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Abstract

We present a new method for tracking the 3D position,
global orientation and full articulation of human hands.
Inspired by recent advances in model-based, hypothesize-
and-test methods, the high-dimensional parameter space of
hand configurations is explored with a novel evolutionary
optimization technique. The proposed method capitalizes
on the fact that the quasi-random samples of the Sobol se-
quence have low discrepancy and exhibit a more uniform
coverage of the sampled space compared to random sam-
ples obtained from the uniform distribution. The method
has been tested for the problems of tracking the articula-
tion of a single hand (27D parameter space) and two hands
(54D space). Extensive experiments have been carried out
with synthetic and real data, in comparison with state of
the art methods. The quantitative evaluation shows that for
cases of limited computational resources, the new approach
achieves a speed-up of four (single hand tracking) and eight
(two hands tracking) without compromising tracking accu-
racy. Interestingly, the proposed method is preferable com-
pared to the state of the art either in the case of limited com-
putational resources or in the case of more complex (i.e.,
higher dimensional) problems, thus improving the applica-
bility of the method in a number of application domains.

1. Introduction

Articulated motion estimation and tracking is an impor-
tant problem in computer vision with significant theoreti-
cal interest and numerous and diverse applications. The
instances regarding the human body and the human hand
are of particular interest since their solution can support the
development of a number of important applications in the
fields of human-computer interaction (HCI), robot learning
by demonstration, etc.

Significant efforts have been devoted in solving these
problems [11, 6]. Despite the large body of related work,
these problems are still attracting the attention of the re-
search community because of the numerous difficulties that
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Figure 1. Left: 256 points on the 2D plane obtained from a
pseudo-random number generator. Right: the first 256 samples
of the Sobol sequence. Samples 1 to 10, 11 to 100 and 101 to
256 are in red, blue and green colors, respectively. The Sobol
sequence covers the space more evenly. In our problem for-
mulation, the Sobol sequence is used to form quasi-random hy-
potheses of hand configurations in the 27D (single hand) and
54D (two hands) configuration spaces. Example inspired from
http://en.wikipedia.org/wiki/Sobol_sequence.

one has to overcome to solve them in the general case. As
an example, for the problem of hand tracking, the uniform
color appearance of the hand makes it difficult to segment
its parts. Its high versatility and dexterity yields an infi-
nite number of configurations in most of which the hand is
considerably self-occluded. This limits the applicability of
approaches that rely on the detection of a few recognizable
poses. Finally, the high speed of the human hand and fingers
challenge most of the contemporary tracking approaches.
There are two broad categories of 3D hand articulation
tracking methods, the appearance-based and the model-
based ones (see Sec. 2). Appearance-based methods are
more computationally efficient but can only identify a lim-
ited number of known hand configurations. Model-based
methods explore the continuous space of hand configura-
tions at the cost of solving online an optimization problem
in a high dimensional space. Recent formulations of the
hand tracking problem, together with the utilization of par-
allel hardware such as the GPUs, yielded model-based ap-
proaches that perform in near real time [15]. Still, the com-
putational requirements of model-based methods at runtime
remain much larger than those of appearance-based ones.


http://en.wikipedia.org/wiki/Sobol_sequence

In this paper we present a novel model-based approach
for tracking the articulated motion of human hand(s) as ob-
served by an RGB-D sensor. The main contribution of this
work is the proposal of a novel optimization method that ex-
plores very efficiently and effectively the high-dimensional
configuration space of the human hand. The new optimiza-
tion technique capitalizes on quasi-random sampling [24] to
select a limited number of candidate problem solutions that
span uniformly (see Fig. 1) the configuration space of the
human hand. The advantage of quasi-random over pseudo-
random sampling is a more uniform coverage of the sam-
pled space, because of the low-discrepancy property exhib-
ited by quasi-random samples. Articulated structures such
as the human body and the human hand are parameterized
in spaces of tens of dimensions that need to be sampled by
hypothesize-and-test methods. Thus, it is expected that the
low-discrepancy property of quasi-random sampling is ben-
eficial to the effective exploration of such high dimensional
spaces. Quasi-random sampling has been employed for hu-
man silhouette tracking [17] but not for human body or hu-
man hand tracking.

