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Abstract—We present a method for articulated hand tracking
that relies on visual input acquired by a calibrated multi-
camera system. A state-of-the-art result on this problem has been
presented in [12]. In that work, hand tracking is formulated
as the minimization of an objective function that quantifies the
discrepancy between a hand pose hypothesis and the observations.
The objective function treats the observations from each camera
view in an independent way. We follow the same general opti-
mization framework but we choose to employ the visual hull [10]
as the main observation cue, which results from the integration
of information from all available views prior to optimization.
We investigate the behavior of the resulting method in extensive
experiments and in comparison with that of [12]. The obtained
results demonstrate that for low levels of noise contamination,
regardless of the number of cameras, the two methods perform
comparably. The situation changes when noisy observations or
as few as two cameras with short baselines are employed. In
these cases, the proposed method is more accurate than that
of [12]. Thus, the proposed method is preferable in real-world
scenarios with noisy observations obtained from easy-to-deploy,
stereo camera setups.

I. INTRODUCTION

Tracking of articulated objects is an important problem
in computer vision with significant theoretical interest and
diverse applications [11], [5]. An instance of this problem,
the 3D tracking of human hands, has recently been the subject
of intense inquiry [4], [13], [18], [9]. Methods attempting to
solve the problem have to overcome a number of interacting
complicating factors such as the high dimensionality of the
problem, the chromatically uniform appearance of a hand and
the severe self-occlusions that occur while a hand is in action.
To overcome some of these problems, notable methods employ
specialized hardware for motion capture [15] or the use of
visual markers as in [19]. However, such methods require a
complex and costly hardware setup, interfere with the observed
scene, or both, thus limiting their applicability. Recent state-
of-the-art methods [13], [9] rely on markerless observations
of a hand from an RGBD camera. Despite their success, such
methods are not operational in outdoor environments where
RGBD sensors cannot provide reliable depth information.

The approach we propose in this paper assumes that a
markerless hand is observed by a set of conventional RGB
cameras (see Fig. 1). Approaches that only use this kind of
input, namely visual markerless data, can be categorized in two
main categories [5], appearance-based and model-based ones.
Appearance-based methods use a pre-computed map from the
space of visual features to that of hand poses to accomplish

Fig. 1. We investigate the use of visual hull to track a human hand observed
by multiple cameras. Top-left: two views of a human hand. Bottom-left: two
views of the recovered visual hull, using skin color for segmentation. Right:
fitted hand model on another input image.

the task and hence they are essentially limited by their training
set. To cope with such limitations, recent works [16], [14], [9]
employ training sets in the order of thousands or even million
samples. On the other hand, model-based methods employ
a model of the human hand from which visual features are
computed on-the-fly and compared to the observations. This
makes them potentially more accurate but, at the same time,
more computationally demanding.

In this paper we build upon the model-based approach
presented in [12]. In that work, we proposed to use skin color
and edges as visual features for hand pose estimation and
tracking. These cues are estimated in each camera that observes
the scene. Given a hand hypothesis, we produce comparable
features by means of rendering. Then, hand pose estimation
is formulated as an optimization problem whose objective
function is the sum of discrepancies between observed and
rendered features, across views. In this work we adopt the
same framework, altering the objective function. Since we are
using a fully calibrated multicamera system, we propose to
employ the visual hull [10] of skin color silhouettes as a way
to fuse the existing information. Having computed the visual
hull of the hand silhouettes, the objective function heavily
depends on the discrepancy between this actual hull and the
synthesized visual hulls from candidate hand solutions. This
choice is justified by the fact that comparisons between visual
hulls can be meaningfully quantified, whereas this is not as
intuitive for the case of 2D cues across different views.

Previous methods for hand tracking have used various
visual features to solve the problem such as skin color, edges,
optical flow, however, to the best of our knowledge, the
visual hull has not been employed so far. Computing visual
hulls is computationally more expensive compared to the 2D



cues used in [12]. However, with careful exploitation of the
computational power of modern GPUs [17] it is possible to
achieve interactive frame rates.

