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Abstract—In this paper, we present an efficient algorithm
for synthesizing novel, arbitrarily long animations of periodic
dances. The input to the proposed method is motion capture
data acquired from markeless visual observations of a human
performing a periodic dance. The provided human motion cap-
ture data are temporally segmented into the constituent periodic
motion patterns. These are further organized in a motion graph
that also represents possible transitions among them. Finally,
an efficient algorithm exploits this representation to come up
with a previously unseen sequence of motion patterns that are
stitched seamlessly into a novel, realistic dance animation. Several
experiments have been conducted with real recordings of Greek
folk dances. The obtained results are very promising and indicate
the efficacy of the proposed approach, as well as its tolerance to
dynamic and noisy human motion capture input.

I. INTRODUCTION

In recent years, there has been an unprecedented progress
in 3D human motion capture. As a consequence, the avail-
ability of motion capture data is increasing in both volume
and quality and new types of applications emerge [1], [2]. The
support of these applications require new services, methods
and tools for searching, retrieving, understanding and repro-
ducing motion capture data of human activities. Several such
activities (e.g. walking, running, jumping, dancing, etc.) can be
considered as periodic in the sense that they consist of similar,
repetitive motion patterns. The temporal characteristics of this
repetition defines the rhythm of the activity. For example, the
rhythm of certain types of dances is based on the repetition
of motion patterns that are related to the music tempo. This
holds even if the dance steps exhibit certain variations [3].

In this paper, we are interested in analyzing the motion
capture data of cyclic human activities so that we are able
to create new, infinite sequences of unseen animations. We
are also interested in being able to synchronize these unseen
animations with a music tempo that differs to the one of
the original dance recording. In that direction, we capitalize
on the assumption of periodic dance motion to detect the
rhythm of motion, to extract the motion patterns and to perform
synchronization with a given tempo.

A lot of research has been already devoted to the vision-
based motion analysis in order to estimate the rhythm of

Antonis Argyros is also with the Computer Science Department, University
of Crete, Greece.

motion. In [4], a method of rhythmic information extraction
from 2D dance videos and music has been proposed. The
rhythm of motion is estimated by the analysis of motion
trajectories of points that are detected using an adaptation of
the Shi-Tomasi (ST) corner detector.

Since the 2D visual information is not always sufficient
to solve the problem of motion rhythm estimation with high
accuracy, other methods [5] have been applied to 3D motion
capture data. Kim et al. [5] proposed a method for synthe-
sizing a new motion from unlabelled example motions while
maintaining their rhythmic features. This method first captures
the motion beats from the example motions to extract the
basic movements. Based on those 3D motion data it constructs
a movement transition graph that represents the example
motions. Finally, given an input sound signal, it synthesizes a
novel motion in an on-line manner while traversing the motion
transition graph, which is synchronized with the input sound
signal and also satisfies kinematic constraints given explicitly
and/or implicitly.

The beat detection in music has been used by several
methods that aim to create new unseen dance animations that
are synchronized with a given music [6]–[8]. In [6], a fast,
greedy algorithm analyzes a library of stock motions and
generates new sequences of movements that were not described
in the library. A greedy algorithm with backtracking establishes
the best matching frame among the closest dance moves,
takes it as a greedy choice and repeats the same process. A
genetic algorithm optimizes the dance sequence by considering
an initial population of valid dance figures and applying the
genetic operators of crossover and mutation to create new
figures.

In [7], the generation of dance performances is based on a
given musical piece by matching the progressions of musical
and motion patterns and by correlating musical and motion
features. That method uses similarity matrices for musical and
motion sequences and matched the progressions of musical and
motion contents by minimizing the difference between the two
similarity matrices. In [8] a music-driven semiautomatic char-
acter animation framework is presented that extracts musical
features from a song and uses them to create an animation.
The proposed method builds a new animation directly from
musical attributes. Any type of music with noticeable beats
can be used to generate a tailored animation that expresses the



music. A script file that is set by the user gives a high level
control over the final animation.

Marker-based motion capture technologies have been used
on 3D dance animations systems. In [9], a dance training
system is proposed that is based on virtual reality (VR) and
marker-based motion capture technologies. A prototype was
implemented, in which a trainee can imitate the motion demon-
strated by a virtual teacher whose actions are displayed on a
wall screen. Meanwhile, the motion of the trainee is captured
and analyzed by the system to provide feedback. In addition,
user constraints on movement, position and timing can be used
for motion synthesis. In [10], a framework is presented for
motion synthesis from multiple 3D video sequences according
to user constraints on movement, position and timing. Shape
similarity over an adaptive temporal window is used to identify
transitions between 3D video sequences. Novel 3D video
sequences are synthesized by finding the optimal path in the
surface motion graph between user specified key-frames for
control of movement, location and timing.

