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ABSTRACT 

In this paper, we present our approach towards developing visual 

competencies for socially assistive robots within the framework of 

the HOBBIT project. We show how we integrated several vision 

modules using a layered architectural scheme. Our goal is to 

endow the mobile robot with visual perception capabilities so that 

it can interact with the users. We present the key modules of 

independent motion detection, object detection, body localization, 

person tracking, head pose estimation and action recognition and 

we explain how they serve the goal of natural integration of robots 

in social environments. 

Categories and Subject Descriptors 

I.2.10 [Vision and Scene Understanding] 3D/stereo scene 

analysis, Shape  

I.2.9 [Robotics] Commercial robots and applications 

General Terms 

Algorithms, Measurement, Performance, Design 

Keywords 

Tracking, action recognition, object detection, head pose 

estimation 

1. INTRODUCTION 
 

In this paper we present the design concept and the methods 

developed to realize the first robotic prototype (PT1) of the 

HOBBIT project1. HOBBIT aims to develop a robotic platform, 

which will observe visually the users in indoor environments and 

interpret their actions, so that assistive services can be provided. 

The development involves a rich set of robot functionalities for 

human detection, localization, 3D human tracking and action 

recognition that capacitates the interpretation of important aspects 

of the user’s presence, behavior and intentions. The ultimate goal 

is to develop effective mechanisms for visual perception and 

interaction with the users. This interaction is intended to 

contribute towards the involvement of a mutual care relation and 

bonding between the user and the robot, which constitutes a 

fundamental concept in the HOBBIT project.  

In the next section we briefly present related efforts concerning 

projects funded by the EU as well as by the NSF. In section 3 we  

                                                                 

1 http://www.hobbit-project.eu 

 

Figure 1: The first robotic prototype (PT1) of the HOBBIT 

project. 

give an overview of the proposed architecture that enables the 

robot to perceive humans. Section 4 describes the key components 

that were developed so far, i.e., independent motion detection, 

object detection, body localization, tracking, head pose estimation 

and human action recognition. Section 5 gives an overview of our 

future plans and section 6 concludes the paper. 

 

2. RELATED PROJECTS 
 

The development of mobile robots that will be able to provide 

assistive services has been a goal pursued by several funded 

projects. Some of the most representative ones are described in 

the following.  

The KSERA (Knowledgeable SErvice Robots for Aging) 

project [6] aims to develop a socially assistive robot to help 

elderly people. The Nao robot [7] was utilized to enable human-

robot interaction, employing various computer vision methods 

regarding face tracking, motion tracking and head pose 

estimation. Face tracking enables Nao to detect the location of the 

user’s face and direct its head towards the user, while motion 

tracking enables it to direct its gaze away from a person to other 

objects or to a random direction for a certain amount of time 

during communication.  

The DOMEO (Domestic robot for elderly assistance) project 

[8] focused on the development of an open robotic platform for 

the integration and adaptation of personalized homecare services, 



as well as on the cognitive and physical assistance in an AAL-

enabled home environment. A novel human detection system has 

been proposed in the scope of this project, utilizing a laser based 

leg detector, a body detector and an upper-body detector, both 

based on vision. Using a  grid  based  approach  and Gaussian  

Mixture  Models  (GMMs),  their  output  probabilities  are  fused 

to provide efficient human detection. Upon detection, the robot 

may engage itself in a dialogue with a potential speaker exploiting 

rich vision-based extracted information regarding face detection 

and tracking, as well as mouth and lips detection and tracking.  

The COGNIRON (Cognitive Robot Companion) project [9], 

[10] focused on the development of a robot whose ultimate task 

was to serve humans as a companion in their daily life. It aims to 

adapt robot behavior in changing situations and for various tasks. 

One of the project’s prominent objectives regards the detection 

and understanding of human activities. Detection and 

understanding of human activity explores modeling, observation 

and semantic interpretation of human activities in the vicinity of 

and in interaction with the robot companion. The focus was set on 

non-verbal characteristics such as position, movement and pose. 

