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Abstract. We propose a new approach for vision-based gesture recog-
nition to support robust and efficient human robot interaction towards
developing socially assistive robots. The considered gestural vocabulary
consists of five, user specified hand gestures that convey messages of
fundamental importance in the context of human-robot dialogue. De-
spite their small number, the recognition of these gestures exhibits con-
siderable challenges. Aiming at natural, easy-to-memorize means of in-
teraction, users have identified gestures consisting of both static and
dynamic hand configurations that involve different scales of observation
(from arms to fingers) and exhibit intrinsic ambiguities. Moreover, the
gestures need to be recognized regardless of the multifaceted variabil-
ity of the human subjects performing them. Recognition needs to be
performed online, in continuous video streams containing other irrel-
evant/unmodeled motions. All the above need to be achieved by an-
alyzing information acquired by a possibly moving RGBD camera, in
cluttered environments with considerable light variations. We present a
gesture recognition method that addresses the above challenges, as well
as promising experimental results obtained from relevant user trials.

1 Introduction

Vision-based gesture recognition is aiming at recognizing meaningful physical
movements that are performed by humans, through the processing and analysis
of visual information acquired by a camera system. In recent years, this has been
a highly active research area which, in many cases, has been of multidisciplinary
nature. The significant research efforts devoted to the problem have been moti-
vated by wide-ranging applications in many commercial /business domains, that
can benefit from a robust solution.

Besides being interesting, the problem exhibits significant difficulties. Ges-
tures can be of varying complexity and their recognition is also affected by the
scene context, actions that are performed in the fore- or the back-ground at
the same time, as well as by preceding and/or following actions. Moreover, ges-
tures are often language- and culture-specific, providing additional evidence to
substantiate the interesting as well as challenging nature of the problem.
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(a) Yes (b) No .‘ (c) Reward (d) Stop/cancel (e) Help

Fig. 1. [llustration of the supported gestures. The correspondence between gestures and
physical actions of hands/arms are as follows: (a) “Yes”: A “thumb up” hand posture.
(b) “No”: A sideways waiving hand with extended index finger. (¢) “Reward”: A circu-
lar motion of an open palm at a plane parallel to the image plane. (d) “Stop/cancel”:
A two-handed push forward gesture. (e) “Help”: two arms in a cross configuration.

In this work, we focus on vision-based recognition of hand gestures [1,2].
Our goal is to support robust and natural interaction of a human and an au-
tonomous socially assistive robot, enhancing multi-modal human-robot interac-
tion. The target user group consists of people of all ages and variable familiarity
with technology. Therefore, a set of intuitive gestures has been defined, convey-
ing messages of fundamental importance in a dialogue, such as “Yes”, “No”,
“Reward”, “Stop/Cancel” and “Help”. These are realized by a subject with a
variety of finger, palm, and arm movements (see Fig. 1). A novel method for
gesture recognition is proposed consisting of a complete system that detects and
tracks arms, hands and fingers, and performs spatio-temporal segmentation and
recognition of the set of predefined gestures, based on data acquired by an RGBD
sensor. A model of the hand is employed to detect hand and finger candidates. At
a higher level, hand posture models are defined and serve as building blocks to
recognize gestures based on the temporal evolution of the detected postures. We
note that our methodology performs automatic spatial and temporal segmen-
tation of gestures and can simultaneously handle a possibly varying number of
hands that may occlude each other in the field of view of the camera. Moreover,
it is capable of meeting a broad range of challenging user requirements that are
discussed in detail in Sec. 3.

To assess quantitatively and qualitatively the performance of the proposed
solution, twelve persons were engaged in user tests. These persons were divided
in two different age groups and also varied with respect to their gender and
familiarity and expertise in technological systems. The training of all persons
were kept minimal. All subjects performed the supported set of gestures several
times and in random order in the context of various other gestures, which closely
resemble the supported ones. The obtained experimental results confirm the
effectiveness and the robustness of the proposed approach.



