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Abstract We present “shape from interaction” (SfI), an
approach to the problem of acquiring 3D representations of
rigid objects through observing the activity of a human who
handles a tool. SfI relies on the fact that two rigid objects
cannot share the same physical space. The 3D reconstruc-
tion of the unknown object is achieved by tracking the known
3D tool and by carving out the space it occupies as a func-
tion of time. Due to this indirection, SfI reconstructs rigid
objects regardless of their material and appearance proper-
ties and proves particularly useful for the cases of texture-
less, transparent, translucent, refractive and specular objects
for which there exists no practical vision-based 3D recon-
struction method. Additionally, object concavities that are
not directly observable can also be reconstructed. The 3D
tracking of the tool is formulated as an optimization problem
that is solved based on visual input acquired by a multicam-
era system. Experimental results from a prototype imple-
mentation of SfI support qualitatively and quantitatively the
effectiveness of the proposed approach.
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1 Introduction

The automatic, vision-based estimation of accurate 3D
object models is a fundamental problem of great theoreti-
cal importance and practical significance. Conventional pas-
sive 3D reconstruction methods such as binocular or multi-
view stereo, structure from motion, and shape from shading
(see [41] for a review) typically assume Lambertian surfaces
and become very inaccurate when this assumption is violated.
Similar is the case for photometric stereo techniques [48].
Multiview methods treat deviations from Lambertian behav-
ior as outliers and avoid reconstructing them [28] or suppress
the pronunciation of such effects through optical filtering
(i.e., polarization for specularities [34]). Though very accu-
rate in the reconstruction of Lambertian objects, structured
light methods [8] perform poorly when applied to objects
with specular, refractive or translucent surfaces. The rea-
son is that these methods are based on the detection of a
projected illumination pattern upon the surface of interest,
which is expected to appear clearly and distorted only due
to the shape of the surface. When the surface exhibits any of
the above properties this assumption does not hold, making
hard or even impossible to detect the projected pattern and
to reconstruct the surface.

Our approach to the problem of vision-based 3D recon-
struction (see Fig. 1) is based on the fact that two rigid objects
cannot share the same physical space. The observation of
the interaction of a human handling a known tool with an
unknown 3D object provides a wealth of constraints that per-
mit the full recovery of the 3D shape of the unknown object.
Thus, the problem of 3D reconstruction of an unknown object
is essentially transformed into a problem of tracking its inter-
action with a known one.

The proposed idea is similar in spirit to that of digitiz-
ing shapes using a touch probe. This has been used quite
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Fig. 1 Shape from interaction (SfI): the interaction of a known tool
with an object of unknown 3D structure is observed. The accurate and
occlusions-tolerant tracking of the tool provides constraints that are
enough to reconstruct densely the unknown object. Thus, SfI recovers

3D models of objects that because of their physical properties (non-
textured, transparent, translucent, specular, highly concave, etc) cannot
be reconstructed by existing vision-based methods

extensively in industry by the so-called coordinate measure-
ment machines (CMMs). A CMM is a device for measuring
the geometrical 3D shape of an object. Current CMMs use
probes mounted on mechanically tracked arms. As such, they
are expensive and have a small operational workspace. We
demonstrate that we can develop CMMs that, being vision-
based, can be accurate, cost-effective and operational in large
workspaces. A vision-based method with high-level simi-
larities to the proposed one is presented in [26] in the con-
text of augmented reality applications. However, that method
depends solely on tip tracking as opposed to the robust and
occlusions tolerant 3D tracking of various tools that we pro-
pose in this paper.

By delegating the 3D reconstruction of an unknown object
to the 3D tracking of an known one, most of the material
and appearance properties of the unknown object become
irrelevant. This way, the proposed methodology is not only
able to handle ordinary textured objects but also non-textured
and even transparent, translucent, refractive and highly non-
convex ones.

In the remainder of this paper, after presenting related
work, we describe in detail an instantiation of the SfI method-
ology as well as its qualitative and quantitative evaluation.
Experimental results confirm that SfI reconstructs in 3D
objects that are impossible to obtain by any other existing
vision-based 3D reconstruction technique.

2 Related work

A common classification of 3D reconstruction methods is
defined based on the visual cue they employ. The term
shape-from-X is utilized to refer to X as the visual cue and
the process on which reconstruction is based. For exam-
ple, shape-from-shading [49] and shape-from-texture [3] are
approaches for single-view 3D reconstruction based on the
corresponding cues. When more viewpoints are available
and feature correspondences among views can be estab-
lished, structure- and shape-from-motion [15] and shape-
from-stereo approaches [45] are typically used. To ease the

establishment of feature correspondences and to increase
accuracy, structured light can be projected upon the scene
[44].

The above methods assume the approximate Lambertian
behavior of surfaces and, thereby, encounter difficulties for
transparent, refractive, and translucent objects for which this
assumption does not hold. Recently transparent and specular
objects’ reconstruction has gained attention in the literature.
A comprehensive review can be found in [19]. The common
ground amongst all of the existing approaches is their tight
coupling to the type and individual properties of the surface
to be reconstructed.

Methods targeting specifically the reconstruction of spec-
ular surfaces can be classified into three classes. The first
aims at the reconstruction of intensely reflective (e.g. mir-
ror) surfaces and is based on the projection of known pat-
terns upon them; their shape is computed from the apparent
distortion that this pattern undergoes when projected onto
the surface [46]. In certain cases [9] the pattern itself and the
process of projecting it onto the object can be as simple as
casting shadows of a wand upon the surface of an object in
a purposeful manner. Some methods pursue the tracking of
reflected features upon the surface [1], thus employing the
apparent distortion of the optical flow field instead of a cali-
brated pattern. Existing analyses of the phenomenon [43] do
not reduce the requirements for careful setup of the recon-
struction target and the projection apparatus. Another class
of methods utilize surface specularities induced by one or
more light sources to reconstruct them explicitly. A com-
plicating factor in the reconstruction process is that the 3D
location of the light source(s) needs to be calibrated. Methods
in this class have been used to measure directly the structure
through the appearance [20,35,50] while some emphasize in
the recovery of surface details [10]. Finally, a third class of
methods relax the use of a calibrated light source but still
require the use of a calibration pattern [25].

