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Abstract

Detecting, localizing and tracking humans within an
industrial environment are three tasks which are of cen-
tral importance towards achieving automation in work-
places and intelligent environments. This is because un-
obtrusive, real-time and reliable person tracking provides
valuable input to solving problems such as workplace
surveillance and event/activity recognition and, also, con-
tributes to safety and optimized use of resources. This pa-
per presents a passive approach to the problem of person
tracking that is based on a network of conventional color
cameras. The proposed approach exhibits robustness to
challenging conditions that are encountered in industrial
environments due to illumination artifacts, occlusions and
the highly dynamic nature of the observed scenes. The
multiple views of the environment that the system employs
are used to obtain a volumetric representation of the hu-
mans within it, in real-time. Although human tracking can
be achieved based solely on such a volumetric representa-
tion, in demanding scenes, this information is not enough
to recover from tracking failures. Thus, in this work, we
collect and update a representation of the color appear-
ance of the persons in the environment. The combination
of volumetric and color information reinforces tracking
robustness, even when a person is not visible by any of
the cameras for extended time intervals. The proposed
approach has been extensively evaluated in comparison
with an existing state of the art method and pertinent re-
sults are reported.

1. Introduction

In the current manufacturing industry, robots execute
their tasks within the boundaries of strictly defined pro-
duction processes and rely on a strong technological in-
frastructure, which may include the installation of obtru-
sive and specialized sensors. In future factories, human
workers and robots will frequently share common spaces.

The co-existence of mobile robots and humans leads to
the necessity for robust robot motion coordination. At
the same time, algorithms that allow robots to navigate
in the environment and accomplish the desired tasks, re-
quire information about the locations of humans in or-
der to achieve robot/human collision prediction and avoid-
ance. In this context, it is important to be able to detect,
localize and track humans in an industrial environment.

The tracking of multiple humans is a fundamental and
challenging problem whose solution has a wide range of
applications, including personal and service robots, intel-
ligent cars, crowd control and surveillance. People may
interact with each other, merge to form groups of various
sizes, or separate from groups. Tracking individual hu-
mans and objects within such formations can be difficult
due to the unavoidable occlusions. This causes the num-
ber of persons-to-data association hypotheses to increase
at a level that becomes intractable. The problem becomes
even more difficult in cases where the environment con-
tains windows or outdoor regions, as this hinders the op-
eration of depth cameras and laser sensors which could
otherwise provide reliable 3D structure information.

The proposed approach tracks the humans in an en-
vironment unobtrusively, robustly and in real-time, even
in crowded scenes and challenging human configurations.
The proposed method relies on input provided by a cam-
era network. The acquired views are used to volumetri-
cally reconstruct the persons at a frequent rate, so as to
accurately estimate the location and walk-through trajec-
tory of each person in the environment. In order to rein-
force the robustness of the approach, a representation of
the color appearance of these persons is acquired. This
avoids shortcomings of a tracking approach based solely
on volumetric information. Figure 1 illustrates such a
case. The figure shows three frames from the same cam-
era at different points in time, together with person lo-
calization estimates that are visualized as circles drawn
on the ground plane. The colors of these circles code the
tracking id. At the moment corresponding to the middle
frame, the persons are in contact and, as a result, their vol-



Figure 1. The proposed approach utilizes color appearance to assist tracking in cases where ge-
ometric information is insufficient. In this example, at some point in time (middle frame), the
volumetric representations of the two persons are merged. Superimposed circles indicate the es-
timated person positions. These coincide for the middle frame because of the merged volumetric
representations, but retain correct values as soon as the persons separate again.

umetric reconstructions are merged. By tracking only the
volumes of these persons it is not clear how to propagate
correctly the original tracking ids after the merging event.
The proposed approach models the color appearance of
each person before the merging event so as to use it for
disambiguating the situation after the humans are split.

The remainder of this paper is organized as follows.
In Sec. 2 related work is reviewed. In Sec. 3 the pro-
posed approach to the tracking of multiple persons is pre-
sented. The method is experimentally evaluated in Sec. 4.
In Sec. 5, conclusions are drawn and directions for future
work are provided.