For humans in the far field, a part-based people detection 

algorithm has been developed based on omnidirectional camera 

images to track their location and motion as a whole. A mid-range 

skeleton based 3D human motion tracking approach has also been 

developed based on a geometric body model. It relies on depth 

images acquired using a time-of-flight camera and laser scanner 

data. Thus, comprehensive perception of humans can be achieved 

in terms of articulated 3D body tracking and pose estimation.  

The CompanionAble project [13] aimed to provide the synergy of 

robotics and ambient intelligence technologies and their semantic 

integration to provide for a care-giver's assistive environment 

supporting the cognitive stimulation and therapy management of 

the care-recipient. A set of key services of the envisioned robotic 

platform involved day time management, cognitive stimulation / 

therapy management, detection of critical situations, video-

conferencing and situation awareness. Vision and laser sensors are 

considered and fused to perform vision-based human body 

observation and pose analysis, fall detection and activity 

recognition of care-recipient at any time. Moreover, long-term 

behavior pattern analysis is supported.  

The SRS (Multi-Role Shadow Robotic System for Independent 

Living) project [11] was based on the Care-O-Bot robotic 

platform [12]. Human motion tracking and analysis was a vital 

part of the perception mechanism of the system enabling the robot 

to recognize and trace user in the environment. The SRS robot is 

able to observe the location, pose and actions of a human in order 

to deduct information about his movements, gestures and 

intentions. A vision-based mechanism, called Human Presence 

Sensor Unit, is considered involving a camera with 

multidirectional view, human motion algorithms based on 

acquired 3D information and basic gesture recognition algorithms. 

Care-O-Bot [13] is a long term project, developed by Fraunhofer 

IPA and is already in the third generation of the platform. It 

regards a mobile robot assistant able to assist human in their daily 

life. Providing open-source interfaces and a rich set of visual 

sensors, including stereo cameras and a time-of-flight sensor it is 

utilized by many other research projects as a base to develop 

advanced technologies and application regarding social assistive 

robots. Accompany [17] is such a project, where an elaborate  

 

Figure 2: Overview of the system architecture for human 

observation realized for the HOBBIT (better viewed in color). 

The green modules correspond to data acquisition, the red 

ones to searching for humans the blue to human motion 

capture and analysis and the purple to action recognition. 

 

algorithm for localization of humans using ambient cameras and 

robot-mounted Laser Range Finders has been developed. 

Significant research efforts have also been conducted worldwide 

on socially assistive robotics by many research laboratories based 

on several projects and robotic platforms. The Healthcare robotics 

laboratory [18] at Georgia Institute of Technology has developed 

efficient methods for human motion analysis and object detection 

applied to a variety of home assistive robotic platforms.  

The HERB robot [19] is developed in CMU as an autonomous 

mobile manipulator that performs useful manipulation tasks in the 

home. A rich source of robotic platforms and state-of-the-art 

methodologies related to assistive social robots are provided by 

USC Interaction Lab [20] and ASORO lab at A*Star [21].  

The HOBBIT project aims to develop a socially assistive robot for 

elderly based on a rich set of efficient visual perception 

capabilities. These will rely, among others, on methods for 3D 

image/scene analysis, 3D localization of humans and modeling, 

3D tracking of human hands and body, posture/gesture and 

activities recognition, face recognition, 3D head pose and gaze 

estimation based on RGB-D data and object detection. 

We aspire to integrate the aforementioned methodologies in a 

unified vision-based framework that will set the robot able to 

observe visually the users in indoor environments and interpret 

their actions. The outcome of our framework will enable HOBBIT 

to enhance the overall performance and the set of capabilities and 

applications of existing robotic platforms and the quantity and 

quality of assistive services that can be provided in terms of 

cognitive and physical assistance in an Ambient Assistive Living 

home environment. The architecture of our vision-based 

framework is described in the following section. 

 

3. ARCHITECTURE 
 

The organization of the basic components for human observation 

for the first prototype (PT1) of the HOBBIT project is illustrated 

in Figure 2. Several system parts realized in the current 

implementation of the visual human observation framework of 

PT1, rely on software components by the OpenNITM API [4]. The  

http://www.aal-europe.eu/calls/funded-projects-call-1/domeo/view
http://www.aal-europe.eu/calls/funded-projects-call-1/domeo/view


 

a   b 

 

c 

Figure 3: (a-b) An RGB image and the corresponding depth 

image. Cold/bluish colors correspond to smaller depth values, 

while warm/red colors to objects further away. Unreliable 

depth values are set to a zero distance to the sensor and 

represented with pitch blue. (c) A 3D reconstruction of the 

scene from an arbitrary view, generated based on that RGB-D 

image pair. For every valid depth measurement, a 3D point is 

estimated and associated with the corresponding RGB value. 