The reconstruction of translucent surfaces by active illu-
mination methods encounters similar difficulties, as the
projected pattern is typically blurred leading to inaccurate
results. A method that targets specifically such surfaces [11]
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filters out subsurface scattering through polarization and
phase shifting of the actively projected pattern.

The reconstruction of solid refractive and transparent
objects is even more challenging than the above cases and,
to date, there exist no generic reconstruction approaches for
such objects. As in the case of specular surfaces, some meth-
ods rely on the apparent distortion [6] of a projected pattern
to recover the shape of such objects, as well as the tracking
of refracted features [2]. Another group of methods is based
on the imaging of calibration targets after they have been
refracted through the objects and avails 3D coordinates on the
surface of these objects [5,25]. The method in [23] utilizes a
known and controlled environment and employs differences
between a conventional camera and a range camera to detect
and reconstruct transparent objects. In [47], reconstruction of
transparent and refractive objects is achieved by employing
light-field probes encoding light ray positions and angles in
varying intensities and colors. Using non-visible radiation,
the method in [14] achieves reconstruction of transparent
objects but requires special hardware. The method in [32]
measures surface shapes of transparent objects by using a
polarizing filter.

The above review reveals that the 3D reconstruction of
transparent, translucent, refractive and specular objects is
an open research problem. In this work we propose a new
approach that treats the 3D reconstruction of each and all the
above object categories robustly and in a unified manner.

3 Overview of the proposed method

The proposed method assumes a multicamera system consist-
ing of n synchronized and calibrated cameras with projection
matrices Pc, 1 ≤ c ≤ n. Cameras are placed so that they all
overlook the scene containing an object O of unknown 3D
structure SO that needs to be reconstructed. It is also assumed
that the 3D position of O is roughly known in the sense that
its actual volume lies inside a parallelepiped V of known
dimensions and position. O is not allowed to move relative
to the cameras. At time t , the cameras acquire a multiframe
Mt consisting of n images, i.e. Mt = {I1, I2, . . . , In}.

The proposed method also considers a tool T of known 3D
structure ST . The 3D position and orientation of T is tracked
in a temporal sequence of multiframes. Provided that this can
be achieved, ST can be registered in the 3D scene observed
by the cameras. Thus, the space St

T that this occupies at time
t can be estimated. The fundamental idea behind SfI is that
as each moment in time, T and O cannot share the same
physical space. More specifically, it holds that

∀t, St
T ∩ St

O = ∅. (1)

Under this assumption, SfI suggests that at time t the 3D
structure St

O of O can be approximated with

St
O = V −

⋃

1≤i≤t

Si
T = St−1

O − St
T , (2)

where Si
T denotes the space occupied by T at time i and

S0
O = V . To minimize the time required for SfI, it is important

that T purposefully interacts with O . The tracking of the tool
needs to be robust in occlusions, because as T interacts with
O , considerable portions of it might not be visible by some
(or even by any) of the cameras. Additionally, tracking needs
to be accurate, because if some volume is incorrectly carved
off the objects’ shape, the resulting error cannot be recovered
at a later stage.

The notion of space carving is central to the proposed
approach. Space carving was proposed in [24] and makes
use of photoconsistency as a means to decide whether a
voxel is occupied by matter or not. Voxels that are not pho-
toconsistent, are “carved out” during 3D reconstruction. In
the same general spirit, we carve volumes that are occu-
pied by the tool. Evidently, the criteria based on which space
carving is performed are completely different. Moreover, in
photoconsistency-based space carving, the manipulation of
a voxel (either maintaining it to the reconstruction or carving
it) requires that this is visible from at least two cameras. This
is not a requirement in SfI.

Another approach that requires some interaction by the
user is [16] which provides coarse models of spaces through
the volume that dynamic entities such as walking persons
occupy in a scene. The method relies on accurate background
segmentation in order to reconstruct these entities through
their visual hulls.

We next present the class of tools that we have considered
(Sect. 4), the way that those are tracked by the employed
multicamera system (Sect. 5) and how SO is reconstructed
by observing the interaction of T with O (Sect. 6).

4 Tool design

The tools we have considered consist of three parts, a wand
W, a sphere S and an effector E . Figure 2 provides a close-
up view of the tool and a collection of effectors, with one of
them (large dark sphere) attached to the wand.

The wand W is an elongated cylinder. The sphere S is
attached close to one of the endpoints of W so that the 3D
main axis of W passes through the center of S. The effector
E may have any rotationally symmetric shape. E is attached
to one of the endpoints of W at a known distance from the
center of S. Moreover, its main axis of rotational symmetry
coincides to that of W . Both W and S are painted on indi-
vidual, highly discriminant colors. In our experiments, the
effectors used were modelled as geometric primitives whose
shape parameters were measured manually.

The presented design facilitates the 3D detection and
tracking of the tool in the case of severe occlusions and/or
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Fig. 2 A closeup view of the tool used in this work

clutter. The spherical part of the tool provides strong evi-
dence on the 3D location of T . This is important because
even if the endpoint of the tool that carries the effector is
totally occluded (e.g., the effector is inside a concave object
as shown in Fig. 6b) an accurate estimation of its correct 3D
location and pose is still feasible. The elongated wand deter-
mines the 3D orientation of the tool. The rotational symme-
try of the effector and of the wand guarantees that the space
occupied by the tool is invariant to its rotation around the cor-
responding axis. This makes it possible to estimate the space
occupied by the tool even in situations (see Fig. 6a) where
the effector is totally occluded. In this case, the tool has been
inserted in the object in a way that the effector is totally invis-
ible. Now consider different rotations of the wand around its
main axis. All those rotations are indistinguishable because,
essentially, they change nothing in the acquired images. If
the effector is not rotationally symmetric, a different part of
the voxel space would have been removed in the (invisible)
concave part of the object. But since the rotations of the wand
are unobservable, the part of the voxel space that needs to be
carved cannot be decided. On the contrary, if the effector is
rotationally symmetric and its axis of symmetry coincides
with the main axis of the wand, all possible rotations of the
wand result in the same voxels to be carved. Essentially, the
rotational symmetry of the effector is required to guarantee
that carving is performed correctly in the case that the effec-
tor is severely occluded.