Evolutionary optimization algorithms have also been
successfully applied before in human body tracking [26]
and human hand tracking [16, 15], but never combined
with quasi-random sampling. The optimization method
also takes advantage of knowledge in the problem domain,
namely the kinematic chain of the human hand and the
way this structure affects the scoring of neighboring hand
poses. The resulting optimization method has a number of
free parameters whose values are systematically determined
through meta-optimization.

The proposed method has been employed to track the
articulation (a) of a single hand and (b) of two strongly in-
teracting hands. The parameter spaces of these problems
are 27D and 54D, respectively. For both problems, the pro-
posed approach has been evaluated quantitatively and quali-
tatively in data sets annotated with ground truth and in com-
parison with state of the art model-based methods [16, 15]
that rely on the Particle Swarm Optimization (PSO) [9]
method. The obtained results reveal that the proposed ap-
proach can achieve a speed-up of up to 4x for the case of
a single hand and up to 8x for the case of two hands, with-
out compromising tracking accuracy. The speed-up gains
are more significant in the hard cases, i.e., in the case of
limited computational budgets. This is because lower bud-
gets are associated with a sparser sampling of the paramet-
ric space of the problem, in which case the low-discrepancy
property of the quasi-random sampling becomes more im-
portant. Thus, besides its theoretical significance, the pro-
posed optimization method has a great practical importance,
as it bridges the gap in computational performance with
appearance-based methods while maintaining the advan-
tages of the hypothesize-and-test methods.

2. Related work

Hand articulation tracking methods can be classified [5,

] based on the way candidate solutions are generated
and tested against the observations. For the so called
appearance-based approaches [2, 21, 27, 20, 10], a large set
of hand configurations is generated off-line. Relevant fea-
tures are extracted for each of the generated poses, resulting
in a database where each pose is associated with image fea-
tures. At runtime, comparable features are extracted from
the acquired image(s) and searched for in the precomputed
database. The solution reported is one or more of the stored
poses that match the computed features.

Model-based methods [19, 25, 5, 7, 15, 3, 16] generate
hand poses, extract features and compare them to the ob-
served ones at runtime. Typically, an optimization method
is responsible for finding the pose that best explains the
available observations.

Appearance-based methods are more computationally
efficient than model-based ones, at the cost of having a fixed
accuracy that depends on the precomputed data rather than
the computational budget devoted to the problem at runtime.
Furthermore, they are more difficult to adapt to different
problems, since changing the object to be tracked essen-
tially amounts to solving the time consuming problem of
generating new off-line data. As an example, moving from
a single hand tracker to a two hands tracker requires train-
ing to be performed from scratch. In contrast, model-based
methods can be more easily adapted to different scenarios,
since all that is required is a change in the appearance and
kinematics model used. Furthermore, the accuracy usually
benefits from more computational budget, or alternatively
one can trade accuracy for speed. In general, the compu-
tational requirements of model-based methods at runtime
is larger than that of appearance-based ones. However, re-
cent formulations of the problem that also exploit parallel
hardware such as the GPUs have resulted in methods that
perform in near real time [15].

Quasi-random sampling has been applied before in com-
puter vision problems such as silhouette tracking [17],
block motion estimation [18] and map estimation [22].
Loosely speaking, the idea behind quasi-random sampling
is that a carefully constructed sequence of points in the S-
dimensional hypercube [0, 1]° may cover more uniformly
this space than the commonly employed pseudo-random
number generators. Specifically, such sequences exhibit
the so called low-discrepancy property [12] according to
which, any subset of the sampled hypercube has a proba-
bility of containing samples that is proportional to its vol-
ume. Although this property holds at the limit for stan-
dard uniform sampling too, the variance for low numbers
of quasi-random samples is lower (see Fig. 1). The low-
discrepancy property was first introduced by Sobol in [24],
where he also presented the first low-discrepancy family of



sequences. In a later work [23], Sobol provided arithmetic
values to construct such sequences up to dimensions of size
51. Even later [12], Niederreiter categorized and systemati-
cally studied low-discrepancy sequences. He also presented
a sampling-based optimization algorithm [14]. The idea be-
hind that approach was to keep sampling the search space
using a low-discrepancy sequence until either a fixed num-
ber of objective function evaluations is reached or a fixed
objective function score is found.