In our preliminary work [3], we proposed a framework
that performs temporal segmentation of periodic dances into
its periods based on visual and sound information. Having
segmented a given human motion and music into periods, the
next task is to create a beat synchronous dance animation.
To achieve this, we re-sampled the motion signal so that its
tempo becomes equal to that of the target music. The main
contributions of the proposed framework are the following:

• Most of the existing approaches that provide a tempo-
ral segmentation of human motion can be only applied
to simple human motions, since they are heuristic and
use simplifications or signal approximations without
any global optimality criterion. On the contrary, in
this paper, we have used an optimization approach that
computes the optimal solution for the problem of tem-
poral segmentation of human motion using 3D dance
motion data [3]. An advantage of the proposed method
is that it can be applied to complex multidimensional
signals such as those representing dance movements
creating new unseen animations.

• The existing approaches usually require special hard-
ware using marker based motion capture devices that
provide high accuracy motion data, since they are not
capable of tolerating noise in their input. The proposed
method tolerates noise in the representation of human
motion due to the proposed motion pattern merging
method. The input to the algorithm is motion capture
data produced by a home-build markerless human
articulation tracking algorithm that relies on the visual
input provided by two RGBD cameras or several RGB
cameras.

• The motion synthesis algorithms are, typically, human
driven or search for the best matching between motion
patterns in order to create new unseen animations.
Other methods create beat synchronous animations by
matching the progressions of musical and motion pat-
terns based on the estimated correlation of musical and
motion features. In this work, the synchronization with
music (tempo) is optional. Moreover, the combination
of the proposed pattern merging method and motion

planning algorithm does not produce simple concate-
nations of previously observed periods of dance but
rather creates smooth transitions by seamless stitching
of motion patterns resulting far more realistic anima-
tions. The experimental results show that the proposed
method achieves very promising results.

II. METHOD OVERVIEW

Figure 1 illustrates a flow diagram of the proposed ap-
proach. The first module realizes the temporal segmentation
of the complex motion capture data into motion patterns.
Next, using the extracted motion patterns, we construct a
motion graph and we employ an efficient algorithm for graph
exploration that yields an unseen animation. Finally, in the
case that a music is given, a beat synchronous animation is
created by applying the method proposed in [3]. We resample
each motion pattern of the resulting animation according to
the estimated music tempo, so that the motion tempo becomes
equal to the tempo of the given music.

The rest of the paper is organized as follows. Section III
presents how the human motion is temporally segmented
into periods of motion patterns. Section IV presents how
these patterns are represented and explored towards creating
new unseen dance animations. The synthesis of new unseen
animations is presented in Section V. The experimental results
obtained based on experiments on a series of datasets are
provided in Section VI. Finally, Section VII concludes the
paper by summarizing the most important contributions of this
research.

III. TEMPORAL SEGMENTATION OF PERIODIC HUMAN
MOTION

In this section, we present the analysis of motion captured
data in order to segment the motion patterns of the periodic
dance motion and to represent them in a motion graph. A
preliminary description of the segmentation algorithm was
presented at [3] and is elaborated here, also for the purpose of
self-completeness.

The input of this method is the time series of the joint
angles of an articulated human model. This can be the result
of an elaborate motion capture system (e.g., [11]) or of a much
cheaper setup that is based on a contemporary RGBD sensor
[12] and the accompanying software [13]. In our case, we use
a middle ground that requires markerless visual observations
that are acquired by two synchonized and calibrated Kinect
sensors [14]. It has been shown [14] that this approach
constitutes a middle ground between the accurate but expensive
and less-convenient marker-based motion capture solutions and
the less accurate but rather cheap markerless single Kinect
approach.

We employ the following optimization approach to com-
pute the optimal solution to the problem of temporal seg-
mentation of human motion using 3D dance motion data. Let
S ∈ �m,n be the given multidimensional signal of captured
human motion that contains the time series of the m degrees
of freedom (i.e., joint angles) of the human motion. Let also n
be the number of temporal samples of each of these series.
Assuming that the human motion is periodic, the goal of
temporal segmentation is to segment S into its periods. Let
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Fig. 1: The flow diagram of the proposed method. Blocks in gray color constitute the main tasks of this work.