Another solution to the same problem might have been
to use a rotationally asymmetric wand. Theoretically, if the
wand is asymmetric, even if the effector is invisible, it is
possible to estimate correctly its pose. Practically, in order to
avoid ambiguities and to achieve high accuracy, this would
require a tool that is far from being a typical wand. As such, it
would be counter-intuitive for the user and difficult to manip-
ulate. For this reason, we decided to use a rotationally sym-
metric effector attached to a rotationally symmetric wand.

In what follows, the 3D position of the tool is that of the
center of S. The orientation of the tool is the orientation of W
which, due to the rotational symmetry, is a 2D vector. Thus,
the 3D pose of the tool is encoded as a 5D vector.

5 Tool tracking as an optimization problem

The 3D tracking of a tool T is treated as an optimization
problem whose objective function quantifies the similarity
between the appearance of hypothesized instances of T and
its actual visual observations. Optimization (maximization of
the objective function) is performed through particle swarm
optimization (PSO) [22]. PSO has been employed success-
fully in the past to other 3D pose estimation problems such
as human body tracking [21], multicamera-based hand pose
estimation [36] and 3D head pose estimation based on depth
data [40].

The input to the proposed method is a multiframe acquired
by the employed multicamera system. Given the character-
istic colors of the wand W and the sphere S parts of the tool,
simple color-based segmentation suffices to isolate them in
the images of the multiframe. Each tool pose hypothesis h is
represented as a vector of five parameters. Tool 3D tracking
is formulated as the problem of estimating the tool 3D pose
h∗ that maximizes the similarity between synthesized views
of T in that pose and actual visual observations. Towards
quantifying this similarity, we employ simple rendering tech-
niques to produce comparable color maps for a given tool
pose hypothesis. An appropriate objective function is then
formulated and a variant of PSO is employed to optimize it.
The result h∗ of this optimization process is the output of
the method for the given multiframe. Temporal continuity
is exploited to track the tool in a sequence of frames. The
remainder of this section describes these algorithmic steps in
more detail.

5.1 Observing a tool

For each image I of a multiframe M , a wand color map oI
W

and a sphere color map oI
S is computed using a variant of the

skin color detection method presented in [4]. As a convention,
the label of 1 indicates presence and the label of 0 indicates
the absence of the tool in the corresponding maps. For each
image I , the maps oI

W and oI
S constitute its observation cues.

Note that the effector part of the tool does not contribute to
the observation model.

5.2 Rendering a tool

Given a tool 3D pose hypothesis h we can render the com-
plete 3D model of the tool in the view of the cameras of
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the employed multiframe. Given the simplicity of the 3D
primitives synthesizing the model, this process can be accel-
erated by analytically determining the image areas where
tool primitives are expected to project. More specifically, we
approximate the projection of the sphere with a circle and
the projection of the cylinder with a trapezoid region. Thus,
for each image I of a multiframe M , a rendered wand color
map r I

W and a rendered sphere color map r I,h
S is computed.

Maps r I,h
W and r I,h

S are directly, pixelwise comparable to their
observation counterparts oI

W and oI
S .

5.3 Evaluating a tool hypothesis

The proposed method establishes a measure quantifying the
compatibility of a given tool pose h to the actual camera-
based observations of multiframe M . This is based on the
computation of an affinity function A(h,M)which measures
the similarity between wand and sphere maps computed in
M and the wand and sphere maps that are rendered for h:

A(M, h) =
∑

I∈M

F(I, h), (3)

where F is defined as

F(I, h) = α

∣∣∣oI
W ∧ r I,h

W

∣∣∣
∣∣∣oI

W ∨ r I,h
W

∣∣∣ + ε
+ (1 − α)

∣∣∣oI
S ∧ r I,h

S

∣∣∣
∣∣∣oI

S ∨ r I,h
S

∣∣∣ + ε
.

(4)

In Eq. (4), oI
W , oI

S, r
I,h
W , r I,h

S are as defined in Sects. 5.1 and
5.2, respectively. Function | · | represents the cardinality of a
set and the logical operators are applied to the binary maps
in a pixelwise manner. A small term ε is added to the denom-
inators of Eq. (4) to avoid divisions by zero. Parameter α can
be used to tune the relative importance of the otherwise nor-
malized contributions of W and S in the objective function.
The value of α = 0.5 was used in all our experiments.

Figure 3 illustrates the intuition behind the specific selec-
tion of the objective function. This figure shows the actual
wand and sphere segmentation in a particular frame (yellow
sphere, blue wand with solid lines) as well as the projection
of a tool hypothesis on the same frame. The first term of the
right hand side of Eq. (4) is proportional to the area of inter-
section of the sphere observation with the sphere hypothesis
(area of region A), normalized by the areas of the union of
regions A, B and C . Similarly, the second term of the right
hand side of Eq. (4) is proportional to the area of intersection
of the wand observation with the wand hypothesis (area of
region D), normalized by the area of the union of regions
D, E and F . Thus, in this particular example, the objective
function is equal to

Fig. 3 The image projection of a tool hypothesis (blue wand and yellow
sphere with dashed lines) in relation to the actual tool observation (blue
wand and yellow sphere with solid lines). Regions A, B, C , D, E and
F are defined. The areas of these regions determine the score that needs
to be maximized by the optimization process so that the 3D pose of the
tool can be recovered

F(I, h) = 1

2

( |A|
|A| + |B| + |C | + e

)

+ 1

2

( |D|
|D| + |E | + |F | + e

)
. (5)

It can be verified that if the projection of the tool hypothesis is
perfectly aligned with the actual observation, the value of the
objective function is equal to 1. On the contrary, the objective
function is equal to 0 when the area covered by the projection
of the tool hypothesis is disjoint to that of its observation.