Evolutionary optimization is widely regarded as a pow-
erful strategy to optimize objective functions with signifi-
cant amounts of noise, discontinuities and even uncertain
values [8, 4]. The model-based formulation of hand track-
ing results in objective functions that exhibit all these prop-
erties. Thus, commonly employed optimization techniques
such as gradient descent fail to provide robust solutions.
Particle Swarm Optimization (PSO) [9], a widely used evo-
lutionary algorithm was shown very effective in this prob-
lem [15, 16]. Inspired from the success of PSO, we propose
anovel evolutionary algorithm which takes advantage of the
power of quasi-random sampling and is able to surpass PSO
in the rate of convergence and estimation accuracy.

3. Method Description

We present an evolutionary algorithm, capable of effi-
ciently searching the high-dimensional parameter space of
hand configurations. Briefly stated, the method operates as
follows. First, quasi-random sampling is used to define a
number of atoms / candidate solutions / model hypotheses'
in the parametric space of hand configurations. An objec-
tive function quantifies the difference between a hand hy-
pothesis and the actual observations. Then, the computa-
tion proceeds in iterations called generations. At each such
generation, a “center” hand hypothesis is computed as a
weighted average of a fixed number of the so far best scor-
ing hypotheses. Quasi-random sampling is again employed
to sample effectively the parametric space around this cen-
ter point, yielding new candidate solutions to the problem.
The range of the sampling around the center is diminished
exponentially as a function of the number of generations.
The hypothesis that yields the best score after a fixed num-
ber of generations is termed the solution for a given frame.
To achieve tracking over time, temporal continuity is ex-
ploited, in the sense that the solution for frame ¢ — 1 boot-
straps the optimization process for the frame ¢.

3.1. Sobol Sequence

Sobol [24] introduced a low-discrepancy sequence of n
samples x; in the S-dimensional hypercube [0..1]° with the

Tn the remainder of the paper, the terms atom, candidate solution and
model or hand hypothesis are used interchangeably.
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Figure 2. (a) The kinematic structure and (b) a 3D rendering of the
hand model used in this work.

aim to approximate the integral

/ f(z) da ()
[0,1]%

of an arbitrary function f over [0, 1] by the limit

n
Jim > f () 2

i=1
with the fastest possible convergence. Loosely speaking,
for small sample sizes, in the order of tens or hundreds
of samples, the resulting coverage of the sampled space is
more even, leaving smaller gaps than that of a set of points
sampled from a uniform distribution (see also Fig. 1). The
comparison favors quasi-random sampling as the number of
space dimensions S is increased. For a more detailed and
formal presentation of low-discrepancy and quasi-random

sequences, the reader is referred to [13].

3.2. Hand Modeling and Hypothesis Scoring

We adopt the parameterization of hand pose and the
modelling of hand kinematics and appearance that are pro-
posed in [15]. In that parameterization, a fixed point and
orientation in the palm defines the global pose of the mod-
eled hand. This is six degrees of freedom (DoFs) encoded
as seven parameters because of the use of the quaternion
representation for 3D rotation. Each of the fingers is fully
described by four joint angles, two for the saddle joint at
the base and two more, one for each of the two remaining
hinge joints. The schematic of this parameterization is illus-
trated in Fig. 2(a) which is taken from [6] (Fig. 2(b) of that
manuscript) and adjusted to the model we use. This results
in a total of 26 DoFs encoded as a vector h € R?”. Appro-
priate limits for the joint angles are determined by anatom-
ical studies [1]. Regarding modelling the appearance of
the hand, Oikonomidis et al. [15] propose to build the nec-
essary shapes from appropriately transformed instances of



two geometric primitives, cylinders and spheres, resulting
in a shape depicted in Fig. 2(b). This strategy enables a high
degree of computational parallelism, a fact that can yield
significant speed boost with an implementation for modern
GPUs.