2. Related work

The capability to track persons over long periods is an
important and challenging problem and, as such, it has
been studied extensively. Monocular approaches [16, 19]
are based on image cues such as color and silhouette shape
and employ sophisticated tracking methods to cope with
scene complexity. The method in [3] utilizes a binocular
camera system and combines stereo, color, shape and face
detection to improve tracking performance. In general,
all single-view or short-baseline approaches suffer from
visibility limitations due to the observation of the scene
from a specific viewpoint.

A qualitatively different monocular approach to the hu-
man tracking problem is based on input provided by depth
or RGBD cameras. Undoubtedly, if depth information
is available, several cases that are difficult to solve us-
ing a conventional monocular tracking approach are dis-
ambiguated. Such a case arises when two persons occur
merged in the RGB image but appear at different depths
in the depth image, see i.e. [15]. Methods relying on 2D
laser scans exploit similar information but are constrained
to the plane that the scanning takes place. As an example,
the method in [8] tracks multiple persons in real-time by

maintaining the state of groups of people over time, con-
sidering possible splits and merges. A major disadvantage
of these types of sensing is that the pertinent system is
prone to the effects of outdoor illumination, a fact that
limits their potential application domains.

Multiview approaches simplify localization because
they acquire information from diverse perspectives and
treat occlusions systematically. On the other hand, the
large amount of data to be processed induces large compu-
tational demands, which are typically addressed through
parallel and distributed methods. Also, communication
bandwidth issues are raised because the input of more than
a handful of cameras needs to be distributed to multiple
computers or bus channels.

Multiview human localization methods perform 3D re-
construction of the imaged persons to register them to a
map of the workspace. The method in [17] fuses the
results obtained by existing single-view tracking meth-
ods that are applied individually to each of the views.
However, the limitations of single view methods in han-
dling occlusions still affect the fused results. The meth-
ods in [6, 12, 13, 4, 10], employ multiple views and a
planar homography constraint to map imaged persons to
the ground plane. In [7], a voxel grid is utilized to repre-
sent the 3D reconstruction and computation is distributed
in the GPUs of four computers. For each voxel, a par-
tial estimate of its occupancy is obtained, transmitted cen-
trally, and fused with the rest of estimates for this voxel.
Communication cost is significant as the amount of data to
be communicated is proportional to the number of voxels.
The system in [14] eliminates the communication cost by
mounting all cameras to a single computer and centraliz-
ing computation. This approach does not scale with the
number of views which, in this case, is limited to four.

This work follows a multiview approach to person
tracking and utilizes a volumetric 3D reconstruction of
persons to increase localization robustness, but it does



not require that the number of tracked persons is a pri-
ori known, as in [4]. The proposed work capitalizes on
computational efficiency in 3D reconstruction to facilitate
person tracking, because as person motion becomes more
densely sampled in time, it also becomes less ambiguous
to track. Thereby, we adopt the work in [20] which pro-
vides person tracking based on efficient volumetric recon-
struction achieved with the software platform presented
in [21, 18]. In the current work, we additionally employ
color information to extend the above approach in order to
disambiguate challenging tracking cases. In addition, by
recording the color appearance of the tracked targets, the
tolerance to severe occlusions is increased. As a result,
the requirement for a large number of cameras is relaxed.

3 Person localization and tracking

A set of calibrated cameras is employed, which im-
age the scene from multiple views. One computer with
programmable GPU hardware (with the option of sharing
computational effort in more computers, if required [18]),
is responsible for image acquisition, processing and ex-
traction of a spatial representation of the persons in the
room. In a typical setup, the cameras are placed evenly
and high on the walls of the room, to overlook the scene.
Henceforth, the images acquired synchronously at a given
time instant are denoted is I;, where 7 enumerates the cam-
eras. The corresponding projection matrices of the cam-
eras are denoted as P;. In all experiments in this paper
eight cameras were employed.