It should also be noted that Eq. (3) gathers contributions
from all views to form the final value of the objective func-
tion.

5.4 Tool 3D pose estimation through PSO

PSO [22] is a stochastic, evolutionary algorithm that opti-
mizes an objective function through the evolution of particles
of a population (i.e., candidate solutions) that lie in its para-
meter space. The particles evolve in generations (i.e., runs)
according to rules that emulate social interaction.

At a generation k, every particle has a position xk and
a velocity vk . Pk stores the position at which the particle
achieved, up to generation k, the best value of the objective
function. Gk represents the best position encountered across
all particles of the swarm, i.e., the global optimum up to
generation k. The equations that re-estimate each particles’
velocity and position in every generation k are

vk+1 = w(vk + c1r1(Pk − xk)+ c2r2(Gk − xk)) (6)

and

xk+1 = xk + vk+1, (7)

wherew is a constant constriction factor [12]. In Eq. (6), c1 is
the so-called cognitive component, c2 is the social component
and r1, r2 are random samples of a uniform distribution in
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the range [0 . . . 1]. Finally, c1 + c2 > 4 must hold [12]. In
all performed experiments the values c1 = 2.8, c2 = 1.3 and

w = 2/
∣∣∣2 − ψ − √

ψ2 − 4ψ
∣∣∣ with ψ = c1 + c2 were used.

The particles are initialized at random positions and zero
velocities. Each dimension of the parameter space is bounded
in some range. Special treatment is required if, during posi-
tion update, a velocity component forces a particle to move
to a point outside this space. We adopted the “nearest point”
method [18] according to which, if the velocity of a parti-
cle forces it to move to a point po outside the bounds of the
parameter space, that particle moves to the point pb inside
the bounds that minimizes the distance |po − pb|.

In this work, PSO operates on the 5D tool pose parame-
ter space (see Sect.4). This means that each particle of the
swarm corresponds to a tool pose hypothesis and the popu-
lation is a set of candidate 3D tool poses hypothesized for a
single multiframe. The objective function to be maximized
is A(M, h) [Eq. (3)]. For each time t , the optimization is
executed for a fixed number of generations. After all gener-
ations have evolved, the best hypothesis h∗ is dubbed as the
solution for this time step. Essentially, PSO searches the 5D
space of tool poses. This is achieved by a systematic process
that defines candidate solutions based on Eq. (6) which are
evaluated based on Eq. (3). PSO has been applied with great
success to a number of high dimensional optimization prob-
lems in computer vision such as head pose estimation [40]
and hand articulations tracking [27,37–39].

The process of tracking the tool requires the solution of
a sequence of optimization problems, one for each acquired
multiframe. By exploiting temporal continuity, the solution
over the previous frame is used to generate the initial popula-
tion for the optimization problem for the current frame (see
also Sect.5.5). More specifically, the first member of the pop-
ulation for the current frame is the solution for the previous
frame. The rest of the population consists of perturbations of
that solution. The variance of these perturbations is experi-
mentally determined based on the maximum pose variation
that can be observed between two consecutive multiframes
at a given image acquisition frame rate.

In all conducted experiments, optimization run for 12 par-
ticles and 40 generations.

5.5 Data-driven tool pose hypotheses

The above described PSO formulation tracks the 5D global
pose of the tool by searching for it in a neighbourhood of the
estimation performed in the previous time step. However, for
the estimation of the pose of the tool in the first frame no such
previous estimation exists. Therefore, the ranges of parame-
ters to be searched is rather broad. To ease pose detection in
the first frame but also in order to enrich PSO particles at each
frame based on bottom-up evidence, the following strategy

has been adopted. First, 3D line (i.e., wand) candidates are
identified. To do this, we employ a technique [17], where a
3D line is estimated based on its projections on at least two
cameras of a calibrated multicamera system. The recovered
3D lines form hypotheses for the 3D orientation of the wand.

Additionally, we seek for candidate 3D positions of the
sphere. First, in each frame of the multiframe, we estimate
the centroid of the 2D blob corresponding to the projection of
the sphere in this frame. This is computed as follows. The ori-
ented contour of each such 2D blob in each oI

S is considered.
Each pixel of the contour votes in a Hough transform-like
manner for a half line where the projection of the 3D cen-
ter of the sphere is constrained to lie on. The starting point
of this half line is the contour point itself, and the direc-
tion is perpendicular to the estimated slope of the contour at
this point, in the direction where more blob pixels lie. The
point that receives the largest number of votes is assumed to
be the center of the circle. By triangulating sphere centroid
projections in pairs of images of the multiframe, we obtain
hypotheses for the 3D position of the sphere.

It is important that in order to form a hypothesis for either
the wand orientation or the sphere center, only two of its
observations are required. Thus, hypotheses can be formu-
lated even in the case of heavy occlusions.

The wand orientation and sphere center hypotheses are
used to synthesize particles that are considered in a particular
frame. The synthesis of wand poses and ball centroids cannot
be performed with their simple concatenation because this
does not lead necessarily to plausible tool pose hypothesis.
As an example, the estimated 3D direction of the wand might
not correspond to a line passing through the sphere center. For
this reason, to form a particle, we consider the 3D orientation
of the wand and the projection of candidate sphere centers
on that orientation.

In our experiments, all particles in the first frame are
formed based on this bottom up evidence. In subsequent mul-
tiframes, those are reduced to one third of the population. The
rest of the particles consist of perturbations of the solution
sought in the previous multiframe, as described in Sect. 5.4.

