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Abstract. Model based approaches for the recovery of the 3D position,
orientation and full articulation of the human hand have a number of
attractive properties. One bottleneck towards their practical exploita-
tion is their computational cost. To a large extent, this is determined
by the large dimensionality of the problem to be solved. In this work we
exploit the fact that the parametric joints space representing hand con-
figurations is highly redundant. Thus, we employ Principal Component
Analysis (PCA) to learn a lower dimensional space that describes com-
pactly and effectively the human hand articulation. The reduced dimen-
sionality of the resulting space leads to a simpler optimization problem,
so model-based approaches require less computational effort to solve it.
Experiments demonstrate that the proposed approach achieves better
accuracy in hand pose recovery compared to a state of the art baseline
method using only 1/4 of the latter’s computational budget.
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1 Introduction

The problem of estimating the configuration of the human body or its parts
has high practical and theoretical interest. Body pose can be calculated at sev-
eral scales and granularities including full body [14, 18], head [13] and hand
pose [3,4,10,12,19]. Recovering the articulation of a human hand can be proven
very useful in a number of application domains including but not limited to
advanced HCI/HRI, games, AR applications, sign language understanding, etc.
Depending on the application requirements, different variants of the basic hand
pose1 estimation problem can be formulated. If a sequence of poses needs to
be estimated, the resulting problem can be described as hand pose tracking. If
a single hand pose needs to be estimated from a single frame, without prior
knowledge resulting from temporal continuity, the problem is referred to as sin-
gle frame hand pose estimation. Clearly, a solution to the single frame hand pose

1 In this work, we use the term hand pose to refer to the 3D position, orientation and
full articulation of a human hand.
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estimation problem can be used to bootstrap hand pose tracking. Additionally,
hand pose tracking can be implemented as sequential hand pose estimation.

Several methods have been proposed to solve the hand pose estimation prob-
lem using markerless visual data. According to [3] the existing approaches can
be categorized as partial or full pose estimation methods, depending on the com-
pleteness of the output. The last class is further divided to appearance-based and
model-based methods. Appearance-based methods [15, 16, 18, 20] estimate hand
configurations directly from images, using a precomputed mapping from the im-
age feature space to the hand configuration. Model-based methods [2,4,5,10–12]
search the solution space of the problem for the hand configuration that is most
compatible to the observed hand. Every hypothesized hand pose is transferred
to feature space using a hand shape model that is compared to the observed
features.

Appearance-based methods are computationally efficient at estimation phase
and usually do not require initialization. However, their accuracy is proportional
to the wealth of the training set. Model-based approaches have better resolution
since they search the parameter space without discretizing it. Their primary
limitation is their computational requirements which are due to the high dimen-
sionality of the problem to be solved. A large number of hypothesized poses must
be compared to the observed data during the search of the problem space. For
the case of hand pose tracking, due to temporal continuity, the current solution
needs to be searched in the vicinity of the solution of the previous frame. This
has resulted in methods that achieve near real time performance [10]. However,
in single frame hand pose estimation, the position, orientation and articulation
of the human hand needs to be estimated without a prior knowledge of the
observed hand’s configuration and, thus, the full parametric space needs to be
searched.

In this work, we come up with a compact representation of hand articulation
that permits model based methods to operate on lower dimensional spaces and
become more efficient. Adopting the representation used in [10], the articulation
of the human hand can be described by 20 parameters encoding the angles of
the human hand joints and thus forming a 20-dimensional space. However, only
a fraction of this space contains valid hand configurations [6, 17]. For example,
if no external forces are applied, the range of motions that can be performed
by each finger joint is limited [9]. It may also be the case that a combination
of plausible joint values may result in implausible hand configurations. As an
example, a combination of joint values may result in a finger intersecting itself,
another finger or the palm. Furthermore, the biomechanics and the physiology of
the hand impose inter-finger and intra-finger constraints. For example, bending
the pinky causes the ring finger to be bent as well. Last but not least, when a
human hand is known to be engaged in specific activities (e.g., grasping, sign
language, etc), its configurations are expected to lie in a much lower dimensional
manifold.