Two key components of the proposed approach are the
volumetric reconstruction of the humans and the represen-
tation of their color appearance. The detection and local-
ization of humans is based solely on volumetric informa-
tion. In contrast, the detected persons are tracked based
on both geometric and color information. The following
sections describe these components in more detail.

3.1 Scene reconstruction

The persons in the scene are reconstructed in 3D, based
on an estimation of their visual hull [9], which is repre-
sented as a mesh of triangle. The method computes the
total visual hull of all persons, employing a voxel occu-
pancy grid V.

Each time a synchronized set of images is acquired, a
3D reconstruction of the scene is performed. This compu-
tation has two stages. The first, concerns the volumetric
reconstruction of persons. In the second stage, this recon-
struction is enriched with color information, resulting in
the colored visual hulls of these persons. Both stages are
parallelized on the GPU.

3.1.1 Volumetric reconstruction

The first step towards scene reconstruction is to find which
voxels of the environment are occupied by persons. The
result is stored in the volumetric occupancy grid V', which
represents this information.

The image I; from camera 1 is read into the GPU and
rectified to cancel lens distortions, based on the avail-
able calibration information. Foreground detection is per-
formed based on a GPU implementation [18] of [23],
which parallelizes computation at a pixel level. The out-
come of foreground detection is binary image B;. In con-
trast to [7, 14] and aiming at efficiency, segmentation er-
rors are not smoothed (i.e. through morphological filter-
ing), but taken into account at later stages.

The next step is the computation of the occupancy grid
V. The value of each voxel of V is independently com-
puted as follows. We refer to the 3D point & as being po-
tentially visible from view i, if its projection P;(Z), occurs
within the field of view of camera i. If, ideally, no er-
rors would occur during foreground segmentation, an oc-
cupied voxel Z would project only at foreground regions
of the views, let ¢/, that it is potentially visible from. In
this case, it would hold that:

s(@) =) (Bi(Pr(%))) = max(i), ¢))

i

for all voxel centers Z within the visual hull of the person,
while for any other location, s(Z) would have a smaller
value. To compensate for errors in foreground segmenta-
tion we adopt the strategy in [20] and we consider a voxel
as occupied if it projects to a foreground region in all but
w views that it is potentially visible from. Thus, V(&) is
set to 1 if it holds that s(Z) > max(i’) — p and to -1
otherwise. By employing this rule, up to p views may
have a foreground detection error at pixels B;/ (P (Z)).
In some cases this might dilate the visual hull by a voxel.
Considering the intended use of the visual hull computa-
tion, we found this inaccuracy to be acceptable in terms of
person localization. Conversely, if this relaxed constraint
is not employed, a failure to segment a person from the
background in a single view could annihilate its 3D re-
construction.

3.1.2 Surface and color reconstruction

In order to increase tracking robustness, the color appear-
ance of humans is represented and utilized (see Sec. 3.3).
To obtain this representation, triangles of the visual hull
that are visible by the cameras are found and assigned
color information, by means of texture mapping.

The surface of the visual hull is obtained as the 0-
isosurface in V' [22]. The isosurface is computed by a
parallel implementation [18] of the “Marching Cubes” al-
gorithm [11]. The O-isosurface is encoded as a mesh M
of triangles. Notice that M contains the surface of all per-
sons in the scene, despite that these persons may not be in
proximate locations with each other.

The next step is to compute the texture for each triangle
in M. This is achieved by determining the texture that
occurs on each triangle in M, from images [;. Initially,
the views from which a triangle j is visible are identified,
by employing a depth buffer Z; for each view 7. Each



Figure 2. The textured visual hulls obtained
for the frames in Fig. 1.

pixel in Z; encodes the distance from the camera center
K; to the surface that is imaged at that pixel. Buffer Z;
is computed by calculating the distance §,; = |7; — K]
for each triangle j, where 7} is the triangle’s 3D centroid.
Triangles are projected on Z; and the minimum distance
that is imaged in each pixel of Z; is assigned to that pixel.
Let A be the length of a voxel’s side. Then,