6 3D reconstruction

Given the tracking of the 3D pose of the tool, the space St
T

that occupies in time t can be estimated. This estimation
includes not only the wand W and the sphere S but also
the effector E which is a known 3D shape attached to one
of W ’s endpoints. St

T is carved off the solid parallelepiped
volume V that originally approximates the 3D shape of the
unknown object. In our experiments, a voxel of 0.93 mm3 was
used. Assuming that the user purposefully scans the unknown
object O with the tool, and due to Eq. (1), it is expected that
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Fig. 4 The geometry of the four-cameras system used in the SfI exper-
iments of this work

at the end of this process the evolution of V will be the true
shape SO of the unknown 3D object O .

During carving with SfI, the voxel space may become frag-
mented. Connected components labelling of voxels based
on six-connectedness is performed. The largest connected
component in terms of voxel count that is connected to the
table is maintained. The rest are automatically carved out and
removed from further consideration.

To safeguard for the case of relatively low frame rates,
interpolation is performed between successive tool 3D pose
estimations and the interpolated volumes are also carved.
The amount of interpolation depends on the distances of
the recovered wand endpoints. Additionally, the value of the
objective function [Eq. (3)] lies in the range [0 . . . 1] with
values close to 1 signifying very good agreement between
hypothesis and observations. Thus, this is used as a confi-
dence measure of the accuracy of tool pose estimation. If this
value is lower than a predefined, experimentally set thresh-
old, the carving of the reconstructed tool 3D volume is not
performed.

7 Experimental evaluation

The proposed SfI framework has been validated quantita-
tively and qualitatively and has been compared with a number
of standard 3D reconstruction methods. In order to do so, we
employed a setup of four cameras (see Fig. 4). The cameras
were calibrated intrinsically and extrinsically using [42].

A number of objects with diverse material, appearance and
geometric properties has been collected to form a dataset.
Table 1 summarizes the objects used and the properties that
make their 3D reconstruction a challenging task. Sample

Table 1 Characteristics of the objects used in experiments

Object CON NT TP TL SP REF

Statue
√

X X X X X

Spray
√

X X X X X

Doll
√ √

X X X X

Mug
√ √

X X
√

X

Mirror 1 X
√

X X
√

X

Mirror 2
√ √

X X
√

X

Bowl
√ √ √

X X X

Ashtray
√ √ √ √ √ √

Flower
√ √ √ √ √ √

From left to right CONcave, No Texture, TransParent, TransLucent,
SPecular, REFractive

views of these objects can be seen in the first column of
Fig. 5.

7.1 Qualitative comparative evaluation

We employed the proposed SfI method to reconstruct in 3D
all objects listed in Table 1. Example videos of the whole
process together with intermediate results is presented in the
supplemental video material accompanying this submission
and at http://youtu.be/uZQQkGTk6-k. For each object, we
also attempted 3D reconstruction with the following three
standard methods.

Stereo Stereo reconstruction was based on the plane
sweeping method [13]. The photoconsistency metric emp-
loyed was the modified normalized cross correlation [33].
The resulting depth map obtained from plane sweeping was
median filtered for noise suppression. Additionally, small
holes were filled through morphological filtering. The result-
ing depth map was transformed into a mesh of triangles, by
taking into account the neighbourhood relationships of pix-
els.

Visual hull The multiframes that were employed for SfI
were background subtracted utilizing the method in [51],
yielding four binary foreground masks. The volume occu-
pied by the object was approximated by its visual hull as a
volumetric occupancy grid, as in [30]. This space was then
smoothed with a Gaussian filter to suppress voxelization arti-
facts and, thereafter, the visual hull was extracted as its 0-
isosurface, using [29]. For each multiframe, the visual hull
is encoded as a mesh of triangles. In all experiments, a voxel
was a cube with a side length of 2 mm.

Kinect The Microsoft Kinect sensor [31] was employed
to obtain a third set of reconstructions. The acquired depth
map was represented as a surface by a triangle mesh, which
was obtained as in the case of stereo. The final 3D mesh was
smoothed with a Gaussian 3D kernel to attenuate noise and
depth quantization effects.
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Fig. 5 3D reconstruction results for the objects listed in Table 1.
Results. From left to right SfI, Kinect, visual hull, stereo. From top
to bottom statue, spray, doll, mug, mirror 1, mirror 2, bowl, ashtray,
flower. N/A denotes that the extracted foreground masks in individual
views were inconsistent and gave rise to a null 3D reconstruction

For each object, Fig. 5 shows a view of the reconstruction
obtained by each of the employed methods. Animated views
of all reconstructed models for all object/method combina-
tions can be viewed in the supplemental material accompa-
nying this submission. From the visual inspection of these
results, a number of conclusions can be drawn. Stereo recon-
structions of non-textured objects are sparse. Visual hull per-
forms better in textureless objects. Still, concavities cannot
be recovered. Additionally, if foreground/background seg-
mentation fails (i.e., white object in a white background, etc)
visual hull fails to deliver reasonable 3D models. The same
happens in the case of transparent and translucent objects.
Kinect is not affected by the lack of texture. Still, it fails
completely in the case of objects made of mirror, glass or
crystal. As can be verified in the last five rows of Fig. 5 and
in the supplemental material, Kinect-based reconstruction of

such objects returns a hole in the reconstructed table. Finally,
SfI manages to provide reasonable approximations of the 3D
shapes of all these objects without making any assumptions
regarding their material properties or their appearance. As an
indicator of the accuracy by which the effector pose is esti-
mated, it has to be noted that the bowl has been reconstructed
without any holes, although the thickness of its walls does
not exceed 5 mm. It can also be verified that for the objects
made of mirror, glass or crystal, SfI is the only method that
produces usable results.

It should be noted that in all SfI-based experiments the
tracking of the pose of the tool had to deal with a number
of challenging situations such as severe occlusions of the
tool, refracted views of the effector, existence of multiple
wand hypotheses due to mirror surfaces, distorted views of
the wand, etc. Representative such situations are illustrated
in Fig. 6.