Using this appearance model and given a specific hand
pose h along with the camera calibration information K,
it is possible to synthesize feature maps of the hand hy-
pothesis h from the viewpoint of the camera that observes
the scene. Specifically, we synthesize the depth map and
the skin color segmentation map, two features that can be
obtained from the RGB-D data we use as input. A scor-
ing function F is then used to quantify the discrepancy be-
tween a hypothesis and the actual observations. We employ
the one proposed in [15] (Eq. (1) of that manuscript) which
depends on the compatibility of the skin color and depth
maps associated with an observed hand and a rendered hand
hypothesis. More specifically, the mean of absolute differ-
ences between the observed and hypothesized depth maps is
computed. A quantity that measures the agreement between
the observed and hypothesized skin color silhouettes is also
computed. These two values quantify the agreement in ap-
pearance between hypothesis and observation. From these
values, a single score is computed using experimentally de-
termined weights. An additional term that does not depend
on appearance but instead serves to penalize anatomically
infeasible poses is also appropriately weighted and added,
forming the final definition of E. For a detailed description,
the reader is referred to [15].

The task of estimating the hand pose is thus reduced
to that of optimizing the objective function £. The com-
putation of F requires as input the hand configuration h,
the camera calibration information K and the observation
o, however, for notational brevity we use E(h) to denote
E(h,o, K). For a given observation, the function F is op-
timal at the configuration that represents the observed hand
pose. However E' also exhibits local minima and disconti-
nuities because of aliasing artifacts. On top of this, a graph-
ics/rasterization engine is involved in the computations, so
the analytical differentiation of E is impossible.

3.3. Evolutionary Sobol Search for Hand Tracking

As in most evolutionary optimization algorithms, in our
approach there is the notion of a population of candidate
solutions in the search space. This population evolves in
steps, called generations. A high-level outline of the pro-
posed search algorithm is presented in Algorithm 1.

The algorithm maintains the full history A of all atoms
identified so far, along with their corresponding fitness
scores w, and runs for a fixed number G of generations.
In each generation g, 0 < g < G — 1, a center position h¢
is defined. For the first generation, h¢ is set equal to the so-
lution h;_; sought for the previous frame. N atoms h! are

Algorithm 1 The proposed evolutionary search algorithm

Input: The solution h;_; for the previous frame.
Output: The solution h; for the current frame.

H— 0T+ 0
hc < hi_1;
for g=0...G—1 do
// Define atoms h¢ (1 < i < N) around h¢e (Eq.(3))
{hi} « SobolSequence(hc, N, g);
// compute E for atoms and store fitness
H + HU{n};
w(hi) = E(ht);
T < TopScoringAtoms(H, Nr);
he < WeightedSum(T); (Eq.(4))
end for
hy < TopScoringAtoms(H, 1)
return (h;);

then defined around i based on the Sobol sequence. This
is done so as to take advantage of the way quasi-random
sampling can evenly fill high-dimensional spaces. Each pa-
rameter dimension has different units and range, so a vector
s of scales is used to adjust the original range [0, 1] of the
Sobol sequence to the appropriate one. More specifically,

hi =he+socd o (2r,y; — 1). 3)

In Eq.(3), ¢ iterates over the population count, “o” denotes
the Hadamard or entry-wise product between vectors, z,,
is the n-th sample of the Sobol sequence of appropriate di-
mensions, and r is a large random integer after which we
draw samples from the Sobol sequence. c is a vector of con-
traction coefficients, with entries in the range (0..1]. Rais-
ing to g denotes entry-wise power. The goal of this opera-
tion is to reduce the size of the search space around h¢ as a
function of the generation count.