1055 — Zi(P; - [75:1]7)] < A, 2)

is a criterion that indicates if triangle j is indeed imaged
at location of view ¢. The condition in Eq.(2) is false
if triangle j is occluded in view i. Threshold A is suf-
ficient as M’s triangles are contained within voxel size.
This criterion also facilitates parallel execution since, oth-
erwise, the maintenance of the list of triangles imaged at
Zi(P; - [75;17) would be required to cope with pixels
imaging multiple triangles. For efficiency, the number
of considered triangles is reduced by disregarding those
whose normal forms an angle greater than 7/2 with the
optical axis of view i. Texture coordinates of triangle
nodes, P; - [7}; 1], have been already computed during
the evaluation of Eq.(2) and are retrieved.

To resolve multi-texturing conflicts in triangles visible
from multiple views, a single view is selected to provide
the texture for each triangle. More specifically, the view
at which triangle j appears with the greatest area is se-
lected. In this way, color samples originating from close
and frontal views of a surface portion, imaging it in higher
resolution, are preferred. Texture mapping is encoded
through the texture coordinates of each mesh vertex. For
simplicity, all images I; are concatenated in a single image
and texture coordinates refer to this image. Texture map-
ping is parallelized for each triangle j of M, in the GPU.
In Fig. 2, the visual hulls obtained for the three frames of
Fig. 1 are shown. Note that, due to errors in background
subtraction and lack of visibility, these hulls can be far
from complete. However, the reconstructed volume and
corresponding textured surface provide sufficient informa-
tion for person detection and tracking to be achieved.

3.2 Person detection and localization

Persons are localized based on the information pro-
vided in V. As in [6, 12, 13, 4, 10], a 2D image F' is

Figure 3. Visualization of data structure F,
for the 3 time instances shown in Fig. 1.
In the images, intensity is mapped in pro-
portion to the number occupied voxels (see
text).

formed from V' that is aligned to the ground plane and V.
Essentially, F' is a 2D histogram. A pixel (or bin) in F'
counts the occupied voxels in V' along the direction per-
pendicular to the ground plane. Persons appear in F' as
intense and size-dominant blobs, with their intensities and
areas proportional to the volume they occupy. The sum
of intensities within a blob is proportional to the occupied
volume by the visual hull that gives rise to the blob. Local-
izing a blob in F' is equivalent to registering the location
of each human in the ground floor reference frame.
Depending on the number and the placement of the
cameras, voxels of V are visible from a different num-
ber of cameras. In the corresponding regions, the signal
in F' becomes weaker as voxels are summarized along a
smaller volume. To compensate for such variations, the
values in I’ are normalized by the number of potentially
visible voxels along height, which are potentially visible
for that pixel of F'. This process is efficiently implemented
as follows. A normalization map S of equal dimensions
to F' is computed at initialization time. Each pixel in S
summarizes the number of voxels accounted for the nor-
malization. At run time, the value of a pixel ¢ in F, for
which S(§) # 0, is normalized as F},(§) = F(q)/S(9).
Noise is initially suppressed in F;, by thresholding small
values, followed by Gaussian smoothing. Figure 3 visual-
izes the content of F;, for the 3 time instances of the ex-
ample in Fig. 1. In the resulting image, conventional con-
nected component labelling is performed to detect blobs.
Blobs that correspond to very small volumes are filtered
out, as they are typically due to reconstruction errors. The
detected blobs are directly localized as persons on the
ground plane of the scene and their centroids and silhou-
ettes are the measurements feeding the tracking module.

3.3 Person tracking

A blob tracker is applied to F), in order to identify
blobs and associate them with individual persons. More
specifically, the tracker in [1] is modified to track inten-
sity blobs in F},, rather than skin-colored blobs in color
images for which it was originally developed. This tracker



may track a potentially varying number of targets and is
robust to transient localization failures. Even more impor-
tantly, it is designed to retain the tracking of blobs even
if they occur merged for long temporal intervals; in other
words, the method keeps track of the number of persons,
even if those appear as merged in a single blob in F,.
In this way, person tracking is becomes possible in cases
where the persons come quite close and give rise to a sin-
gle connected component in V' and F), (see Fig. 5).