2 Related Work

According to the review by Aggarwal et al [3] on the broader area of human
activity recognition, human activities can be conceptually categorized into four
different levels depending on their complexity: gestures, actions, interactions,
and group activities. Gestures are defined as elementary movements of a persons
body part, most commonly involving the hands, arms, face, head, defining the
expressive atomic components that describe the meaningful motion of a person.
Gestures can be static or dynamic, while some gestures also have both static and
dynamic elements, as in sign languages [4]. Subsequently, actions are single per-
son activities that may be composed of multiple gestures organized temporally,
such as “walking”, “waving” and “punching”. More resources on vision-based
action recognition [5], human motion analysis [6] and hand pose estimation [7]
are available in the literature.

We focus on the problem of hand-based gesture recognition [2, 8]. Despite the
considerable research efforts devoted to it, this remains a challenging task. Early
techniques employed HMMs [4], Neural Networks [9], Kalman and particle filter-
ing [10] to efficiently model the hand, estimate its pose and recognize static and
dynamic gestures. A real-time implementation of gesture recognition for robot
control was developed in [11] combining skin color-based, shape-based recog-
nition and Kalman-filtering for hand detection and tracking, while HMMs are
used for temporal segmentation of hand gestures. The work in [12] uses similar
tools introducing the notion of HMM codebook towards gesture recognition. A
noteworthy technique regards the Finite State Machine (FSM) which model the
gesture as a sequence of states in temporal order capturing also the semantics
of the movements. It is used in many methodologies [13] to model and analyse
simple, complex or manipulative gestures in the spatio-temporal configuration
space. A recent method by Baraldi et al [14] in the context of the emerging
field of ego-centric vision, combines gesture recognition and hand segmentation,
modelling both static and dynamic gestures as a collection of dense trajectories
extracted around the detected hand regions.

Other methods rely on extracted 3D trajectories or angles of body joints
and/or segmented gestures, concentrating in the classification task. In the work
of Raptis et al [15], a classification scheme is designed and trained, based on a
novel angular skeletal representation of body motion acquired using the Kinect”™
platform, in order to recognize from among 28 gesture classes in real-time, in
the context of dancing.

Most recent advancements introduce the concept of personalized gesture
recognition as a means to resolve some of the difficulties in the domain. They fo-
cus on the interpretation and assignment of the gestures to meaningful user-level
system commands, which is a crucial task in order to achieve efficient natural-
based interactivity between humans and computers. However, they require an
additional process in order to collect personalization data and optimize the per-
formance of the system. In many cases a training procedure [16] is required to
be performed by each user in order for a gestural interactive system to collect
data and train a learning-based methodology to finally adapt its performance to



the individual. In the same context, a learning-based methodology for person-
alization was recently proposed by Yao et al [17]. Unlike other personalization
methods [18] which learn a single classifier that later gets adapted, their approach
learns a set (portfolio) of classifiers during training, one of which is selected for
each test subject based on the personalization data.

3 Application Requirements and Gestural Vocabulary

In order to define a compact gestural vocabulary, a survey has been conducted
based on a group of potential target users that have been interviewed on their
preferences on the physical movements to perform to trigger specific robot tasks.
An initial set of gestures was provided to the users to vote for their preferences.
The selection of those gestures was driven by experts in the fields of human-
computer and human-robot interaction. Special attention was put so that the
selected gestures are physically easy to be performed by users of all ages and
intuitive enough to be remembered in daily routine. Alternatively, the users
could propose a new gesture, not belonging to the originally proposed set. This
iterative process converged to the definition of five gestures that are illustrated
and defined in detail in Fig.1. Despite their small number, their recognition is
challenging for a number of reasons.

Mix of static and dynamic components: Gestures are defined as static
postures (“Yes”, “Help”), but also as temporally evolving, dynamic gestures
(“No”, “Reward”, “Stop/ Cancel”).

Broad scale of observations: The recognition of gestures depend on modelling
and recognizing human body parts at different scales, e.g., from single-handed
hand postures involving fingers (“No”), to bi-manual postures involving two
arms (“Help”).

Intrinsic ambiguities: In the quest for natural interaction, users defined ges-
tures with intrinsic ambiguities. For example, the hand shape in “Yes” and “No”
or in “Reward” and “Stop/cancel” are quite similar.