Extensive experimental results demonstrate that the two
approaches behave comparably for ideal cases without noise
or in low levels of noise. It is shown that this happens
regardless of the number of employed cameras. However, in
cases with high noise we observed that the proposed approach
can still keep track of a hand while [12] fails. Furthermore,
we present experimental evidence in real world data from
a narrow baseline stereo system, a scenario that cannot be
adequately handled by the approach of [12]. The fact that
our approach is more tolerant to noise and performs better
from smaller/simpler camera configurations makes it much
preferable to [12] in real-world applications.

II. HAND TRACKING USING 3D VISUAL HULLS

It is assumed that a set of synchronized and fully calibrated
cameras observes the scene (see Fig. 1). The system captures
a set of images from all views and skin colored segmentation
is employed to segment the hand in each view. The visual
hull of these silhouettes is computed and stored as the main
visual cue for this frame. Hand hypotheses are then obtained
with the help of Particle Swarm Optimization (PSO) [8]. The
visual hull of each such hypothesis is computed and compared
to the observed hull. Based on this comparison, PSO iteratively
drives the process of optimizing the new hypotheses. The result
of this optimization process is the output of the method for
the given frame. Temporal continuity is exploited to track the
hand articulation in a sequence of frames. The remainder of
this section describes these algorithmic steps in more detail.

A. Observations

The proposed method operates on sequences of synchro-
nized views acquired by a set of intrinsically and extrinsically
calibrated cameras. A set of images acquired from these
cameras at the same moment in time is called a multiframe.
Let Mi = {I1, I2, . . .} denote a multiframe of a sequence
S = {M1,M2, . . .}, with Ij denoting the image from the j-
th camera/view at the i-th time step. For each image I of a
multiframe M , a skin color map os(I) is computed using the
method presented in [2], and an edge map oe(I) is computed
using the Canny edge detector [3]. The set of skin color maps
is used to efficiently compute their visual hull [17] which is
kept as the reference volume map ov(M) of the observed hand.
Similarly to [12], we compute the distance transform od(I) of
the edge map oe(I) in order to accelerate computations in
subsequent steps. As a convention, in occupancy maps a value
of 0 denotes absence whereas a value of 1 denotes presence
of the respective property.

The visual hull of a 3D object S is the maximal object
silhouette-equivalent to S, i.e., which can be substituted for
S without affecting any silhouette, as defined in [10]. It can
be equivalently defined as the intersection of the generalized
cones that are formed by back-projecting each silhouette from
the respective camera center to the scene. For details on
efficiently computing visual hulls using GPUs, see [17].

The employed hand model is adopted from [12] and has 26
degrees of freedom. Each finger has four degrees of freedom,

two at the base and two more in the remaining joints. The joint
angle limits are based on anatomical studies [1].

B. Formulation of the Objective Function

Having a parametric 3D model of a hand, the goal is to
estimate the model parameters h that are most compatible to
the visual observations (Sec. II-A). Towards this end we formu-
late an error function E(h,O) that quantifies the discrepancy
between a hand pose parametrization h and the observation O.
More specifically we compute

E(h,O) = D(O, h,C) + λk · kc(h). (1)

In Eq.(1), D quantifies the discrepancy between observed and
hypothesized hand volumes and is computed as follows. Given
a hand pose hypothesis h and camera calibration information
ci, skin occupancy maps rs(h, ci) and edge maps re(h, ci) for
each synthetic view i are generated by means of rendering. The
volume reconstruction methodology of [17] is then once again
employed to produce an occupancy volume rv(h) that can be
directly compared with the observation ov . The comparison
between these occupancy maps quantifies the discrepancy
between the observed and the hypothesized hand pose. This
is achieved by computing

D(O, h,C) = 1− 2
∑

ov ∧ rv
(
∑

ov ∧ rv) + (
∑

ov ∨ rv)
+

λ

∑
od(I) · re(h, ci)∑
re(h, ci) + ε

, (2)

where, for the sake of notational simplicity, ov denotes ov(O)
and rv denotes rv(h). The logical operators ∧ and ∨ denote
per-voxel operations of the respective maps and the summation
is taken over the entire maps.