Nevertheless, there exist scenarios that result in track-
ing failures. This happens, for example, when persons
move very close to each other and interact strongly before
they split again. Tracking failures are reinforced at areas
covered by a few (or none) of the cameras. To enhance the
robustness of the above method, the representation of the
color appearance of each person is employed. The color
appearance of each person is represented by a color his-
togram. The samples for this histogram are collected from
the texture that is mapped on the portion of the visual hull
that corresponds to the tracked blob in F;, (see Sec. 3.1.2).
As the visual hull refers to the entirety of persons within
the scene, the portion of the visual hull corresponding to
the particular blob is isolated. This is achieved by select-
ing the triangles of M that are above the tracked blob.

After the triangles corresponding to each blob are se-
lected, color values are sampled from them. To gather
samples from a particular triangle of M, the pixels from
the view that provides texture to this triangle are accessed,
through their texture coordinates. The procedure is opti-
mized using an OpenGL renderer which parallelizes the
computation for each triangle in the GPU. Each pixel is
considered as a sample, however its impact to the his-
togram is normalized by the area of the 3D triangle that
it was acquired from. In this way, triangles contribute to
the representation proportionally to their 3D surface area.
In the histogram, the RGB samples are converted to the
HSV colorspace with only the hue and saturation com-
ponents being considered. Thus, the employed color his-
togram is two dimensional and only chromaticity plays a
role in color representation. The value/intensity compo-
nent is not considered in order to cope with illumination
variations of the same physical point due to artifacts such
as shadows, inconsistencies in brightness response among
different cameras, etc. In Fig. 4, the acquired histograms
for the two persons of the example of Fig. 1 are shown.

The obtained color information is employed in person
tracking, for the disambiguation of proximate blobs. In
particular, the tracker described above has been modified
to prioritize the temporal correspondence of blobs with
similar color appearance. Thus, when tracking blobs in
F,,, a temporal correspondence of two proximate blobs
will be established primarily based on the similarity of
their associated color histograms. Nevertheless, if the
color similarity does not provide sufficiently disambiguat-
ing information (i.e. if color similarity is equivalently high
for all candidates) spatial continuity of blob motion is also
considered to establish the temporal correspondence, as

..

Figure 4. Color histograms for the two
tracked persons of the example in Fig. 1,
for the corresponding time instances
(columns). The top row corresponds to the
person with the light-colored clothing and
the bottom row to the other.

originally performed by the employed tracker.
The similarity of two color histograms h; and hso is
quantified by a correlation metric, as

>, (i (f) = ar) - (ha(j) — az))
V() = 1) X, (ha(h) - a2)?

d(h1, ha) =

3)
ap =y hi(j) )
J

where

and j enumerates the bins of the 2D histograms.

As persons are tracked through their blob representa-
tions, the associated histograms are continuously updated.
The goal is to better capture the color appearance of each
person, as the first frame at which a person appears might
be insufficient for this purpose, i.e. due to restricted vis-
ibility, noise, or occlusions. At each frame that a person
is tracked, the associated histogram is updated through a
weighted averaging of two histograms: the one that has
been computed up to the current time instant and the one
computed at the current frame. The weights are in pro-
portion to the confidence assigned to each histogram. As
the former histogram has been maintained for a longer
time interval it is assigned with a weight of n, equal to
the number of frames that has been maintained. The lat-
ter histogram is then assigned with a weight of 1. Note,
however, that the above update takes place only if the sim-
ilarity of the two histograms is above the same threshold
employed for person matching. The reason for this is to
avoid a drift of the histogram representation in case of in-
accurate reconstruction or tracking failure.