7.2 Quantitative evaluation of 3D tool tracking

Besides the qualitative evaluation of SfI in comparison to
other 3D reconstruction approaches, experiments were per-
formed to assess the accuracy of tool 3D pose recovery as
well as that of SfI. To assess quantitatively the performance
of tool tracking, we performed the following experiment. A
typical data CD was rigidly attached to the surface of a table.
The conic effector was attached to the tool. Then a human
manipulated the tool so that the endpoint of the effector was
always touching the circumference of the CD. The tool and,
consequently, the endpoint of the effector was tracked in 3D.
The recovered 3D points were then fitted to a 3D circle. The
average distance of the recovered 3D points from the center
of the circle was measured to be 61 mm which should be
compared to the 60 mm of the actual CD radius. The average
distance of the recovered 3D points from the disc circum-
ference was 0.96 mm with a standard deviation of 0.73 mm.
The precision [45] of the method is 1.98 mm, in the sense
that 90 % of the distances are below that value. The accuracy
of the method [45] is 69.1 %, i.e., this is the percentage of
points reconstructed within a minimum distance of 1.25 mm
from the circumference of the CD.

In order to assess quantitatively the whole SfI frame-
work and 3D structure estimation, we performed quanti-
tative experiments with the mirror, spray and mug objects
for which detailed, ground truth 3D models were available.
More specifically, after reconstructing these objects with SfI,
we registered the computed models to the ground truth ones
through ICP [7] and then measured the average distance of
the recovered points to the ground truth, their standard devi-
ation, as well as the related accuracy and precision. Table 2
summarizes the obtained results. As it can be verified, SfI
manages to deliver satisfactory 3D reconstruction results.
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Fig. 6 Challenges for tool 3D
pose tracking. a Severely
occluded tool, b refracted view
of the effector, c multiple wand
hypotheses due to mirror
surfaces, d distorted view of the
wand due to occlusion caused
by a crystal object of complex
geometry

Table 2 Quantitative evaluation of SfI-based 3D reconstruction of the
mirror, mug and spray objects

Object Mean dist.
(mm)

Std
(mm)

Accuracy
(mm)

Precision
(%)

Mirror 0.44 0.43 1.00 94

Mug 1.09 0.79 2.17 66

Spray 1.53 1.42 3.14 54

7.3 Practical considerations and computational
performance issues

The obtained experimental results demonstrate that the accu-
racy achieved by SfI is a function of the structural complexity
of the object and not of its material or appearance properties.
Additionally, it is very cheap and effective to have a selection
of different end-effectors matching most of the basic shapes.

3D shape acquisition based on SfI differs considerably to
the standard CMM practice. At each moment in time, CMMs
sample a single point, but it is guaranteed that this point
belongs to the surface of the reconstructed object. In contrast,
SfI carves a volume that depends on the actual shape of the
tool. However, at a certain moment in time, it is not known
which points of the carved space belong to the object and
which are not. It is only through visual inspection that the
user may decide that the model that has been reconstructed
so far is an acceptable approximation of the true shape of the
object. Thus, depending on the goal of 3D model acquisition,
the shape of the object and the required accuracy, the one or
the other method might be preferable.

Computational performance is important because if SfI
runs online, interaction is more natural and the user may
get visual feedback that is very valuable in deciding “what
to carve next” and in determining the appropriate subse-

quent manipulation of the tool. Regarding the reported exper-
iments, the “statue”, being the most complex object, required
2,687 frames or ∼15 min. Similarly, the “flower” required
1,068 frames, the “ashtray” 882, the “bowl” 911, the “hollow
mirror box” 890 and the “mirror box” 520. This effectively
means that simple objects can be carved in<5 min. Our cur-
rent CPU-based implementation runs at an improved frame
rate of 8 fps on a computer equipped with a 8-core Intel i7
CPU at 3 GHz and 4 GB RAM.

Still, it is expected that further computational performance
optimization will have a significant impact on 3D reconstruc-
tion accuracy, too. Fortunately, there is ample room for such
optimizations, because the computational time per frame is
dominated by data parallel operations that can be speeded
up by exploiting GPU processing. It is expected that reach-
ing truly real time performance is feasible. This is because
several time-consuming operations are inherently and highly
data parallel. As an example, the evaluation of Eq. (3) for dif-
ferent PSO particles is totally independent. Additionally, the
evaluation of this function involves data independent pixel-
wise logical operations and summations that can be imple-
mented very efficiently by exploiting the GPU of contempo-
rary graphics cards. Thus, computations can be accelerated
dramatically by employing this type of hardware.

8 Summary

In this paper, we proposed a new approach to the prob-
lem of vision-based 3D reconstruction of rigid objects. The
approach is termed “shape from interaction” because it
achieves 3D reconstruction by monitoring the interaction
of a known tool with the object to be reconstructed. Track-
ing is formulated as an optimization problem that seeks for
the 3D position and orientation of the tool that is mostly
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compatible with visual observations obtained by a multicam-
era system. Thus, it becomes possible to estimate the space
that the tool occupies at each moment in time accurately, and
with high tolerance to occlusions and other optical effects.
The estimated tool volume is carved continuously from a par-
allelepiped workspace. The remainder of this process consti-
tutes the structure of the unknown object. A series of qual-
itative and quantitative experiments demonstrates that the
robustness and the tolerance in occlusions and clutter are
translated to accuracy in SfI-based 3D model acquisition. SfI
proves particularly useful in estimating 3D models of objects
that due to their material and reflectance properties are diffi-
cult or even impossible to obtain with other vision methods.

Acknowledgments This work was partially supported by the EU IST-
FP7-IP-288533 project RoboHow.Cog.