Black areas are due to missing depth data, either due to the 

sensor's limited FOV or due to noise. 

 

Human observation system of PT1 relies on an RGB-D sensor 

(Kinect [14] or XtionPro Live  [15]). Since the cameras provide a 

limited field of view that is insufficient for full or upper human 

body observation, the sensor is attached to a tilt motorized 

mechanism to enable active exploration of the scene in any 

direction facilitating vision-based functionalities of the robot. 

Panning of the sensor is executed by rotating the robot on the 

spot. A control mechanism was developed to adjust the pose of 

the sensor to a certain configuration at real-time according to the 

needs of the system phase that is being executed. 

 

4. COMPONENTS 

4.1 Independent motion detection 
We propose a method for detecting motions that are independent 

of the camera. The scene is captured using an RGB-D sensor. At 

any time, an object may move in the scene while the sensor is 

moving as well. The estimation of the dominant motion allows for 

employment of ego-motion estimation and camera stabilization, 

which in turn leads to the detection of motion that is independent 

to the sensor's motion. These techniques provide vital input and 

boost the robustness of algorithms applied in robotics including 

visual odometry, scene understanding, human detection and 

action recognition when the employed sensor is mounted on a  

 

 

 

Figure 4: Correspondence establishment of 3D points between 

different scene views. Top-left: SIFT features are extracted on 

the RGB image. Top-right: The SIFT features are associated 

with the depth image so that a depth value for each SIFT 

feature is identified. Middle: SIFT features with bi-linearly 

interpolated depth values are indicated with a purple circle. 

Bottom: The establishment of correspondences between two 

different RGB-D pairs is performed by employing KNN 

similarity matching of the descriptors of SIFT features with 

valid 3D measurements. 

 

moving platform. The proposed method consists of the following 

steps: 

 Establishing correspondences of 3D points 

 Dominant motion estimation 

 Independent motion detection 

The proposed method uses a Kinect [14] or an XtionPro Live [15] 

RGB-D sensor to acquire a temporal sequence of RGB and depth 

image pairs. The sensor is calibrated to allow the association of 

the RGB and the depth values. We use the sensor's intrinsic 

calibration parameters to estimate a 3D point in Euclidian space 

for every valid pixel of the depth image, and subsequently 

associate it with the corresponding pixel on the RGB image 

(Figure 3). The first allows various 3D representations of the 

scene within the sensor's field of view (FOV). The second allows 

the establishment of correspondence of 3D points among point 

clouds of different views of the scene, via well-established 

approaches applied to conventional cameras. Once 

correspondences between 3D points of two different views of the 

same scene are established, we are able to estimate the dominant 

3D motion between the two views.  



4.1.1 Establishing correspondences among 3D 

points 
In order to estimate the dominant 3D motion that best describes 

the relation between two point clouds generated from two 

different RGB-D image pairs, 3D matches between these point 

clouds need to be established. Such correspondences are 

established by employing feature extraction and matching 

techniques on the RGB images. More specifically, SIFT features 

are detected and matched on each RGB image following the 

implementation of [1]. We then estimate the corresponding 3D 

points taking into account that the image coordinates of the 

features are in sub-pixel accuracy. Specifically, we perform 

bilinear interpolation using depth values from the four 

corresponding neighboring pixels on the Depth image grid. We 

use the depth interpolation result to associate it with the SIFT 

feature and estimate the corresponding 3D point. If there is no 

valid value on one of the neighboring depth pixels we eliminate 

the feature from the global features list. Finally, we perform 

nearest neighbors matching (KNN) on the remaining features and 

establish, indirectly, 3D correspondences between the two point 

clouds. The overall 3D points matching pipeline is illustrated in 

Figure 4. 

4.1.2 Dominant motion estimation 

Once sets of 3D matches are established, the dominant motion 

between the two views of a 3D scene can be estimated. 