Most of the mentioned constraints are hard to model analytically. However,
they can be learnt by employing dimensionality reduction techniques on sets of
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training samples. The reduced spaces model implicitly the existing constraints.
In this work we perform dimensionality reduction by employing Principal Com-
ponents Analysis (PCA). By providing mechanisms to move between represen-
tations, model-based methods can operate on the transformed space of reduced
dimensionality. Although dimensionality reduction and PCA has been employed
in the past for hand pose estimation [1, 7], in this work we evaluate the perfor-
mance gain obtained for the problem of single frame hand pose estimation and
demonstrate its integration with an existing, state of the art baseline method.
The model-based method employed as the baseline is that of Oikonomidis et
al. [10]. For hand pose tracking, this method achieves an accuracy of 5mm and
a computational performance of 20 fps. However, due to the dimensionality of
the problem, for single frame hand pose estimation the method is more time
consuming and less reliable. For this reason, tracking is performed only after the
hand is manually initialized for the first frame. In our work we show that by em-
ploying dimensionality reduction, the problem’s search space is reduced to such
a degree that single frame hand pose estimation becomes practical. More specif-
ically, experimental results demonstrate that the proposed approach estimates
the hand pose accurately and only at a fraction of the computational budget
required by the baseline method. Thus, the need for manual initialization of the
pose of the hand is lifted and the potential of model based methods to support
hand pose estimation to real-world applications in considerably increased.

2 Proposed Approach

According to the employed baseline method [10], hand pose estimation is for-
mulated as an optimization problem, seeking for the hand model parameters
that minimize the discrepancy between the appearance of hypothesized hand
configurations and the actual hand observation. Observations come from images
acquired by an RGB-D camera and consist of estimated depth and skin color
maps. Hypotheses are rendered through graphics techniques that also give rise to
features comparable to those of the observations. Hypotheses are evaluated with
an objective function that measures their compatibility to the observations. The
optimization problem is handled by a variant of Particle Swarm Optimization
(PSO) [8] (optimization module), which searches the parametric space of hand
configurations.

A hand pose is represented by a 27-dimensional vector. 3 parameters encode
the 3D position of the hand, 4 parameters its 3D orientation in quaternion
representation and 20 parameters encode its articulation. Thus, the baseline
method searches the 27-dimensional space S27.

The proposed method incorporates PCA in the baseline method and creates
a reduced dimensionality search space S7+M consisting of 7 +M dimensions. 7
parameters encode 3D position and 3D orientation, while M parameters encode
the articulation in a M-dimensional PCA space (M ≤ 20). Two variations are
proposed for the problem of single frame hand pose estimation, namely single-
PCA and multi-PCA.
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2.1 Single-PCA

Single-PCA consists of a training and an estimation phase. At the training phase
of the algorithm, a single PCA space of M dimensions is created as follows. A
dataset A consisting of N hand configurations h of 20 dimensions each is used
as a training set. After the data are standardised, the orthogonal basis W of
the PCA space is calculated. The orthogonal basis W , along with the mean
and standard deviation per dimension contain all the information needed for
projection and back-projection to/from the PCA space. From now on, these
elements are considered to form a trained PCA model P .

The number of dimensions M of P that are sufficient to describe the articula-
tion information of the training set can be decided by calculating the cumulative
variance explained by the first M PCA dimensions. Otherwise, the number of
dimensions M can be chosen experimentally. A small number M introduces a
representation error in the PCA space, but results in a smaller space to be
searched.

Having encoded the articulation in a M dimensional space, we do not know
the range of values of the newly defined PCA dimensions. This information is
important because PSO requires the knowledge of the ranges of parameter values
during optimization. Hence, we calculate the lower and upper bounds per PCA
dimension as follows. Using the trained PCA model P , the N×20 matrix A20 is
projected to a N×M matrix AM . The standard deviation σ per PCA dimension
of AM is calculated and the lower/upper bounds are estimated as

[bL, bH ] = [−2σ,+2σ] . (1)

During the estimation phase, the baseline method is modified as shown in
Fig. 1. The optimizer searches the bounded space S7+M using the hypothesis
evaluation module to calculate the objective function for the given observation. It
should be noted that since the hypothesis evaluation module (see Fig.1) evaluates
27-dimensional parameter hypotheses, a hypothesis in space S7+M must first
be back-projected to the original space S27. Finally, the best scoring hypothesis
across all PSO generations is back-projected to S27 and returned as the solution.