All the identified atoms h! are inserted in the history H.
The objective function F is consequently evaluated for each
of these atoms A, resulting in corresponding fitness scores
w(ht) = E(h%). Next, from the whole history H, the set
T containing n7 atoms with the highest fitness scores is
computed. A new center in the search space h¢ is computed
as a weighted sum of these nr atoms, as follows:

1
he = m Z q(w(h)) - h. )

heT

We chose ¢(z) = exp(az) because a can be appropriately
chosen to scale the weights so that there is a fixed ratio be-
tween the first and second best scoring atoms.

The above procedure is repeated for all G generations.
After this computation is completed, the most fit atom
among the whole history H is reported as the result h; of
the optimization process.



From a computational complexity point of view, the most
expensive part of the algorithm is the evaluation of the ob-
jective function for a given atom. N such evaluations are
performed in each generation, thus the product N - G de-
termines the computational budget of the method. It should
be noted that within each generation, the computations for
each atom are independent of the other atoms. This inherent
computational parallelism can be exploited to achieve very
efficient implementations in GPU architectures.

3.4. Meta-optimization

The algorithm outlined in the previous section has a
number of free parameters, namely the scaling vector s, the
contraction coefficients ¢, the weight parameter a and the
number Nr of top scoring positions that contribute to the
calculation of he. In order to determine appropriate val-
ues for these parameters in a systematic way, we resorted to
meta-optimization, i.e., the use of an optimization algorithm
in order to tune the parameters of another.

For the case of tracking a single hand, we first recorded
a sequence of 370 frames of a hand waving and performing
object grasp like motions. We tracked this sequence using
the method of [15] with a high computational budget, to
ensure the highest possible tracking accuracy. We then syn-
thesized the same sequence using our hand model. Having
a sequence of synthesized images along with corresponding
hand poses as ground truth, we were able to quantify the
performance of a given parameterization of the search al-
gorithm. For more details on this quantification the reader
is referred to Section 4.1. To meta-optimize the two hand
tracking problem, we followed a similar approach on a se-
quence showing two hands in strong interaction.

The parameterization of the meta-optimization problem
itself, is as follows. We partitioned the scaling vector s in
three types of parameters, namely the positional scale, the
rotational scale and the scale associated with finger joint an-
gles. Thus, we reduced the 27 or 54 parameters (single/two
hands tracking) to just 3. The intention behind not keeping
all the different parameters is to avoid over fitting for the
specific sequences we used for meta-optimization.

The contraction coefficients ¢ were partitioned with re-
spect to their distance from the root of the kinematic chain,
a choice that reflects the way the scoring function E is af-
fected by each of the problem parameters. The intuition is
that the parameters describing the position and orientation
of the palm must be fixed in order to measure meaningful
values when varying the position of, e.g., a fingertip. We
thus identified four different levels, starting with position
and rotation in the root(palm), the DoFs of the metacar-
pophalangeal joints at the next level, the proximal interpha-
langeal (IP) joints at the third level and the distal IP at the
last level (bottom to top in Fig. 2(a)). We did not optimize
for Np, in all experiments we used N = Nr = 16 and
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Figure 3. The results of meta-optimization yielded an exponen-
tial relation between the kinematic chain depth and the contraction
coefficients c for both cases, single hand tracking and two hands
tracking.

G = 25. The three different scale parameters, the four dif-
ferent contraction coefficients and the weighting parameter
a amount to a total of 8 parameters. In order to find optimal
values for those parameters we employed Particle Swarm
Optimization (PSO) [9].

The separate meta-optimization of the single hand case
and the case of two hands, resulted in two different sets
for these 8 parameters and in some rather interesting re-
sults. For both the single hand and the two hands case, in
close agreement with intuition, the optimum contraction co-
efficients decrease exponentially with the distance from the
kinematic root (see Fig. 3). Furthermore, for the single hand
case it turned out that the optimal value of a is very close
to 0. Thus, the top Nt atoms contribute to the definition of
the center h with equal weight. This however was not the
case for the case of two hands tracking. For that case the
optimum value of a was close to 1.6.