Tp = {t0, t1, t2, ..., tp}, 1 = t0 < t1 < t2 < ... < tp ≤ n be a
temporal segmentation of S into p segments. The number of
periods p can be automatically computed by getting the global
maximum of the amplitude signal of Fast Fourier Transform
of a given motion signal. More details and methods for p
computation can be found in [3]. For each such segmentation,
we define the following energy function

E(Tp) =

m∑
i=1

p−1∑
k=1

d(Si(tk−1 : tk − 1), Si(tk : tk+1 − 1)). (1)

In Eq.(1), d(., .) denotes the distance between the candidate
motion patterns (signal segments) Si(tk−1 : tk − 1) and
Si(tk : tk+1− 1) [3]. The proposed method yields the optimal
temporal segmentation by minimizing the energy E(T p). This
is done by constructing a graph that represents the candidate
motion patterns and the distances among them. Then, the
global minimum of E(Tp) is given by the sum of weights
of a shortest path that is defined in this graph.

IV. CONSTRUCTING THE MOTION GRAPH

Given the extracted motion patterns, we construct a di-
rected motion graph G = (V,E) comprising a set V of
nodes together with a set E of edges. A node of the graph
corresponds to one of the estimated motion patterns. An edge
from node u ∈ V to node v ∈ V , represents the fact that
the transition from motion pattern u to motion pattern v is
possible. In order to construct the edges, we first normalize
the two skeletons with respect to their 3D position. Figure 2
illustrates an example of two 3D position-normalized skeletons
(blue and red skeletons). Then, for each pair of nodes u, v ∈ V ,
we compute the Euclidean distance W (u, v) between the 3D
Euclidean coordinates that correspond to the last and the first
frames of motion patterns u and v, respectively.

W (u, v) = |˜u(|u|)− ṽ(1)|2, (2)

where ˜u(|u|) and ṽ(1) denote the Euclidean coordinates (after
position normalization) of the last and the first frame of u and
v, respectively.

The n2 pairs of edge weights W (., .), since compute all-
pairs distances are computed, are sorted in ascending order
and stored in vector Cs. Initially, the set of edges E of G =
(V,E) is set to E = ∅. Then, the edge connecting the nodes
that correspond to the first entry of W (., .) is inserted to E.
This procedure is repeated until G becomes a connected graph.
The reason for seeking the connectedness of G is that we
require that the motion planning algorithm is able to traverse
the whole graph G. In order to keep the graph balanced (i.e.,
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Fig. 2: An example of two skeletons that have been located in
zero position.

all nodes have a similar degree), we further enforce an upper
bound on graph nodes. This means that if an edge needs to be
introduced to the graph, this will not happen if one of the nodes
it connects has a degree more than a certain threshold D. In the
experiments carried out in this paper we set D = 10). A similar
version of this algorithm has been employed in [15], where the
goal was to construct a connected graph of superpixels used
to solve the interactive image segmentation problem.

V. MOTION SYNTHESIS AND PATTERN MERGING

This section presents the proposed motion synthesis algo-
rithm that yields a series of motion patterns, traversing the
motion graph G. Moreover, in order to smooth the transitions
between successive motion patterns and to decrease the input
data noise level, we proposed and perform a motion pattern
stitching method.

A. Motion Planning Algorithm

The goal of the proposed motion planning algorithm is to
yield novel, previously unseen and realistic animations of the
captured dance motions. This problem has been analytically



studied in [2]. In this work, we have used the algorithm pro-
posed in [2] called snake walk which, briefly stated, operates
as follows. First, an arbitrary node (motion pattern) of G is
selected and then the next states are chosen by traversing edges
of the graph. According to the snake walk algorithm, for each
node q we store the number M(q) of times that this node has
been traversed and the number F (q) of times that this node has
been selected and the next node was a visited node. Among all
neighboring nodes of the current node, the one that maximizes
W (q), defined hereafter, is chosen:

Du(q) = 1− sgn(M(q)) (3)
Dv(q) = deg(q) · (sgn(M(q)) + sgn(F (q))) (4)

Df (q) = M(q) · 2F (q) (5)

W (q) =
deg(q)

Du(q) +Dv(q) +Df(q)
(6)

where deg(q) and sgn(.) denote the degree of node q and
the sign function, respectively. The intuition behind the maxi-
mization of the quantity of Eq. (6) is that the preferred nodes
should be the least visited ones. If unvisited nodes in one step
do not exist, the ones that are neighbours of unvisited nodes
are selected. If there are many unvisited nodes, the nodes with
high degree are preferred, because it is more likely that these
nodes will drive the algorithm to unvisited nodes of the graph.
The snake walk algorithm provides an approximate solution
to the problem of finding a Hamilton Path in a graph. While
the Hamilton Path computation is an NP-complete problem,
the snake walk algorithm has a complexity that is linear to
the cardinality of the set of graph vertices. It holds that for
many known graphs, like connected cliques with bridges, high
density graphs, which are possible motion pattern graphs, it
can be proved that the above algorithm needs O(n) steps to
cover the graph. More details about snake walk algorithm can
be found in [2].