2.2 Multi-PCA

PCA is not sufficient to represent non linearly correlated data such as multiple
hand configurations. However, since most hand motions reside in some linear
subspace [3], a different PCA model can be trained for each of them. This idea
is used in multi-PCA.

More specifically, during the training phase, we use multiple articulation
training sets Ai, i = 1, 2, .., F . Each set consists of data that are linearly corre-
lated. A different PCA model P i is trained for each setAi, producing F bounded
spaces Si to be searched by the optimizer. Thus, during the estimation phase,
F single-PCA optimization problems are solved independently. The hypothesis
with the lowest error across all F solutions is chosen as the final solution.
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Fig. 1: Graphical illustration of the proposed methodology. At training phase,
the reduced dimensionality search space S7+M is created. At estimation phase,
an RGB-D frame is used as input and the best hypothesis is searched for. The
enclosed modules at the bottom, form the algorithm’s main loop which runs for
each generation of the optimizer (PSO).

3 Experimental Evaluation

The quantitative evaluation of single-PCA and multi-PCA is based on synthetic
data, which enable the assessment of the proposed method against known ground
truth. In this direction, a test set consisting of 27-dimensional configurations was
rendered as RGB-D images, simulating a real sensor acquiring hand observations.

To quantify the accuracy in hand pose estimation, we employ the metric
adopted in [10]. More specifically, the hand pose estimation error ∆ is the aver-
aged Euclidean distance between the respective phalanx endpoints of the ground
truth and the estimated hand pose.

All the experiments ran offline on a computer equipped with a quad-core
intel i7 930 CPU, 6 GBs RAM and an Nvidia GTX 580 GPU with 1581 GFlops
processing power and 1.5 GBs memory.

3.1 Dataset creation

The single-PCA algorithm requires a single training set, while the multi-PCA
algorithm requires multiple. In our experiments, single-PCA was trained on the
union of the training sets of multi-PCA. More specifically, we created three se-
quences of 100 hand poses each corresponding to one of the following three differ-
ent hand motions: pinching, open hand closing towards a cylindrical grasp, open
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Fig. 2: The representation error of PCA with respect to the number of dimensions
for the fused dataset and the fist dataset.

hand closing towards a closed fist. For each of the datasets, a training set was
created by adding uniform noise of 0.1 rad in each dimension. Multi-PCA used
each training set separately, while single-PCA used them as a unified training
set. The test set was created from the original three sequences by adding noise
as before and by providing a position and orientation for each pose. The final
test set contained 75 poses, uniformly sampled from each of the three sequences.

Since a representation error is introduced due to dimensionality reduction, it
is useful to examine the PCA’s behaviour when applied to the employed dataset.
This enables us to roughly estimate the proposed method’s accuracy in single
frame hand pose estimation, since the representation error can be considered
as a lower limit to the error achieved by single-PCA and multi-PCA. We are
interested in the behaviour of PCA on the three separate datasets (multi-PCA
case) and on the fused dataset (single-PCA case). We expect the latter to perform
worse due to its more complicated contents, because more complex data need
more PCA dimensions to account for their variance.

Towards this direction, PCA models are learned for each training set with
varying numbers of PCA dimensions M = 1, 2, .., 20. In order to measure the
error introduced by the reduced dimensionality, each data sample h of the test
set is projected to the PCA space S7+M and then back-projected to a point hbp

onto the original space S27. The error ∆(h, hbp) is calculated for all samples.
The averaged error is shown in Fig. 2. More dimensions are required by the
fused dataset to achieve as low representation error as the fist dataset. Thus, we
can expect multi-PCA to require a smaller number of dimensions than single-
PCA for the same estimation accuracy.

3.2 Results

We evaluated the single-PCA and the multi-PCA method comparatively to the
baseline method. The algorithms ran three times for each frame of the test set.
The algorithms’ behaviour is examined with respect to the parameters that affect
the computational budget and the number of dimensions of the search space. The
parameters that affect the computational budget of the method are the number of
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(b) 19 dimensions

Fig. 3: Error ∆ with respect to the number of PSO generations and particles:
solid line for 16 particles, dotted line for 64 particles. PCA algorithms ran in (a)
3 PCA dimensions and (b) 19 PCA dimensions.

particles and generations of the PSO. More particles per generation search more
densely the search space, while more generations improve the possibility that the
particles converge and the global optimum is found. PCA dimensions can vary
from 1 to 20. When no dimensionality reduction is used (baseline method), the
articulation dimensions are 20. In both cases, the dimensions encoding position
and orientation are 7 and will not be displayed in the following figures, even
though they are subject to optimization.