References

1. Adato, Y., Vasilyev, Y., Ben-Shahar, O., Zickler, T.: Toward a theory
of shape from specular flow. In: IEEE International Conference on
Computer Vision, pp. 1–8 (2007)

2. Agarwal, S., Mallick, S., Kriegman, D., Belongie, S.: On refractive
optical flow. In: European Conference on Computer Vision, pp.
483–494 (2004)

3. Aloimonos, Y.: Shape from texture. Biol. Cybern. 58(5), 345–360
(1988)

4. Argyros, A.A., Lourakis, M.: Real-time tracking of multiple skin-
colored objects with a possibly moving camera. In: European Con-
ference on Computer Vision, pp. 368–379. Springer, New York
(2004)

5. Atcheson, B., Ihrke, I., Bradley, D., Heidrich, W., Magnor, M.,
Seidel, H.-P.: Imaging and 3D tomographic reconstruction of time-
varying inhomogeneous refractive index fields. Tech. Rep. Univer-
sity of British Columbia, UBC CS TR-2007-06 (2007)

6. Ben-Ezra, M., Nayar, S.: What does motion reveal about trans-
parency? In: IEEE International Conference on Computer Vision
(2003)

7. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes.
IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

8. Blais, F.: Review of 20 years of range sensor development. J. Elec-
tron. Imaging 13, 231 (2004)

9. Bouguet, J., Perona, P.: 3D photography on your desk. In: IEEE
International Conference on Computer Vision, pp. 43–50 (1998)

10. Chen, T., Goesele, M., Seidel, H.: Mesostructure from specularity.
In: IEEE Conference on Computer Vision and Pattern Recognition.
vol. 2, pp. 1825–1832 (2006)

11. Chen, T., Lensch, H., Fuchs, C., Seidel, H., Informatik, M.: Polar-
ization and phaseshifting for 3D scanning of translucent objects.
In: IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1–8 (2007)

12. Clerc, M., Kennedy, J.: The particle swarm—explosion, stability,
and convergence in a multidimensional complex space. Trans. Evol.
Comput. 6(1), 58–73 (2002)

13. Collins, R.: A space-sweep approach to true multi-image matching.
In: IEEE Conference on Computer Vision and Pattern Recognition,
pp. 358–363 (1996)

14. Eren, G., Aubreton, O., Meriaudeau, F., Secades, S., Fofi, D.,
Naskali, T., Truchetet, F., Ercil, A.: Scanning from heating: 3D
shape estimation of transparent objects from local surface heating.
Opt. Express 17(14), 11457–11468 (2009)

15. Faugeras, O., Luong, Q., Papadopoulos, T.: The Geometry of Mul-
tiple Images. MIT Press, Cambridge (2001)

16. Guan, L., Franco, J., Pollefeys, M.: Multi-view occlusion reasoning
for probabilistic silhouette-based dynamic scene reconstruction.
Int. J. Comput. Vis. 90(3), 283–303 (2010)

17. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer
Vision, 2nd edn. Cambridge University Press, Cambridge (2004).
ISBN: 0521540518

18. Helwig, S., Wanka, R.: Particle swarm optimization in high-
dimensional bounded search spaces. In: Proceedings of IEEE
Swarm Intelligence Symposium, pp. 198–205 (2007)

19. Ihrke, I., Kutulakos, K., Lensch, H., Magnor, M., Heidrich, W.:
Transparent and specular object reconstruction. Comput. Graph.
Forum 29(8), 2400–2426 (2010)

20. Ikeuchi, K.: Determining surface orientations of specular surfaces
by using the photometric stereo method. IEEE Trans. Pattern Anal.
Mach. Intell. 3(6), 661–669 (1981)

21. John, V., Ivekovic, S., Trucco, E.: Articulated human motion track-
ing with HPSO. In: Proceedings of International Conference on
Computer Vision Theory and Applications (2009)

22. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE
International Conference on Neural Networks, vol. 4. pp. 1942–
1948 (1995)

23. Klank, U., Carton, D., Beetz, M.: Transparent object detection and
reconstruction on a mobile platform. In: IEEE International Con-
ference on Robotics and Automation, pp. 5971–5978 (2011)

24. Kutulakos, K., Seitz, S.: A theory of shape by space carving. Int.
J. Comput. Vis. 38, 307–314 (2000)

25. Kutulakos, K., Steger, E.: A theory of refractive and specular 3D
shape by light-path triangulation. In: IEEE International Confer-
ence on Computer Vision, pp. 1448–1455 (2005)

26. Kutulakos, K., Vallino, J.: Calibration-free augmented reality. IEEE
Trans. Vis. Comput. Graph. 4(1), 1–20 (1998)

27. Kyriazis, N., Argyros, A.A.: Physically plausible 3d scene tracking:
the single actor hypothesis. In: IEEE Conference on Computer
Vision and Pattern Recognition, pp. 9–16 (2013)

28. Li, Y., Lin, S., Lu, H., Kang, S., Shum, H.: Multibaseline stereo in
the presence of specular reflections. In: International Conference
on Pattern Recognition, pp. 573–576 (2002)

29. Lorensen, W., Cline, H.: Marching cubes: a high resolution 3D
surface construction algorithm. In: SIGGRAPH, pp. 163–169
(1987)

30. Matsuyama, T., Wu, X., Takai, T., Nobuhara, S.: Real-time 3D
shape reconstruction, dynamic 3D mesh deformation, and high
fidelity visualization for 3D video. CVIU 96(3), 1077–3142
(2004)

31. Zhang, Z.: Microsoft kinect sensor and its effect. IEEE MultiMedia
19(2), 4–12 (2012)

32. Miyazaki, D., Kagesawa, M., Ikeuchi, K.: Transparent surface
modeling from a pair of polarization images. IEEE Trans. IEEE
Trans. Pattern Anal. Mach. Intell. 26(1), 73–82 (2004)

33. Moravec, H.: Towards automatic visual obstacle avoidance. In:
International Joint Conference on Artificial Intelligence, pp. 584–
594 (1977)

34. Nayar, S., Fang, X., Boult, T.: Removal of specularities using color
and polarization. In: IEEE Conference on Computer Vision and
Pattern Recognition, pp. 583–590 (1993)

35. Nayar, S., Sanderson, A., Weiss, L., Simon, D.: Specular surface
inspection using structured highlight and gaussian images. IEEE
Trans. Robot. Autom. 6(2), 208–218 (1990)

36. Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Markerless and effi-
cient 26-DOF hand pose recovery. In: Asian Conference on Com-
puter Vision, pp. 744–757 (2010)

37. Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Efficient model-
based 3D tracking of hand articulations using Kinect. In: British
Machine Vision Conference, Dundee (2011)

123



Shape from interaction

38. Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Full DOF tracking of
a hand interacting with an object by modeling occlusions and phys-
ical constraints. In: IEEE International Conference on Computer
Vision, pp. 2088–2095 (2011b)

39. Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Tracking the articu-
lated motion of two strongly interacting hands. In: IEEE Confer-
ence on Computer Vision and Pattern Recognition (2012)

40. Padeleris, P., Zabulis, X., Argyros, A.: Head pose estimation
on depth data based on particle swarm optimization. In: IEEE
Conference on Computer Vision and Pattern Recognition Work-
shops, Workshop on Human Activity Understanding from 3D Data
(HAU3D) (2012)

41. Remondino, F., El-Hakim, S.: Image-based 3D modelling: a review.
Photogramm. Rec. 21, 269–291 (2006)

42. Sarmis, T., Zabulis, X., Argyros, A.A.: A checkerboard detection
utility for intrinsic and extrinsic camera cluster calibration. Tech.
Rep. 397, FORTH-ICS (2009)

43. Savarese, S., Chen, M., Perona, P.: Local shape from mirror reflec-
tions. Int. J. Comput. Vis. 64(1), 31–67 (2005)

44. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using
structured light. In: IEEE Conference on Computer Vision and
Pattern Recognition, pp. 195–202 (2003)

45. Seitz, S., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A
comparison and evaluation of multi-view stereo reconstruction
algorithms. In: IEEE Conference on Computer Vision and Pattern
Recognition, pp. 519–528 (2006)

46. Tarini, M., Lensch, H., Goesele, M., Seidel, H.: 3D acquisition
of mirroring objects using striped patterns. Graph. Models 67(4),
233–259 (2005)

47. Wetzstein, G., Roodnick, D., Raskar, R., Heidrich, W.: Refractive
shape from light field distortion. In: IEEE International Conference
on Computer Vision (2011)

48. Woodham, R.: Photometric method for determining surface orien-
tation from multiple images. Opt. Eng. 19(1), 513–531 (1980)

49. Zhang, R., Tsai, P., Cryer, J., Shah, M.: Shape from shading: a
survey. IEEE Trans. Pattern Anal. Mach. Intell. 21(8), 690–706
(1999)

50. Zheng, J., Murata, A.: Acquiring a complete 3D model from spec-
ular motion under the illumination of circular-shaped light sources.
IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 913–920 (2000)

51. Zivkovic, Z.: Improved adaptive Gaussian mixture model for back-
ground subtraction. In: International Conference on Pattern Recog-
nition, pp. 28–31 (2004)

Damien Michel received his
M.Sc. degree in computational
and electrical engineering in
2006 from the Ecole Nationale
Superieure de l’ Electronique et
de ses Applications (ENSEA),
one of the “grandes ecoles”
in Paris. Since then, he has
been working as a Research
and Development Engineer at
the Computational Vision and
Robotics Laboratory (CVRL),
of the Institute of Computer
Science, FORTH. His previous
works include shape matching,

object tracking and 3D reconstruction, as well as the development of
several computer vision techniques at the service of Ambient Intelli-
gence applications. His current research interests are focused on human
body and human hand posture recognition and tracking.

Xenophon Zabulis is a Researc-
her at the Institute of Com-
puter Science, Foundation for
Research and Technology, Hel-
las. He received the B.A., M.S.
and Ph.D. degrees in Computer
Science from the University of
Crete, Greece, in 1996, 1998 and
2001, respectively. From 2001
until 2003 he has worked as a
Postdoctoral Fellow at the Com-
puter and Information Science
Department, at the interdiscipli-
nary General Robotics, Automa-
tion, Sensing and Perception lab-

oratory and at the Institute for Research in Cognitive Science, both at
the University of Pennsylvania, USA. In addition, during 2004–2007,
he has worked as a Research Fellow at the Institute of Informatics and
Telematics, Centre of Research and Technology Hellas, Greece. His
research interests are in the following areas: stereo and multiple-view
vision, real-time 3D reconstruction of static and dynamic scenes, camera
networks, and applications of computer vision in Ambient Intelligence
environments.

Antonis A. Argyros is a Profes-
sor of Computer Science at the
Computer Science Department,
University of Crete (CSD-UoC)
and a Researcher at the Institute
of Computer Science, FORTH,
in Heraklion, Crete, Greece. He
received B.Sc. (1989) and M.Sc.
degrees (1992) in Computer Sci-
ence, both from the CSD-UoC.
On July 1996, he completed his
Ph.D. on visual motion analy-
sis at the same Department. He
has been a postdoctoral fellow
at the Computational Vision and

Active Perception Laboratory, KTH, Sweden. Antonis Argyros is an
area editor for the Computer Vision and Image Understanding (CVIU)
Journal, member of the Editorial Board of the IET Image Processing
Journal and a General Chair of ECCV‘2010. He is also a member of
the Executive Committee of the European Consortium for Informatics
and Mathematics (ERCIM). The research interests of Antonis fall in the
areas of computer vision with emphasis on tracking, human gesture and
posture recognition, 3D reconstruction and omnidirectional vision. He
is also interested in applications of computational vision in the fields
of robotics and smart environments. In these areas he has (co-)authored
more than 100 papers in scientific journals and conference proceedings.

123


	Shape from interaction
	Abstract 
	1 Introduction
	2 Related work
	3 Overview of the proposed method
	4 Tool design
	5 Tool tracking as an optimization problem
	5.1 Observing a tool
	5.2 Rendering a tool
	5.3 Evaluating a tool hypothesis
	5.4 Tool 3D pose estimation through PSO
	5.5 Data-driven tool pose hypotheses

	6 3D reconstruction
	7 Experimental evaluation
	7.1 Qualitative comparative evaluation
	7.2 Quantitative evaluation of 3D tool tracking
	7.3 Practical considerations and computational performance issues

	8 Summary
	Acknowledgments
	References