4. Experimental Evaluation

We present experiments that assess the effectiveness of
the proposed evolutionary quasi-random search approach.
The proposed method was employed to track the articula-
tion of (a) a single hand and (b) of two strongly interact-
ing hands. The dimensionality of these two problems is 27
DoFs and 54 DoFs, respectively. The results obtained by the
proposed method are compared quantitatively and qualita-
tively to those obtained by state of the art methods ([15] for
(a) and [16] for (b)). For quasi-random sampling we used
the default Matlab implementation of the Sobol sequence of
appropriate dimensions (either 27 or 54).

4.1. Quantitative evaluation, single hand tracking

We conducted several experiments to quantitatively as-
sess the performance of the proposed method in comparison
with the approach presented in [15]. In order to do so, we
created synthetic data (i.e., annotated with ground truth) in
a way similar to that described in Sec. 3.4.

Specifically, a real-world sequence was tracked with
good accuracy using the method in [15] and a large com-



putational budget. This sequence consists of 200 frames
depicting a hand performing a variety of motions. It should
be stressed that this sequence is different to the one used for
the meta-optimization (see Sec. 3.4). The resulting track is
a sequence of hand poses, closely resembling the observed
hand. We used this track to generate synthetic data, i.e. a
sequence of synthetic RGB-D images. Since this sequence
is produced from a known hand track, we can use that track
as the ground truth for that sequence.

Having a sequence with associated ground truth, we
compute the distance of a track from this ground truth. To
do so, we select 21 key points on the hand model we use.
The first point is at the root of the kinematic chain inside the
palm. Each finger has 4 of the remaining 20 points, starting
with one at the base, having one at each of the intermediate
joints, and with the last placed at the fingertip. This place-
ment of points can be computed for any given hand pose.
Given two hand poses, a ground truth and an estimated one,
we can compute the Euclidean distances between such cor-
responding points. The mean value of all these distances is
the error measure we use for a pose estimation of a given
frame. For a pose sequence we compute the mean value of
such mean distances, resulting in a single error estimate for
the whole sequence. Due to its stochastic nature, our algo-
rithm does not perform identically in different runs. Thus,
for a given configuration we repeat the experiment 11 times,
yielding 11 different mean errors. The values we report in
all experiments are medians of those mean errors.

As stated in Sec. 3.3, the two parameters determining
the computational budget of the algorithm are the number
of atoms N and the number of generations GG because their
product yields the number of objective function evaluations.
Particle Swarm Optimization (PSO), the optimization algo-
rithm used in [15] is parameterized similarly by the number
of its atoms called particles and generations. We assessed
the performance of our algorithm in comparison to [15] as
a function of these two parameters. The results of this ex-
periment are visualized in Fig. 4.

It can be verified that the proposed evolutionary method
performs better or equal to the method in [15]. This is
amenable to dual interpretation: we either get more ac-
curacy with the same computational budget or we get the
same accuracy with less computational resources. The dif-
ferences in favor of the proposed approach become far more
striking in small atom and generation counts. This is quite
important because it means that higher accuracy can be
achieved for small computational budgets. As an exam-
ple, the accuracy obtained by 16 atoms of the proposed ap-
proach running for 10 generations is equal to the accuracy
obtained by 64 particles of [ 15] for the same number of gen-
erations. Given that the objective function E is common for
both methods, the evaluation of an atom in our approach is
identical to the evaluation of a particle in [15]. This means
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Figure 4. The performance of our method (solid lines) in com-
parison to that of [15] (dashed) for the problem of single hand
tracking and for different particle and generation counts. The dot-
ted lines illustrate the performance of the proposed evolutionary
scheme using uniform random instead of quasi-random sampling
(best viewed in color).

that the proposed algorithm achieves a 4x speed-up over
the state of the art. As an alternative view of the same re-
sults, for the same low budget (16 atoms/particles, 10 gen-
erations), the proposed approach is almost two times more
accurate. In the same graph we assess the importance of
using quasi-random sampling instead of uniform. The dot-
ted graphs exhibit the performance of a variant of the pro-
posed method with the only difference being that for this
experiment we drew samples from the uniform distribution
instead of quasi-random sampling. Evidently the behavior
of the proposed method is better than this variant, and again
the lower budgets exhibit the bigger differences.