Figure 5 illustrates the tracker’s result for the example
of Fig. 1. In the left image, the two distinct blobs in F},



Figure 5. The internal representation of the
blob tracker for the three time instances of
the example of Fig. 1 (see text).

give rise to two tracking hypotheses. The middle image,
corresponds to a frame acquired approximately 1.5 sec
later. In this frame, the two blobs are merged into one.
This is acknowledged by the tracker which, nevertheless,
maintains the two tracking hypotheses and their associated
histograms (see Fig 4). The time instant corresponding to
the right image occurred approximately 3.5 sec later than
the initial (left) image. In that image, the blob is observed
to split into two smaller blobs. The maintained hypotheses
are associated correctly to blobs based on color histogram
similarity, as indicated by the color coding of blobs in the
figure.

4. Experiments

The proposed method for 3D reconstruction and its im-
plementation result in an efficient and scalable system.
The achieved rate of updating V' (10 — 30 H z, depending
on hardware configuration) allows for the assumption of
motion continuity during tracking. At the same time, the
system can support reconstructions of relatively high res-
olution, thereby supporting the disambiguation of proxi-
mate persons. This is important as the robustness of track-
ing also improves with increasing the density in temporal
sampling, as well as with increasing the spatial resolution
of the reconstruction. Observing the scene at a high fram-
erate (> 10 H z) casts blob motion in F}, smooth and con-
tinuous and, thus, supports the unambiguous tracking of
blobs. Fine granularity in occupancy estimation is impor-
tant as proximate blobs will merge in F}, only if they oc-
cur closer than voxel size. In the experiments, a volume
of 6 x 6 x 2m was covered with voxels of 1 cm?, yield-
ing a framerate of approximately 20/ z. This volume was
imaged by 8 cameras (Dragonfly, Point Gray Research)
connected on a single computer, evenly distributed in 2
FireWire network cards. The computer is equipped with
an Intel 1920 quad-core CPU, and a NVIDIA GTX 580 pro-
grammable GPU. The cameras are mounted at the corners
and at the in-between mid-wall points of the room viewing
it in yaw-steps of ~ 45°. The cameras are pointing at the
floor center in a relative pitch of —43°, on average. The
height of the mounting points is ~ 2.6 m from the ground.

The proposed method has been qualitatively and quan-
titatively evaluated on a number of datasets. During the
experiments, the system was storing the acquired images
which enabled the subsequent annotation of these data
with ground truth. Using these annotations, the compu-
tation of the MOTA and MOTP tracking evaluation met-
rics [2], which measure tracking accuracy and precision
respectively, was made possible.

System precision was quantified using the MOTP met-
ric on datasets where persons were instructed to reach pre-
defined locations that were marked on the floor, whose
locations were a priori measured. For three and five per-
sons, the localization error was in the order of 2 —4 c¢m re-
spectively. The result was the same for both the proposed
method and that of [20], as the motion of subjects did not
include challenging person configurations. It is thus de-
ducted that the achieved localization accuracy is sufficient
with respect to localization requirements and to the spatial
granularity of V.

Tracking accuracy was quantified with the MOTA met-
ric on four datasets of increasing complexity. A baseline
dataset DO was recorded where a single person enters the
setup, visits practically all of its locations, and exits. In the
D1 dataset (662 frames, 1181 tracked objects), two per-
sons walk together and then one of them walks at a corner
of the room that constitutes a “blind” spot (not sufficiently
visible to be reconstructed). The other person repeatedly
walks towards and away from him. In the D2 dataset (904
frames, 1909 tracked objects), four persons perform walk-
throughs in the imaged area. Often, a person stands at a
corner of a room while another passes close by or is in
contact, thus increasing the possibilities of a tracking mis-
match. The D3 dataset (1011 frames, 4945 tracked ob-
jects) is overly challenging as seven persons move rapidly,
getting in contact sometimes altogether and constantly oc-
cluding each other. We included this difficult dataset in
order to observe the performance of the proposed tracking
approach in very challenging situations. In Fig. 6, charac-
teristic snapshots from these datasets are shown.