Broad variability of users: The gestures should be recognized for a broad
range of parameters related to the biometric characteristics of the subjects, their
age, their mobility capabilities, the specific way they perform gestures, etc.
Recognition in the context of unknown actions: The gestures need to
be recognized online, in continuous video streams. Therefore, they should be
segmented and identified robustly in the context of other, arbitrary and un-
modeled hand motions.

Robustness to illumination changes, camera motion and scene clutter:
The defined gestures need to be recognized by an assistive robot operating at a
user’s home. Therefore, gestures should be recognized by a potentially moving
camera, in varying illumination conditions and with robustness to scene clutter.

In the following sections, we provide a detailed description of the proposed
framework as well as on the experiments perform to validate it with respect to
the above challenging characteristics an requirements.



4 The Proposed Approach

The proposed framework encompasses a collection of techniques that enable
robust, real-time and efficient gesture recognition based on visual information
acquired by an RGBD camera. To achieve the recognition of the aforementioned
gestures, detection and tracking of multiple hands and fingers is initially per-
formed based on an effective layered representation of a hand model consisting of
the wrist, palm and fingers. Temporal association of the computed hand candi-
dates across time is also performed. By analysing the available 3D trajectory and
geometric properties of the fitted model for each hand candidate in the scene,
segmentation and recognition of the gestural actions is finally performed.

4.1 Depth-based edge detection and skeletonization

At each time instant ¢, an RGBD frame is acquired (see Fig. 2(a),(b)). We denote
the depth frame by I;. We assume that intrinsic calibration data of the camera
is available, enabling the conversion of the acquired depth pixels to a 3D point
cloud representation.

As a first processing step, the depth-based edge map G; is calculated. Let
p = I;(i,j) be an image point and let N(p) denote the set of its eight immediate
neighbours in its 3 x 3 neighbourhood. A point G(p) is set as a depth edge point,
if its 3D Euclidean distance to any of its neighbours is higher than a threshold
value Tp. In notation,

_ [ Lif [He(p) = L(p')l|2 > Tp, Vp'eN(p)
Gi(p) = {O, otherwise. (1)

Additionally, a contour map C} is computed in order to refine G;. More specifi-
cally,
1, if >, Gp') >0
C.(p) =14 p’eN(p) 2
«(p) {0, otherwise. 2)
Practically, a point p is considered as a contour point if at least one of its
neighbours is a depth edge point. Subsequently, we produce a binary image map
M; as follows:

Mi(p) = {(1) e 5 v G =0 (3)

The intuition behind M, is the following. A point in M, is considered as back-
ground (0) if its depth value is greater than a threshold Fy, or if it is a depth
discontinuity (C(p) = 1). Essentially, this means that all distant scene points
are considered irrelevant and further processing is restricted in a depth range
defined by Ty . Additionally, depth discontinuities appear as background pixels.
In our experiments, the distance thresholds Tp and Ty are set to 30 mm and
1500 mm, respectively. An example map M; is shown in Fig. 2(c).

As a final preprocessing step, we compute the skeleton of M; using morpho-
logical filtering [19]. Let S; denote a binary image where only skeletal points
appear as foreground. S; appears in Fig. 2(c) (red pixels superimposed on M).
A different skeleton is identified for each of the connected components of M;.
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Fig. 2. Illustration of intermediate results for hand detection. (a) Input RGB frame.
(b) Input depth frame I;. (c) The binary mask M; where far-away structures have
been suppressed and depth discontinuities of I; appear as background pixels. Skeleton
points S; are shown superimposed (red pixels). (d) A forest of minimum spanning
trees is computed based on (c), identifying initial hand hypotheses. Circles represent
the palm centers. (e) Checking hypotheses against a simple hand model facilitates the
detection of the actual hands, filtering out wrong hypotheses. (f) Another example
showing the detection results (wrist, palm, fingers) in a scene with two hands.

4.2 Forming hand hypotheses

Once S; is computed, we set out to compute a forest of minimum weight spanning
trees [20] (one spanning tree T' for each skeleton). This is based on a graph
representation of points of a skeleton. More specifically, two points of a specific
skeleton are considered connected if their 3D distance is lower than a threshold
that is set equal to 100 mm in our experiments. Otherwise, their distance is set
equal to infinity.