Figure 6 shows sample results from the application of
the proposed algorithm on the synthetic sequence used in
this quantitative evaluation.

4.2. Quantitative evaluation, two hands tracking

Similarly to the case of a single hand, we recorded a se-
quence showing two hands in strong interaction. We em-
ployed the proposed evolutionary quasi-random search al-
gorithm in a parametric space of 54 DoFs and we exper-
imented with different numbers of atoms and generations.
The obtained results are shown in Fig. 5 in comparison with
those obtained by the method of [16].

The complex interaction between hands generates more
occlusions, so, it is impossible to resolve ambiguity regard-
ing some poses of the sequence. This, in turn, implies that
the lowest achievable error for the case of two hands is
higher than that of the single hand case. Nevertheless, the
advantages of the proposed method are even more promi-
nent in the case of tracking two strongly interacting hands.



| —6— 16
35 —6— 32
30} —S—64 |]

128
25F < —6— 256

error (mm)

10 15 20 25 30 35 40
generations

Figure 5. The performance of our method (solid lines) in com-
parison to that of [16] (dashed) for the problem of tracking two
strongly interacting hands and for different particle and generation
counts (best viewed in color).

The lowest budget configuration we tested, N = 16 and
G = 10 was able to achieve an average error of 15mm
whereas the method of [16] achieved for the same budget an
average error of 26mm. The proposed method achieved for
the configuration of N = 64 and G = 25 an error of 8.9,
within 1.5mm from the largest budget we tested, namely
(N, G) = (256, 40) which yielded 7.6mm of average error.
Thus, for the case of two hands tracking, the proposed so-
lution can achieve a speed-up of almost 8, enabling real-
time tracking of two interacting hands.

Figure 6 shows sample results from the application of
the proposed algorithm on the synthetic sequence used in
this quantitative evaluation.

4.3. Qualitative Evaluation

Figure 7 shows sample results from the application of
the proposed method on the real world sequences reported
in [15, 16]. The videos of these experiments are available at
http://youtu.be/3yvaFuX09xY.

5. Discussion

The model-based, hypothesize-and-test methods for
tracking the articulated motion of human hands have a num-
ber of important advantages over their appearance-based
counterparts. Their Achilles’ heel is their computational
requirements. Recent progress in the field [15] achieves
near real time performance (20Hz) in a GPU-powered,
high end computer. In this work, we proposed a novel
hypothesize-and-test method for this problem. The evolu-
tionary optimization core of the method relies on the fact
that low discrepancy sequences like the Sobol sequence
are better suited for uniformly sampling high dimensional
spaces. The method is tailored to the problem of hand

(b)
Figure 6. Sample results from the application of the proposed evo-
lutionary quasi-random search method to (a) the single hand track-
ing and (b) two hands tracking synthetic data sets. For each frame,
the rendered depth map and the estimated hand pose is shown.

tracking in the sense that it capitalizes on the tree structure
of the kinematics of the human hand. Quantitative exper-
imental results for two problems of different dimensional-
ity (single hand tracking, two hands tracking) demonstrated
that the proposed approach exhibits a much better perfor-
mance/accuracy trade-off compared to the state of the art.
More specifically, it is demonstrated that single hand track-
ing can be speeded up by a factor of 4x, and two hands
tracking can be speeded up by a factor of 8%, without sac-
rificing tracking accuracy. Ongoing research focuses on
applying the evolutionary quasi-random search method to
other computer vision optimization problems.
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