The function kc adds a penalty to kinematically implausible
hand configurations and is defined as in [12] to penalize
adjacent finger inter-penetration. In all experiments, the value
of λk was set to 0.1 and the value of λ was set to 0.01.

The solution for each frame is obtained by optimizing the
objective function E with the Particle Swarm Optimizer [7].
The “nearest point” policy [6] was adopted to handle collisions
with the search space boundaries. The randomization variant
proposed in [13], originally seen in [20], was also adopted here
since it proved experimentally beneficial for the accuracy of
the estimation of the finger pose.

As in [12], we exploit the inherent parallelism of the
involved computations by computing multiple values of the
objective function in parallel. This can be exploited in PSO,
since the evaluations of the objective function for the particles
of one generation are independent of each other. Furthermore,
the employed hand model is built out of appropriately trans-
formed cylinders and spheres. This exposes data parallelism
in the resulting computations.

III. EXPERIMENTAL EVALUATION

A number of quantitative experiments was conducted,
designed to compare the behavior of the proposed method
to that of [12]. These experiments analyzed the behavior
of the objective functions of the methods, investigated the
parametrization of PSO, assessed the effect of segmentation



Fig. 2. Different depth map views of the visual hull of the observed skin
color (frames 1, 3, 5) and that of a manually fitted hand model (frames 2, 4,
6). Each pair corresponds to a different view of the reconstructed volumes.

Fig. 3. Investigation of the PSO parametrization for the proposed method
(left) and our implementation of the method [12] (right). Different curves in
both plots correspond to different populations of PSO particles.

noise and also explored the behavior for different numbers of
available views of the scene. Qualitative results in real-world
data are also presented. In all the experiments with visual
hulls we used a parallelepiped reconstruction space of 1283

voxels, centered around the previously estimated position of
the observed hand. The physical dimensions of this space were
240mm along each edge, resulting in a voxel size slightly
larger than 2mm.

A. Visual hull of hypothesis and observation

We present a qualitative comparison between a visual hull
obtained from real world data and one from synthetically
produced silhouettes. The pose of the synthetic hand model
was manually adjusted to match as best as possible that of the
observed hand. In both cases, we produced silhouette maps
from eight views of the scene. For the real world data we
used the same procedure used to obtain os(I) in Section II-A.
For the synthetic maps we used the procedure that generates
silhouettes of hypotheses rs(h, ci), with the pose h manually
adjusted as described above, and the known calibrations ci
for each virtual view. Depth maps of the resulting visual
hulls are depicted in Fig. 2. Evidently, even though we are
using eight views of the scene, the resulting visual hulls still
contain reconstruction artifacts. However, and although the real
world data are obviously more noisy, one can observe that
the artifacts between the observed and hypothesized hulls are
consistent and reproducible. This justifies why comparisons
are performed between observed visual hulls and hypothesized
visual hulls and not between observed visual hulls and actual
hand models. The second option would be considerably less
time consuming since it does not require the visual hull com-
putation for hypothesized hand poses. We chose to follow the
first option since visual hulls differ considerably to the actual
hand models, especially when fewer cameras are employed in
their computation.