B. Seamless Stitching of Motion Patterns

The proposed a motion pattern merging method is based on
a low pass filter that ensures continuity and smooth transitions
between successive motion patterns and reduces the noise level
of the input motion data. The use of the motion planning
algorithm yields unseen and realistic animations that consist
of the joint angles time series. However, discontinuities due
to the transitions between motion patterns and to the noise of
the given motion data do exist. The employed low pass filter
is independently applied to the time series of each joint angle.
Due to the smoothness and to the periodicity of joint angles’
signals, we used the Fast Fourier Transform (FFT) coefficients
to represent them, keeping the first 10% and 20% of FFT
coefficients that suffice to recover the three angles for pose and
the rest joint angles, respectively. The rest of the coefficients
are set equal to zero. Then, by using the inverse FFT, the
signal is reconstructed, correcting the signal discontinuities and
reducing noise at the same time.

Another advantage of this technique is that it can be easily
adapted to different joints by setting different thresholds on
the number of non-zero FFT coefficients according to the
feasible variation of the joint angle. Moreover, due to the
application of FFT on the whole signal, we obtain differences
in animation even in transitions between the two same motion
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Fig. 3: An example of a joint angle signal before and after the
application of the FFT-based low pass filter.

patterns. This increases the motion variability and results in
realistic animations, even in cases where the number of motion
patterns/nodes in G is relatively low like in our datasets.

Figure 3 shows an example of a joint angle signal before,
(A(s)) and after (F (s)) the application of FFT-based low pass
filter. A new motion pattern starts on frame 152. It holds
that the application of the low pass filter improves the signal
continuity between frames 151 and 152 and reduces the noise
of the original signal.

VI. EXPERIMENTAL RESULTS

In this section, we present experimental results from a
number of experiments. We have tested our approach using
3D motion captured data containing the folk dances “Siganos”
and “Syrtos” from the island of Crete [14]. We used several
recordings of a professional dancer. Frame capturing was
performed at a rate of 30 fps. Like most of traditional Cretan
dances, a theme can be repeated with an infinite number of
variations [3]. The number of recorded motion patterns of
Siganos and Syrtos were 63 and 32, respectively. Based on the
proposed framework, we synthesized several dance animations
(more than 100,000 frames) of those dances.

Figure 4 depicts snapshots of several human skeletons dur-
ing the synthesis of Siganos and Syrtos dances. The snapshots
are captured once every 50 frames, while the total number of
frames that correspond to the Siganos and Syrtos animations
are 1400 and 1000, respectively. Figure 5 illustrates seven
frames of unseen dance animation for Siganos during a human
body rotation. The snapshots are captured once every 50
frames. These figures show the high variability of human poses
and the seamless stitching of motion patterns during Siganos
and Syrtos animations.

A more complete set of video results containing several
dance animation videos can be downloaded at 1. The synthetic
dance animations are smooth and realistic. Although the num-
ber of motion patterns are not high, the variability of resulting
animations is high due to the proposed motion synthesis and
pattern merging method.

1https://sites.google.com/site/costaspanagiotakis/research/dancer
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Fig. 4: Snapshots of several human skeletons during the synthesis of (a) Siganos and (b) Syrtos dances.

VII. SUMMARY

In this paper, we have proposed a framework for the
analysis and exploration of motion patterns that has been
applied to synthesize realistic animations with the option
of synchronization with any given music. The segmentation
of input motion capture data can be applied to any type
of complex motion data, resulting the motion patterns that
correspond to the nodes of motion graph. The proposed method
improves the motion signal continuity during motion patterns
transitions and reduces the noise of the original motion signal.
Moreover, the proposed method is able to synthesize realistic
animations with high motion variability even in cases where
the number of motion patterns is low.

The proposed approach has been successfully tested on
dances containing cyclic activities such as traditional dances
from Crete. Regarding future work, we plan to apply the
proposed framework to other types of periodic dances.
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