In Fig. 3 the effect of the computational budget on the algorithms is shown.
A first observation is that ∆ decreases monotonically with the number of gener-
ations. Additionally, as the particles per generation increase, the resulting error
decreases. However, multi-PCA seems to reach its performance peak at 20 − 25
generations, which is sooner than the others. The results demonstrate that multi-
PCA performs better than single-PCA, which in turn outperforms the baseline
method. Furthermore, single-PCA with 16 PSO particles performs better that
the baseline method with 64 PSO particles. Similarly, multi-PCA employing
16 particles has almost the same accuracy with single-PCA using 64 particles.
Moreover, for an accuracy around 15mm, the baseline method requires at least
30 PSO generations, while single-PCA requires only 16.

In Fig. 4 the horizontal axis refers to the number of PCA dimensions. The
results show that the number of dimensions has a low impact on the single-
PCA algorithm for the current dataset. It performs better in three dimensions
than one, which was expected from the representation error analysis in Fig. 2.
However, the best choice on the number of dimensions for a given accuracy
cannot be safely estimated. The multi-PCA algorithm is less affected by the
number of dimensions and approximates a straight horizontal line in the plots.

In order to examine the distribution of the error, the histogram of the es-
timation error ∆ for all 3 × 75 estimations, using 35 PSO generations and 3
PCA dimensions, has been computed and is shown in Fig. 5. When using 16
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Fig. 4: The error ∆ for the the 3 algorithms with respect to the number of PCA
dimensions and the number of particles: 16 particles drawn as solid line, 64
particles drawn as dotted line. PSO generations are (a) 20 and (b) 35.
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Fig. 5: Histogram of the error ∆ for all the 3 × 75 estimations per algorithm
running for 35 PSO generations with (a) 16 PSO particles and (b) 64 PSO
particles. Single-PCA and multi-PCA algorithms used 3 PCA dimensions.

particles, the baseline method has a small number of successful estimations on
the 10mm error bin. Some estimations with error around 80mm correspond to
wrong orientation estimation and usually a mirrored pose was returned. Single-
PCA performs significantly better but with most of its estimations lying in the
10mm bin, it cannot be considered quite accurate. Multi-PCA performs excep-
tionally well, having 80% of its estimations in the 5mm bin, and has increased
accuracy in more difficult poses.

When 64 particles are employed for each PSO generation, the baseline method’s
performance is improved but still 47% of the estimations exhibit an error greater
than 12.5mm. Single-PCA manages to almost reach the performance levels of the
multi-PCA algorithm, while the latter could not make use of the extra compu-
tational budget since its performance was already very good. Figure 6 provides
sample results obtained from the baseline and the two proposed methods for
various PSO budgets.
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Fig. 6: Sample hand pose estimations for no dimensionality reduction (rows 1, 2),
single PCA (rows 3, 4) and multi PCA (rows 5, 6) rendered in blue. True poses
are rendered in red color. For each method, the algorithms ran for 35 generations
and for 16 (top) and 64 (bottom) particles. PCA algorithms used 3 dimensions.

4 Conclusions

In this work the usage of PCA in single frame hand pose estimation was assessed.
The proposed single-PCA algorithm, given a dataset consisting of hand poses,
calculates a space S7+M of reduced dimensionality and implicitly learns some of
the underlying hand configuration constraints. As indicated by the experimental
evaluation, the results outperform the baseline algorithm. The estimated pose
has an accuracy up to 5mm depending on the employed computational budget,
and can be used to bootstrap automatically hand pose tracking. PCA, being a
linear technique, cannot effectively describe complicated datasets with non linear
data. To face this fact, we also proposed a multi-PCA algorithm which uses more
than one training sets to learn multiple PCA subspaces. Multi-PCA performed
better than single-PCA and required a quarter of the PSO particles to achieve
slightly better accuracy. The obtained results demonstrate that model based
methods can efficiently solve the single frame hand pose estimation problem in
spaces of reduced dimensionality. This lifts one of their drawbacks, that is the
need of manual initialization. Thus, their practical exploitation in the context of
vision systems and applications is improved considerably.
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