Essentially, the problem that needs to be solved is the problem of 

robust registration of two rigid 3D point clouds. This is a well-

studied problem in the computer vision literature. Our approach 

for solving it employs the generalized Least Squares fitting 

algorithm described in [2]. During the computation, we also 

employ RANSAC [5] to detect outliers that are due to 

independently moving objects. Specifically, out of the initial 3D 

point sets, we repeatedly draw four random pairs of corresponding 

points at time to estimate the rotation R and the translation t 

between these 3D point clouds. 

 

4.1.3 Independent motion detection 
Having established the R, t parameters of the dominant motion 

between two different views v1 and v2 of a scene as well as the 3D 

depth values, we can generate a synthetic view v1’ of v1 as this is 

observed from v2. v1’ and v2 should be identical, provided that 

there is no independent motion occurring between the two views. 

If an object moves independently to the sensor, then its image 

points will not be correctly registered. . This can be exploited to 

detect independent motion, because after registration, a 

conventional change detection algorithm can be applied to v1’ and 

v2 to detect such objects . In Figure 5 (see caption for details) we 

demonstrate the results of such a simple change detection 

technique (image differencing) applied to the target and the 

synthetic depth image. Differences greater than a threshold are 

assumed to belong to independent motion.  

The complete pipeline of the independent motion detection (IMD) 

module was tested on a PC with an Intel i7 870 processor, an 

NVidia GeForce GT330 graphics card and 8GB of RAM. All 

steps of the algorithm are currently implemented on CPU, with 

the exception of the KNN similarity matching which is 

implemented on GPU. The IMD module operates at ~1 fps. The  

  

 

Figure 5: Independent motion detection between a source and 

a target RGB-D pair. (a) The RGB-D pairs. The red box in the 

center of the scene moves independently to the sensor. (b) The 

synthetic image pair generated based on the estimation of the 

dominant motion between the source and the target pairs. This 

is identical to the target pair at all points except from the ones 

corresponding to the independently moving object. (c) Change 

detection results between the target and the synthetic pairs. 

The detected foreground (shown in red color) corresponds to 

image regions with independent motion. 

 

usage of less computationally demanding ORB features allowed 

the IMD module to operate at ~4 fps. 

The proposed methodology proves sufficiently robust in 

estimating the dominant motion between point clouds 

corresponding to RGB-D image pairs. The use of other feature 

extraction and matching algorithms like the FAST algorithm [3] 

can be considered. Generation of synthetic RGB-D pairs with 

respect to the dominant motion is currently performed without 

sub-pixel accuracy and without reasoning about possible 

occlusions. This results in inaccuracies in the generated synthetic 

RGB-D pair. To improve this, the generation of the synthetic view 

needs to be performed with standard rendering techniques. 

 

4.2 Object Detection 
For object detection we introduced a novel method, which is 

described in detail in [24]. The method is scale and rotation 

invariant and exploits RGB information. This method provides 

valuable information regarding detection and localization of 

foreground objects and can be used for efficient detection of 

humans and faces, The proposed method represents an object as a 

Histogram of Oriented Gradients (HOG) [22]. HOGs have proven 

to be robust object descriptors. A variant of an existing rotation 

invariant HOG-like descriptor is proposed, while object detection 

and localization is formulated as an optimization problem that is 

solved using the Particle Swarm Optimization (PSO) [23]. A 

series of experiments demonstrates that the proposed approach 

results in considerable performance gains without sacrificing 

object detection and localization accuracy. Illustrative examples 

from the operation of the proposed method are provided in Figure 

6. 

The proposed method enhances object identification and 

manipulation. HOBBIT is planned to support learning of 

unknown objects and maintain a considerably large dataset of 

known objects which it will be able to detect, fetch and carry. 

Therefore, efficient object detection in domestic environments 

(i.e. floor, table etc.) facilitates object identification and the 

subsequent procedures of object grasping/manipulation. 

 



 

Figure 6: Representative object detection results of the 

proposed approach [24]. In each row, the leftmost item 

indicates the query object and the subsequent items indicate 

the detection result for various images containing the object of 

interest.  