Based on the fact that candidate hands are more likely to be localized on
the extremities (leafs) of each minimum spanning tree T', our goal is to perform
segmentation of each of the spanning trees by calculating optimal cut points
and tree branches that correspond to hand structures. Searching for an opti-
mal cut, we traverse a minimum spanning tree 7" starting from any of its leaf
nodes towards any other leaf node, as long as the spanning tree nodes and the
corresponding structure do not exceed the size of an average human hand (180
mm). Several cuts will satisfy the described constraints, resulting in different
overlapping trees. From each set of overlapping trees, we keep the largest one.
The remaining trees constitute the initial hand hypotheses h. Figure 2(d) shows
four such identified hypotheses. As it can be verified, although all actual hands
have been identified, false positives do exist.

4.3 Hand detection

To filter-out wrong hand hypotheses, we deploy a simple 2D hand model that
is compared against each of the computed hand hypotheses h. The employed
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Fig. 3. The 2D hand model utilized to detect hand candidates. Fingers F,,, their orien-
tation d,, and the wrist orientation ¢ are considered with respect to the detected palm
center and the horizontal line of the image plane.
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hand model consists of (a) a wrist region and its orientation, (b) a palm center
and, (c) up to five fingers (see Fig. 3). The orientations §; € [—n..m) of each
finger and the orientation ¢ € [—m..7w) of the wrist are computed with respect
to the x-axis of the image coordinate system and are considered positive in the
counterclockwise direction. These hand components are sequentially fit in each
hand hypothesis.

Palm detection: The palm center of the hand candidate is estimated by finding
the local maximum of the distance transformed M;, in the region spanned by
the hand hypothesis h. Intuitively, such a point is the center of a relatively large
and compact area that matches closely the shape of a palm.

Finger detection: Given the estimated palm center of each hand candidate, we
set out to further compute the positions and orientations of the finger candidates.
To do so, we compute a skeletal shape descriptor K on the skeletal points of S;.
Each such descriptor consists of two components. The first is the local slope of
the skeleton. Assuming that the descriptor is computer at a point p, this local
slope is estimated by fitting a straight line to the skeleton points located within
a radius of 5 pixels from p. The second component of the descriptor is the 3D
Euclidean distance of p to the closest background point in M; in a direction
perpendicular to its local slope.

A finger candidate is localized by sequentially grouping skeletal descriptors
K, starting from the skeletal point of hand hypothesis h that is closest to the
palm center, towards its leaf nodes. This is achieved by applying a set of ge-
ometric constraints that reflect the structural properties of the position and
orientation of a finger candidate with respect to the palm center.

Based on the computed finger candidates, a set of additional features are also
calculated with respect to the skeletal descriptors assigned to each finger. Those
regard the center, direction, tip, root, and width of each finger. The center and
direction are estimated by averaging the corresponding values of all descriptors,
while the tip and the root are defined as the furthest and closest descriptors from
the palm center, respectively. Subsequently, a finger candidate must respect a
set of constrains based on these feature values in order to be attached to the
hand model. More specifically, the orientation of each finger is expected to be



lPosture ‘ Wrist ‘Number of ﬁngers‘ Finger orientation ‘

Thumb up||¢ mod 7| < T 1 T <0< T
Indexup | |p+ 5| <& 1-2 T < 0o < 3 & 61 < & (optional)
Other o+ 5| < ?jf 0-5 No ‘thumb up’ or ‘Index-up’

Table 1. The rules used to assign hand hypotheses to posture classes based on the
values of the hand model parameters (see Fig.3).

roughly towards the palm center, thereby the projection of the palm center pixel
to the line defined by the finger center and the finger direction is considered.
The finger candidate is considered as valid if the 3D distance between the center
and its projection is less that the expected size of the palm.

Wrist detection: If two or more fingers have been detected for a hand hypoth-
esis, the position and orientation of its wrist is computed by fitting a 3D line to
the skeletal points starting from the palm center, in a direction opposite to the
fingers and up to a distance of 20 cm.

