visitor trajectories,
superimposed upon a grayscale
version of the above image
(color figure online)

Table 3 Computational time (in milliseconds) for volumetric recon-
struction as a function of image resolution and number of employed
computers

1 2 4

320 × 240 29.4 17.2 9.7

640 × 480 42 25 14

with the number of computers and with image resolution.
Table 4 evaluates the performance of the proposed volumet-
ric reconstruction method in comparison with other state of
the art methods. In all cases, the voxel space was composed
of 211 voxels, eight views were considered and the resolution

Table 4 Comparative evaluation of volumetric reconstruction versus
state of the art

[18] [32] [11] Proposed

ms 40 72 33.3 25

G FLOPS 1,614 933 836 894

Computers 5 1 11 2

of each input image was equal to 640×480 pixels. The three
rows of the table show the time required to process a frame (in
milliseconds), the amount of computational power utilized
and the number of computers employed. The results indi-
cate that the proposed approach improves the state-of-the-art
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by being more efficient while requiring less computational
resources.

The significant differences in performance are due to sev-
eral reasons. To compute V (�x) all Bi s are gathered over the
local network on a single computer. In contrast to [18], we
parallelize the background subtraction stage and transmit the
Run Length encoded images Bi for the computation of V .
This costs significantly less than the transmission of inter-
mediate computation results for all �x in V as in [18]. The
system in [1] exhibits a minimal communication cost, as it
transmits silhouettes. However, it parallelizes computation
only per-view, as opposed to massive, per-voxel, paralleliza-
tion. Additionally, its implementation is more complex and
requires CPU processing. Thus, multiple computers (11 dual-
core processors for 8 views) are required to achieve a satis-
factory framerate. In the proposed implementation, volumes
of arbitrary size and resolution can be processed by partition-
ing V and, thus, computation of wide areas can be achieved
even with modest computational resources. In [18,32] V is
processed as a single block, thus, the dimensions of the voxel
space are constrained by the GPU’s memory capacity.

In the employed museum installation, a volume of 6×6×
2 m was covered with voxels of 1 cm3, yielding a framerate
of ≈ 15 Hz. The latency between a person’s motion and the
reception of the corresponding event was ≈ 140 ms.

5.3 Usability evaluation

The usability of the developed computer vision system and
application was extensively evaluated both in laboratory con-
ditions but also in an actual museum setting.

5.3.1 Formative evaluation

Laboratory evaluation was a continuous and ongoing pro-
cess aiming at testing successive versions of the devel-
oped prototypes. Several of the enhancements (i.e. as
those in Sects. 3.2 and 3.3) were based on observa-
tions from this evaluation. During the development of
the system, due to the formative nature of this type of
evaluations, we selected to use ethnographic field meth-
ods [5], using a combination of the “observer partici-
pant” and “participant observer” approach. Participants were
invited on an ad hoc basis, were naive to the experi-
mental hypotheses, and exhibited a large diversity in age,
educational, and cultural background. During a 6-months
period, more than 200 persons have participated in the
informal laboratory usability evaluation. Evaluation sessions
involved a facilitator accompanying the visitors, acting as
a “guide” and another, distant observer discretely present
in the exhibition space. Since there were numerous evalua-
tion sessions, alternative approaches were used, depending
on the characteristics to be assessed. When the interactive

behavior of the exhibit was tested, the facilitator would first
provide a short demonstration to the participants and then
invite them to try it for themselves. Alternatively, when
ease of use and understandability were assessed, the facil-
itator would prompt participants to freely explore the exhibit
without further instructions. During and after the sessions,
the facilitator held discussions with the participants eliciting
their opinion and experience, identifying usability problems,
as well as preferences. At the end of each session, the two
observers would discuss about it, often reenacting parts of it,
in order to clarify or further explore the findings.

5.3.2 Summative evaluation

Using the final version of the system, summative evaluation
sessions took place both at the premises of ICS-FORTH,
as well as at the Archaeological Museum of Thessaloniki.
For the purposes of evaluating the experience of the users
with the system, a 13-item attitude Likert scale questionnaire
was created which was based on Brook’s System Usability
Scale (SUS) questionnaire [7]. This type of questionnaire was
chosen because its questions cover most aspects of usability
such as system complexity, learnability, likeability, and effec-
tiveness. The questions of the original questionnaire were
adapted to fit our application and three more questions were
added to measure specific aspects of user experience and sat-
isfaction that were of particular interest. The questionnaire
is divided in both positively and negatively stated questions.
The participants marked each question with a number from 1
(strong disagreement) to 5 (strong agreement). The scoring
of the positive questions is produced by taking the number
that the user marked and subtract 1 from it, while the scor-
ing of the negative questions is produced by subtracting the
marked number from 5. This way, the best score that any
question can get regardless of whether it is positive or nega-
tive, is 4 points. The sum of the points of each questionnaire
is then normalized to come up with a percentage score as an
indication of the overall system usability. The questionnaire
also included a part for collecting background information
about the respondents.

Details on the usability tests performed at the two different
installations are provided in the following sections.

Evaluation at ICS-FORTH

The laboratory room that housed the usability evaluation was
set-up in a way to resemble as close as possible the actual
museum exhibit where this application is currently being
housed. The size of the room was only slightly bigger than
the actual museum room. In addition, one camera was set up
in one of the corners of the room to record each session and
the comments made by the participants during the evaluation.
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Twenty two volunteers participated of which 13 were
males and 9 were females. The average age of the partici-
pants was 31.7 years old, the youngest being 18 and the oldest
41 years old. 17 participants stated having a “high” level of
computer experience, 5 “Intermediate” level, 3 “Low” level,
and 2 “No” computer skills at all. Also, no one’s studies or
profession was related to archeology.