 

 

Figure 7: Illustration of 3D skeleton tracking and pose 

estimation results for two RGB-D data frames. The human 

body is being tracked with respect to the 3D skeleton model 

and body poses are estimated based on the acquired depth data 

for each frame. Only the body limbs and joints are drawn in 

these sample colored images. 

 

4.3 Body Pose Estimation 
Body pose estimation is closely related to 3D skeleton tracking, 

both provided by computer vision algorithms of NITE2 [16]. In 

each frame, the previous estimated body pose is being tracked to 

coarsely follow the new acquired depth data of an identified 

human body. The body estimation process performs a 

readjustment of the tracked 3D positions/orientations of body 

limbs/joints after the tracking task is accomplished, estimating the 

body configuration for that frame. An illustration of both tracking 

and pose estimation results is provided in Figure 7. Two frames 

are shown, where tracking of the detected human body and 

estimation of the body pose were performed. Thus, the trajectories  

 

                                                                 

2 NITE is an OpenNI compliant middleware component that 

perceives the world in 3D, based on data captured by a 

PrimeSense 3D sensor (Kinect and XtionPro Live). It is a freely 

available and proprietary (closed-source) software package that 

includes both computer vision algorithms that enable 

identifying users, tracking their movements and recognizing 

gestures/poses, as well as a framework API for implementing 

Natural Interaction UI controls that are based on user gestures. 

 

 

Figure 8: A detected human body is localized and tracked in 

the scene based on depth data acquired by the camera. 

Localization information is provided at the upper part of each 

depth frame regarding the 3D position, distance and angle of 

the user with respect to the camera. 

 

of body limbs and the 3D rotations of body joints are available for 

each moment in time.  

 

4.4 Body Localization & Tracking 
Given the human body initialization and detection results of the 

previous task, 3D skeleton tracking is performed by estimating the 

new 3D positions and orientations of body limbs and joints in 

every frame based on the acquired depth data. 

Body localization is performed by acquiring the 3D position of 

the body torso. Moreover, the distance to the sensor is calculated 

by projecting the 3D position of the torso joint to the extracted 3D 

floor plane. Based on the extracted information, a 3D bounding 

box can easily be calculated for each frame based on the extracted 

depth data of user’s body. Emergency detection in case of user’s 

fall can be performed by analyzing the length, velocity and 

acceleration of each dimension of the calculated 3D bounding 

box. Moreover, 3D body skeleton tracking provides a rich set of 

information that enables efficient inspection of body movements 

and significantly enhances action recognition. An interesting user-

driven application that HOBBIT will support based on this 

information regards visual-assisted rehabilitation and physical 

therapy/exercise of elderly in their homes. 

 



 

Figure 9: Head 3D pose estimation based on depth data [25]. A 

sample result from the experimental evaluation of the method 

is superimposed in the grayscale image of a human subject. 

The 3D head pose estimated by the proposed algorithm is 

shown in blue. The solution in red is the one estimated by the 

method described in [27]. 

 

4.5 Head Pose Estimation 
Head pose estimation is an important aspect of human 

observation. NITE provides information regarding head pose by 

acquiring the position and orientation of the head joint of the 

employed skeletal body model. However, the efficiency of that 

information heavily depends on the estimation of the rest of the 

skeleton model and is not full, i.e., does not provide access to all 

the degrees of freedom of head motion. Therefore, it is inadequate 

to provide high accuracy and estimation of individual head 

movements that could indicate human’s intentions. 

We designed, implemented and evaluated a novel approach for 3D 

head pose estimation based on depth data of a detected face [25]. 

The method searches the 6-dimensional pose space to find a pose 

from which the head appears identical to a reference view 

acquired at initialization. This search is formulated as an 

optimization problem whose objective function quantifies the 

discrepancy of the depth measurements between the hypothesized 

views to the reference view. Particle swarm optimization (PSO) is 

utilized to search for a maximum of the objective function. The 

proposed method outperforms existing methods in accuracy. It is 

robust and tolerant to occlusions and handles head pose 

estimation in a wider range of head poses. Sample results of the 

method are shown in Figure 9. 

This method will be part of the system for visual human 

observation enhancing functionalities provided by the robot. 