Based on the ground truth annotations, we measured
the tracker’s misses, false positives and mismatches in all
frames of datasets D0-D3. A distance threshold of 0.5 m
indicated whether a tracking error would be considered
as a tracking miss rather than tracking imprecision. The
proposed method was compared using the MOTA metric
against the person tracking method in [20]. The latter
method is similar to the proposed, but utilizes only the
volumetric information availed by the visual hull of per-
sons as represented in F),. The results are summarized
in Table 1. From left to right, data columns present the
MOTA score, the percentage of “Misses”, “Mismatches”,
and “False Positives” (see [2] for a definition of these
quantities).

In DO, no misses, false positives, or mismatches oc-
curred for both methods, even when the person en-
tered and exited blind spots of the environment, for both
datasets. This is due to the fact that the tracker copes with



Figure 6. Characteristic snapshots from datasets D1, D2 and D3 (left, middle and right column,
respectively).

Table 1. Quantitative evaluation of track-
ing performance of the proposed method
against the method described in [20] (see
text).

Method MOTA | Miss | MM FP
DO | [20] 1.000 | 0.000 | 0.000 | 0.000
This work 1.000 | 0.000 | 0.000 | 0.000
D1 | [20] 0.981 | 0.000 | 0.007 | 0.011
This work 0.987 | 0.000 | 0.001 | 0.011
D2 | [20] 0.922 | 0.036 | 0.101 | 0.040
This work 0.986 | 0.007 | 0.020 | 0.002
D3 | [20] 0.681 | 0.340 | 0.252 | 0.310
This work 0.712 | 0.149 | 0.019 | 0.147

transient reconstruction failures (i.e. as when a person
walks through a region that is not sufficiently covered by
cameras) and can achieve this even using only volumetric
information. Hence MOTA was 1 for this dataset, in both
conditions of the experiment. In the remaining conditions,
the proposed method consistently outperformed [20], as a
result of the additional information that it utilizes. In par-
ticular, the MOTA score is consistently higher in all condi-
tions of the experiment, while it also produces as smaller
proportion of errors. In D1 and D2, although the tracker
is able to correctly assign the ids, there exist occasions
where lack of visibility produces false-positive detections
(assignment of a tracking hypothesis to a non-existing per-
son in the scene), for both methods. These false-positives

are mainly due to a volumetric artifact occurring at the dy-
namic occlusion of an area, which has been studied in [5].
The increased complexity of D3 results in lower MOTA
values for this dataset, for both methods. It is interesting,
however, to observe that for all datasets, and particularly
D2 and D3 which are the most complex ones, the number
of mismatches (column MM) are fewer for the proposed
method. This is a direct result of the disambiguation of
persons due to color information. Conversely, the method
in [20] which uses only geometric information fails to a
larger extent, because mismatches occur when persons are
lost by the tracker in a low visibility region of the scene
and are mismatched with another person close by.

5. Conclusions

In this work, we presented a method for tracking mul-
tiple humans based on a camera network. The proposed
approach performs a colored visual hull reconstruction of
persons within the imaged environment. Human track-
ing is then performed based on the obtained volumetric
and color information. Color information was availed
through the surface reconstruction of the tracked persons.
Through quantitative experiments, we have shown that
adding color to the information that is utilized to track
persons increases tracking robustness compared to an ex-
isting, state-of-the-art method that uses geometric infor-
mation, only. Both methods are characterized by compu-
tational efficiency. This is achieved by parallelizing the
pertinent computation on graphics hardware (GPU). This
efficiency has an impact on tracking robustness, because



the temporal sampling of the environment yields minute
motions of the tracked persons. As a result, temporal con-
tinuity is preserved and the data association problem be-
comes easier to solve.

One key direction for future work concerns the ability
of the system to operate in less constrained environments.
In this respect, we are aiming towards the possibility of
coping with changes in the background, by dynamically
updating its model. Another research direction regards the
inclusion of mobile robots in the environment. Extend-
ing the proposed framework to benefit from the moving
cameras mounted on the robots constitutes a challenging
research goal. In this context, we intend to study the reli-
ability and bandwidth of the required wireless communi-
cation interface, as well as, its potential for synchronized
image acquisition and real-time operation.
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