Figure 2(e) shows that by employing the aforementioned techniques, the false
hand hypotheses of Fig. 2(d) have been removed. Figure 2(f) provides a similar
example where sample, low level hand detection detection results are shown.

4.4 Hand tracking

In order to track hands in time, we adopt a simple tracking-by-detection ap-
proach. More specifically, the hands that are detected at time ¢ are associated
to the closest hands detected at time ¢ — 1. In this context, proximity is defined
based on the 3D space covered by each hand hypothesis at each time ¢. Rules
similar to the ones employed in the blob tracker presented in [21] are used to
handle the introduction of a new hand and the disappearance of a tracked one.

4.5 Hand posture recognition

Three different hand postures are defined and recognized, “Thumb up”, “Index
up” and “Other”. At each time ¢ each detected hand model (see Fig.3) is classified
against one of the posture classes by matching the feature values to the posture
models shown in Table 1 following a simple best-fit classification scheme.

4.6 Hand gesture recognition

The employed gestural vocabulary is composed of 5 different classes of physical
hand-arm actions, as shown in Fig.1. Below, we report on how each of these five
gestures are recognized.

“Yes”: The case of the “Yes” gesture is recognized if the posture performed by

a single tracked hand is classified as a “Thumb up” posture for a number F, of
consecutive frames. We set I, = 10 in our experiments.



Fig. 4. Sample snapshots from tests with elderly users.

“No”: For the “No” gesture it is necessary to detect a waving motion of the tip
of the index finger. Therefore, an “Index up” posture should be recognized for a
number of consecutive frames. Additional constraints are then applied to the 3D
trajectory of the finger tip for those frames. More specifically, we compute its
projection onto the x-axis of the image coordinate system. We apply smoothing
and assess the consecutive extremity values of the signal which indicate the start
and end points of the movement. The “No” gesture is recognized if there is a
minimum R, = 4 repetitions of a sideways motion of the hand. The width of
each sideways motion has to be at least 30 mm. By setting this minimum quite
low, the recognition of the “No” gesture is possible even if only the index finger
moves, while the palm remains practically static.

“Stop/Cancel”: The “Stop/Cancel” gesture regards the physical movement of
both hands moving simultaneously towards the camera with open palms, as in
Fig.1(c). The 3D coordinates of the palm centers of both hands are considered.
They have to be at a similar distance from the camera at the beginning of the
motion, and their trajectories should be mainly towards the camera plane, i.e.,
their distances to the camera plane must be strictly decreasing over more than
100 mm. During the whole gesture, the depth difference of the two palm centers
has to be less than 100 mm.

“Reward”: The “Reward” gesture is realized using each of the hands to perform
a circular motion with open palm facing the camera. The 3D coordinates of the
center of the performing hand are orthogonally projected onto the 2D camera
plane. Subsequently, an ellipse is fitted based on the induced 2D coordinates and
their angle is assessed with respect to the center of the ellipse. If the angle is
continuously increasing (or decreasing) over more than 360 degrees, a “Reward”
gesture is triggered.

“Help”: The “Help” gesture is triggered upon successful detection of a pair of
hands. The absolute value of the angle formed by the two wrist directions has
to be in the interval [7/2 4 w/4]. The line joining the two hand centers must be
roughly parallel to the horizon (orientation less than m/4) and the intersection
point of the wrist lines has to be below the centers. If these conditions are
satisfied for more than Fj, = 10 consecutive frames, the gesture is validated.



Gestures Yes | No | Reward | Stop/Cancel | Help | Unknown
Yes 32/27| - - - - 2/5
No A9 - - N 2/2
Reward - - 20/26 - - 3/1
Stop/Cancel | - - - 30/25 - 2/-
Help - - _ 20/19|  -/5
Unknown 1/3 - 3/- 1/- 3/- 46/10

Table 2. Confusion matrix of the conducted tests for both groups (experts/elderly).
Actual class or ground truth appears in rows and the predicted class in columns.

5 Experimental Evaluation

To evaluate the proposed gesture recognition methodology two sets of user
groups were identified that differ with respect to their age and to the their famil-
iarity with technology. Intentionally, no member of the test group belongs to the
group of subjects that participated in the definition of the gestural vocabulary.