Combining the accurately estimated 3D head pose and the 3D 

direction of a pointing arm from the estimated skeleton body 

model both looking and pointing to a specific area in 3D, a 3D 

point or area in space could be determined indicating, for 

example, an object of interest to the user. 

 

4.6 Action Recognition 
Action recognition is a module that utilizes services provided by 

the previously described modules. The gesture and pose 

recognition components that compose this module are responsible 

for recognizing a number of predefined gestures or poses 

performed by the detected human using his full body or his body 

parts. Gestures refer to a series of poses performed within a time 

window of configurable length. This task utilizes methods for 

gesture and pose recognition which are available by the NITE 

algorithms layer, exploiting the rich set of information computed 

by the 3D skeleton tracking and pose estimation tasks in the 

previous system phase. A limited number of predefined gestures 

and poses are supported. These gestures and poses are utilized and 

mapped to specific commands and tasks to be executed by the 

robot. The supported gestures and poses are “Hand-Push”, “Swipe 

up/down”, “Swipe left/right”, “Circle”, “Waving”, “Raise Hand”, 

“Cross hands”, “Hands-up”, and have been determined based on 

extended studies of the user needs in the context of HOBBIT 

scenarios. Based on the recognition of these actions, an efficient 

vision-based user interface is feasible, mapping specific actions to 

robot commands, thus enabling natural interaction between the 

user and the robot. We refer an example of mapping between user 

actions and robot commands as follows: “Help-the-user” robot 

command is initiated after a “Cross hands” user action in front of 

the robot, “Stop task” robot command for a “Hand-push” user 

action, “Come here” robot action for a “Waving” user action, 

“Localize and grasp object” robot command for a “Raise Hand” 

and pointing with the other hand to an object of interest by the 

user, answering “Yes/No” dialogues with the robot using “Swipe” 

gestures.  

Vision-based extraction of relevant information based on head 

pose and gaze direction estimation, object detection and scene 

segmentation can be integrated with information based on 

recognized gestures/postures to enhance the performance 

action/activity recognition of the user and facilitate other useful 

user-driven applications. 

 

5. NEXT STEPS 
 

Several extensions for vision-based human observation are 

planned within HOBBIT: 

- Develop new approaches to human motion capture and 

gesture/posture recognition, especially for the case where a 

human is not fully visible by the employed camera. This will 

facilitate human-robot interaction, as now the distance of the 

robot to the camera needs to be inconveniently large for the 

camera to have a relatively complete view of the users’ body.  

- Provide a more elaborate and effective fall detection 

mechanism to be used for emergency detection. It is also 

important to be able to detect humans already lying on the 

floor. This will enable HOBBIT to detect emergency 

situations and events that did not occur in front of its camera.  

- Interact with Ambient Assistive Living sensors installed in the 

environment (AAL-enabled home) to provide enhanced 

human detection, localization and tracking. This will further 

improve the detection rate of emergency situations. 

 

 



- Gestures: 

o Hand gestures: A number of predefined or custom gestures 

(either single handed or bimanual) performed by a user 

could be recognized, providing richer interaction with the 

robot via a gesture recognition interface.  

o Custom body gestures/poses: A larger set of predefined 

gestures performed by user using his whole body or parts 

could be recognized. 

- Support of specific applications such as: 

o Gesture control-based computer games: Users could 

perform body movements and gestures to play a computer 

game (drawing, pong, pac-man, shooting etc) shown on 

robot’s touch screen.  

o Vision-based observation for special physical exercise 

programs for rehabilitation: HOBBIT may provide videos 

on its touch screen showing experts to perform physical 

exercises for rehabilitation of various health issues 

according to user’s needs. The robot may prompt user to 

follow these movements providing spoken instructions. At 

the same time user’s position, movements of the body parts 

will be captured, analyzed and compared to recorded 

“ground truth” movements/patterns to provide supervision 

and further spoken instructions for better performance on 

these exercises.  

 

6. CONCLUSIONS 
 

We presented our approach towards developing vision-based 

perceptual capabilities for socially assistive robots within the 

framework of the HOBBIT project. We described the key modules 

of independent motion detection, object detection, body 

localization and tracking, head pose estimation and action 

recognition and we explained how they serve the goal of natural 

integration of robots in human environments. Furthermore, we 

presented our plans for future work, towards more elaborate and 

robust visual competencies that will enable the natural, vision-

based interaction of humans with socially assistive robots. 