Before each session the evaluator explained to the partici-
pants the purpose of the testing and the process that was going
to be followed. After that, the participants were asked to sign
a participation consent form and to fill out a short question-
naire with personal information. The participants were then
asked to enter the room in groups of two or three, one of them
usually assuming the role of the English speaking visitor. No
specific instructions were given to the participants as to how
the Macrographia system actually worked or displayed the
information. The purpose of not giving detailed instructions
was to examine if the users were able to understand how the
system actually worked and how to retrieve the information
that corresponded to each section of the Macrographia. The
participants were asked to use the “Think-Aloud” method
[24] and express their thoughts and comments freely.

Evaluation at the Archaeological Museum of Thessaloniki

Twenty two questionnaires were filled-out by 15 visitors and
7 guards at the Archaeological Museum of Thessaloniki. Of
those, 11 were males and 11 were females. Their average
age was 34.6 years, the youngest being 21 and the oldest
56 years old. Four of them were close or over 50. 17 par-
ticipants marked that their level of computer expertise was
“Intermediate”, 4 participants marked “High”, and only 2
marked “Low”. 13 participants had a background in arche-
ology either in their profession or studies.

In contrast to the in-house evaluation sessions, the
museum evaluation was “not administered”. Museum visi-
tors were asked by one of the guards before leaving the area,
if they were willing to fill in the questionnaire, without any
further help or guidance in order to maximize the objectivity
of the results.

5.3.3 Evaluation results

The detailed quantitative results for each separate statement
from both set-ups are presented in Tables 5 and 6. The overall
usability of the system was rated high in both studies: 82.8%
in-house and 80.8% at the museum.

The questionnaire results were also supported by data col-
lected by analyzing the recorded sessions or interviewing the
participants for the in-house evaluation, and by hand-written
comments of the museum visitors. Overall, the comments
that were made by the all participants were highly major-
ity positive. Most of them were impressed with the system’s

Table 5 Evaluation results (average scores and standard deviation) for
the positive statements (best score is 4=totally agree)

Positive questions In-house Museum

1. I liked it 3.45 (1.05) 3.45 (0.59)

3. It was easy to use 3.59 (0.51) 3.50 (0.74)

5. It responded correctly to my actions 3.18 (0.95) 3.23 (1.02)

7. It was fun 3.50 (1.05) 3.27 (0.82)

9. The content was of high quality 3.55 (0.80) 2.86 (1.08)

11. It helped me learn information about 3.64 (0.72) 3.41 (0.67)
the“Wall-painting of the Royal Hunt”

13. The concurrent presence of multiple 3.23 (0.87) 3.09 (0.75)
visitors did not cause any problems

Table 6 Evaluation results (average scores and standard deviation) for
the negative statements (best score is 4=totally disagree)

Negative questions In-house Museum

2. I would not recommend it to my friends 3.59 (0.85) 3.64 (0.58)

4. It was hard learning how to use it 2.73 (1.42) 3.45 (1.10)

6. It did not work as I expected 3.18 (1.09) 2.77 (1.41)

8. I got confused while using it 3.14 (1.35) 3.36 (1.22)

10. It did not respond timely to my actions 2.91 (1.37) 2.45 (1.50)

12. Using such a system does not benefit 3.45 (0.96) 3.50 (1.05)
my experience while visiting the museum

ability to track accurately their position in the room and dis-
play the information in the language that was chosen. Even
though very little instruction was given to them before they
entered the room, they all managed to understand that their
movement was tracked and that the information changed
according to their distance from the screen. As a result, all
users were able to read all the information that was presented
in each section of the Macrographia. They also offered some
suggestions on how to improve it. For example, a few users
suggested that it would be better if the text font size changes
from larger to smaller as the user approaches the display.

Finally, a number of positive comments were provided in
written on the questionnaires such as: “The interactive sys-
tem is very interesting. It helped me a lot to get important
knowledge and I believe it is extremely useful”, “Congratu-
lation for this effort, I wish that all museums had rooms like
this. Excellent interactive guidance”, “The wider use of this
system could help children to get in touch with Greek antiq-
uity in an easy way. Excellent!!!” and “I liked it! It is very
useful to have such kind of electronic material in museums,
it helps the visitor understand better.”.

6 Summary

This paper presented the use of computer vision towards
supporting multi-user, location based and non-instrumental
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exploration of large-scale artifacts. A 6-month period of eval-
uations in laboratory conditions and in a museum setting
reveals that the developed system achieved the goal of pro-
viding engaging and entertaining educational experiences to
its visitors. The system is capable of tracking persons robustly
and at high framerate. The requirements for processing power
scale well with the amount of data to be processed, or other-
wise, with the spatial extent of the area to be covered and the
number of the employed cameras. Additionally, the system
adapts to the availability of resources, either for larger instal-
lations or for cases of hardware failure where computational
nodes may be fewer.

One key direction for future work concerns the ability
of the system to operate in less constrained environments.
Towards achieving open area installations and to cope with
uncontrollable illumination changes and backgrounds, we
are experimenting with the incorporation of depth from stereo
techniques for 3D reconstruction. In addition, visitor detec-
tion and tracking is going to be enhanced by exploiting color
besides the use of purely geometric information. Probably,
the most important future research direction is the incorpora-
tion of additional, vision based extracted information regard-
ing the visitors and their posture/behavior in the observed
workspace. Currently, the interaction is based on the location
and the walk-though trajectories of visitors. Clearly, the real-
time reconstruction of the visitors provides an abundance of
useful and directly exploitable information. As a concrete
example, head pose estimation methods that rely on this kind
of reconstruction [41] can be used to determine where each
visitor is facing at, and therefore, enable more intricate visi-
tor-exhibit interaction.
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