Five persons from an academic/research environment participate in the first,
experts group. A single example demonstration per gesture was performed to
each subject explaining how to perform the gesture. A total of 189 gestures were
performed by all subjects in the group, while 54 of them were unknown random
gestures or intentionally performed unsupported gestures.

The second group of subjects consists of eight persons between 60-85 years old
with practically no previous experience in technology (see Fig.4). Each gesture
was demonstrated a few times. Each of the five gestures were performed at least
3 times by each subject. In total, 156 gestures were performed by the second
group and 13 out of them were irrelevant, random movements.

Regardless of the group, each subject was recorded in a single video where he
performed the gestures at random order and without interruption. The 54+13=67
random movements or unsupported gestures that were intentionally or uninten-
tionally performed by the test subjects were assigned to the “unknown” class.
The lack of response of our system to any of these un-modeled gestures was
considered as a successful classification in the “unknown” class. Thus, the per-
formance of our method is assessed in the presence of noise and irrelevant actions.

Table 2 shows the confusion matrices for the classification experiments for
the two sets of users. Moreover, Table 3 reports the standard measures of statis-
tical analysis for gesture classification. For the group of experts, and excluding
the “unknown” class, the precision, recall and F-measure metrics were never
below 0.87. For the group of elderly, the minimum scores were 0.90, 0.792 and
0.844, respectively. The group of experts scored the lowest F-measure value for
the “Reward” gesture. The qualitative analysis of the recordings showed that
this happened because of the high speed of execution of the related circular
hand motion. For the group of elderly, the lowest F-measure score appears at
the “Help” gesture. This is because, for the elderly people, this appears still to
be a hard/complex gesture, given the mobility constraints of some of the sub-



Group 1 - Experts Group 2 - Elderly
Gestures Precision| Recall |[F'1 score|Precision|| Recall |[F1 score

Yes 0.970 | 0.941 | 0.955 0.900 0.844 | 0.871
No 1.000 | 0.923 | 0.960 | 1.000 || 0.935 | 0.967
Reward 0.870 |0.870 | 0.870 | 1.000 |/ 0.839 | 0.912
Stop/Cancel | 0.968 |0.938 | 0.952 0.926 |/1.000 | 0.962
Help 0.870 |1.000| 0.930 0.905 |/0.792| 0.844

Unknown 0.836 | 0.852 | 0.844 | 0.435 0.796 | 0.556
TOTAL 0.919 | 0.921 | 0.919 | 0.861 0.863 | 0.852

Table 3. Quantitative results of the proposed method. Precision, Recall and F- measure
are reported for both test groups with respect to the set of the supported gestures.

jects. The qualitative analysis of the recordings showed that most of the elderly
subjects performed this gesture by touching their arms on their torso, so depth
discontinuities were not adequately estimated. The highest number of false posi-
tives and negatives was obtained for the “thumb up” gesture and for the group of
the elderly. The requirement for a visible wrist-elbow during the execution of the
gesture deteriorates the classification results for this group, as several subjects
did not recall the relevant instructions while performing the gesture.

Overall, as suggested by the results shown in Table 3, the relatively small
difference in the performance of the two groups suggests that the proposed ap-
proach is intuitive and can cover successfully the needs of a wide range of users.

Sample experimental results are illustrated in http://youtu.be/ellzgjG2V7A.

6 Summary

A method for gesture recognition is proposed based on the effective detection
of arms, hands and fingers, their tracking and the interpretation of their activi-
ties. The proposed method aims at supporting HRI and handles multiple hands
that may dynamically enter and exit the field of view of an RGBD sensor. A
set of 5 gestures have been identified from potential users. Despite being few,
their recognition exhibits several challenges related to the mix of static and dy-
namic components, the broad scale of observations, their intrinsic ambiguities,
the variability of the test subjects, the need to recognize gestures in the context
of unknown actions and the requirement for robust performance under illumina-
tion changes, camera motion and scene clutter. The quantitative and qualitative
assessment of the proposed methodology led to promising results that substan-
tiate the effectiveness of the proposed approach.
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