B. Quantitative Evaluation

We investigated the accuracy of the method for differ-
ent parameters of PSO. The computational budget of PSO
is determined by the number of particles and generations,

Fig. 4. Investigation of the effect of noise in the two compared methods. The
horizontal axis denotes percentage of corrupted pixels in the synthetic input
and the vertical denotes average distance from the ground truth.

the product of which yields the total number of objective
function evaluations. We selected a set of values for these
two parameters and computed the accuracy of the proposed
method, as well as that of [12]. In order to quantitatively
evaluate the pose estimation accuracy we resort to datasets with
available ground truth. More specifically, for all experiments,
we used a sequence of 245 multiframes depicting a hand that
performs simple everyday motions such as palm flipping and
finger bending. In order to compare the estimated pose, we
adopt a metric similar to the one used in [12]: 21 landmark
points are placed on the model hand, 3 on each finger and the
remaining 6 on the palm. The average distance of all these
landmarks between the estimated and the actual, ground truth
pose is measured, and the average over all the frames of the
sequence is computed. We perform this experiment multiple
times and compute the median of these values because of the
stochastic nature of PSO.

The obtained results are shown in Fig. 3. The upper plot
shows the performance of the system using the visual hull as
the main observation cue whereas the plot at the bottom shows
the results obtained from [12]. The horizontal axis corresponds
to the number of generations used for the experiment whereas
the vertical axis denotes the measured pose estimation error as
described above. Different graphs in the plots correspond to
different particle count configurations. Both methods benefit
when using more generations or particles, with the number of
generations playing a more important role in the performance.
The performance of both methods is comparable. Indicatively,
the average error of the proposed method for 64 particles and
30 generations is around 5.3mm whereas that of [12] achieves
4.1mm. For both methods, the performance improvement
for more particles or generations is small. The additional
computational budget for this improvement is disproportionate,
so for the remaining experiments we fixed these parameters to
(64, 30) for both the proposed method and that of [12].

We conducted another experiment, that was designed to
assess the effect on the estimation accuracy of the number of
available views, again in the case of ideal data. We varied the
number of cameras from one to eight. It should be noted that
the two cameras setup in this experiment had a large baseline
and almost perpendicular optical axes. The comparison demon-
strated that the error for both methods is almost identical.

The quantitative performance experiments were concluded
by an experiment investigating the effect of noise on both
methods. We employed a noise model similar to that of [14].
More specifically, small disks of randomly selected positions
and radii were chosen in the synthetic input images and the



Fig. 5. Results of the proposed method in real-world data. Each pair of
images illustrates the same pose from different views.

Fig. 6. Sample results of the proposed method on data acquired from a
narrow baseline stereo system. Each pair illustrates the same pose.

pixels in them were flipped. Figure 4 illustrates the obtained
results. Both methods behave comparably for low and moder-
ate levels of noise, however the proposed method manages to
keep track for the large noise level of 75% whereas [12] fails.

C. Real-world Input

A network of eight cameras recorded a human hand that
performed simple hand motions such as palm flipping, pinch-
ing and grasping. The sequence contains 390 frames. The hand
model was manually initialized for the first frame, and the
method successfully tracked all the sequence. Sample results
are shown in Figure 5. Evidently, the fitted hand model closely
matches the observations.

We conducted another experiment in data acquired from
a narrow baseline stereo camera system. This scenario is of
special practical importance since it is easy to setup and
can be employed by, e.g., robotic systems operating outdoors
where RGBD cameras currently fail. Sample results from this
sequence are shown in Figs. 6 (proposed method), and 7 ([12]).
As it can be observed, the proposed method manages to track
the hand correctly in this dataset, whereas the method in [12]
fails.

IV. CONCLUSIONS

We investigated the use of the visual hull as the main
observation cue for hand pose tracking using a multicamera
system. We compared this approach to that of [12], which
uses only 2D cues. The comparison showed that these two
methods perform comparably in close-to-ideal data, regardless
of the number of employed cameras. However, the proposed
approach performs better when the noise level in the ob-
servations increase, especially for the case of short baseline
stereo. This suggests that the proposed method is of higher
practical significance since it is more robust with noisy input
and requires simpler camera configurations compared to [12].

Fig. 7. Results on the same sequence as Figure 6 using the method of [12].
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