  

7. ACKNOWLEDGMENTS 
 

This work is partially funded by the European Commission under 

contract FP7-IST-288146 HOBBIT. The head pose estimation has 

also received funding by the EU IST-FP7-288917 project DALi. 

 

 

8. REFERENCES 
 

[1] D.G. Lowe, "Distinctive image features from scale-invariant 

keypoints", International Journal of Computer Vision, 60, 2 

(2004), pp. 91-110. 

[2] G. Wen, Z. Wang, S. Xia, D. Zhu, "Least-squares fitting of 

multiple M -dimensional point sets", The Visual Computer, 

22, 6 (2006), pp.387-398. 

[3] E. Rosten, T. Drummond, "Machine learning for high-speed 

corner detection", European Conference on Computer 

Vision, 2006. 

[4] http://www.openni.org 

[5] Martin A. Fischler and Robert C. Bolles (June 1981). 

"Random Sample Consensus: A Paradigm for Model Fitting 

with Applications to Image Analysis and Automated 

Cartography". Comm. of the ACM 24 (6): 381–395.  

[6] http://ksera.ieis.tue.nl/ 

[7] http://www.aldebaran-robotics.com/en/ 

[8] http://www.aal-domeo.eu/ 

[9] http://www.cogniron.org 

[10] http://www.cogniron.org/review2-

open/files/Cogniron_D2.2005_RA2.pdf 

[11] http://srs-project.eu/ 

[12] http://www.care-o-bot.de/ 

[13] http://www.companionable.net  

[14] http://www.microsoft.com/en-us/kinectforwindows/ 

[15] http://www.asus.com/Multimedia/Motion_Sensor/Xtion_PR

O_LIVE/ 

[16] http://www.primesense.com 

[17] http://www.accompanyproject.eu/ 

[18] http://healthcare-robotics.com/ 

[19] http://personalrobotics.ri.cmu.edu/index.php 

[20] http://robotics.usc.edu/interaction/ 

[21] http://www.asoro.a-star.edu.sg/index.html 

[22] Dalal, N., Triggs, B.: Histograms of oriented gradients for 

human detection. In: CVPR, San Diego, USA (2005). 

[23] Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: 

IEEE Int'l Conf.on Neural Networks. (1995) 1942-1948. 

[24] S. Stefanou, A.A. Argyros, “Efficient Scale and Rotation 

Invariant Object Detection based on HOGs and Evolutionary 

Optimization Techniques”, in Proceedings of the 

International Symposium on Visual Computing,  ISVC 2012, 

Rethymno, Crete, Jul. 16-18, 2012. 

[25] P. Padeleris, X. Zabulis and A.A. Argyros, “Head pose 

estimation on depth data based on Particle Swarm 

Optimization”, in Proceedings of the Workshop on Human 

Activity Understanding from 3D Data (HAU3D’2012) in 

conjunction with CVPR 2012, Rhode Island, June 21, 2012. 

[26] Noury, N.; Fleury, A.; Rumeau, P.; Bourke, A.K.; Laighin, 

G.O.; Rialle, V.; Lundy, J.E.; , "Fall detection - Principles 

and Methods," Engineering in Medicine and Biology 

Society, 2007. EMBS 2007. 29th Annual International 

Conference of the IEEE, vol., no., pp.1663-1666. 

[27] G. Fanelli, T. Weise, J. Gall, and L. V. Gool. Real time head 

pose estimation from consumer depth cameras. In DAGM, 

2011

 

http://www.ics.forth.gr/~argyros/mypapers/2012_07_isvc_hogpso.pdf
http://www.ics.forth.gr/~argyros/mypapers/2012_07_isvc_hogpso.pdf
http://www.ics.forth.gr/~argyros/mypapers/2012_07_isvc_hogpso.pdf
http://www.ics.forth.gr/~argyros/mypapers/2012_06_hau3d_headpose.pdf
http://www.ics.forth.gr/~argyros/mypapers/2012_06_hau3d_headpose.pdf
http://www.ics.forth.gr/~argyros/mypapers/2012_06_hau3d_headpose.pdf

