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Abstract. Research in vision-based 3D hand tracking targets primarily the sce-
nario in which a bare hand performs unconstrained motion in front of a camera
system. Nevertheless, in several important application domains, augmenting the
hand with color information so as to facilitate the tracking process constitutes an
acceptable alternative. With this observation in mind, in this work we propose a
modification of a state of the art method [12] for markerless 3D hand tracking,
that takes advantage of the richer observations resulting from a colored glove.
We do so by modifying the 3D hand model employed in the aforementioned
hypothesize-and-test method as well as the objective function that is minimized
in its optimization step. Quantitative and qualitative results obtained from a com-
parative evaluation of the baseline method to the proposed approach confirm that
the latter achieves a remarkable increase in tracking accuracy and robustness and,
at the same time, reduces drastically the associated computational costs.

1 Introduction

We are interested in the problem of tracking the 3D pose and full articulation of a
human hand based on visual information acquired by an RGBD camera. The problem
is interesting from a theoretical but also from a practical point of view, as its solution
is valuable to a broad range of application domains. Given that human actions and
intentions are manifested in the way hands move, a detailed and accurate estimation of
this motion can support action interpretation and intention inference.

Clearly, the interest of the relevant research community is focused on the case of
markerless tracking of the human hand(s). This is because markerless hand tracking
is not invasive and poses far less restrictions to any application domain. Nevertheless,
marker-based tracking is indeed useful and acceptable in many application domains.
For example, in the domain of rehabilitation of patients suffering by stroke, hand mo-
tions are observed and quantified in a constrained laboratory setting. A scenario of a
subject wearing a colored glove is not considered unacceptable, especially if in return,
tracking accuracy and robustness is greatly improved. In other scenarios in the domain
of wearable haptics research, the hand to be tracked is anyway augmented with devices
of known form and appearance that could facilitate the hand observation process.

Motivated by the above observations, in this work we are interested in quantifying
the level at which a state of the art 3D hand tracking method like [12] can benefit from
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richer-than-markerless visual observations. To this end, we design a color glove and
we modify the 3D hand model and objective function definition employed in [12] to
enable the exploitation of the richer set of observations. Then, we perform extensive
quantitative and qualitative experiments and a comparative evaluation of the proposed
method with the baseline method of [12]. The obtained results demonstrate that the pro-
posed approach achieves impressive performance/accuracy gains and justify fully our
approach from a computer vision systems perspective. As an example, in a challenging
sequence showing a normal-speed hand motion obtained at low (3 fps) frame rate, the
proposed approach achieves half of the error compared to [12] by using only the 1/8th
of the computational resources.

1.1 Related Work

Markerless hand articulation tracking methods can be classified [3, 12] based on how
candidate 3D hand poses are generated and tested against the observations. The ap-
pearance based approaches [1, 9, 15, 16, 21] generate a large set of hand configurations
off-line. Visual features are extracted for each of the generated poses, resulting in a
database where each pose is associated with image features. During online operation,
comparable features are extracted from the acquired image(s) and searched for in the
offline database. The reported solution is the stored pose that match the computed fea-
tures. Model-based methods [2, 3, 6, 12–14, 18] generate hand poses, extract features
and compare them to the observed ones at runtime. Typically, the 3D hand pose that
best explains the available observations is estimated based on the solution of a high
dimensional optimization problem.

Appearance-based methods are computationally more efficient compared to model-
based ones, at the cost of having a fixed accuracy that depends on the density of sam-
pling of the 3D hand pose space. Furthermore, they are more difficult to adapt to differ-
ent problems, because changing the object to be tracked requires to generate the off-line
database anew. In contrast, model-based methods can be adapted easily to different sce-
narios, since all that is required is a change of the model of the object to be tracked.
Furthermore, accuracy improves as the computational budget increases. Despite the
relatively high computational requirements of model-based methods, implementations
that exploit GPGPUs have resulted in near real time performance [12]. Quite recently, a
new approach to the problem has been proposed [10] based on quasi-random sampling
of the parameter space.

While markerless tracking of bare hands is the more general formulation of the
problem and, as such, the most interesting one, several works have dealt with the prob-
lem of marker-based tracking. In the case of some commercial systems, tracking relies
on gloves augmented with sensors1 or reflectors of infrared light2. Such systems pro-
vide accurate hand motion capture in real time, at the cost of expensive hardware that
may obstruct the action of the hand. In order to alleviate these problems, researchers
have tried to simplify the required hardware setup (both the glove design and the em-
ployed camera setup) by using color information. With the exception of [20], previous

1 http://www.metamotion.com/hardware/motion-capture-hardware-gloves-Cybergloves.htm
2 http://www.metamotion.com/motion-capture/optical-motion-capture-1.htm
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work in color-based hand tracking dealt with limited application domains [19] or short
sequences [5]. Wang and Popovic [20] proposed an appearance-based/data-driven 3D
hand pose estimation method. Their approach relies on a distinctive color pattern ap-
pearing on the glove that provides unambiguous information on the pose of the hand
and, thus, turns the hand pose estimation problem into a database lookup problem.
While their method is not as accurate as traditional optical motion capture methods, it
requires a single camera and an inexpensive cloth glove. A similar approach has been
proposed by [17] to track humanoid robotic hands.

The approach proposed in this paper shares the motivation of the method of Wang
and Popovic [20]. However, instead of using color information to cast the 3D hand
tracking problem as a nearest neighbour database search problem, color information is
used to drive a model-based, hypothesize and test approach. Thus, the accuracy of the
proposed method is not bounded by the inevitable sparse sampling of hand poses from
which appearance based methods suffer and can easily be adapted to deal with different
problem variants (e.g., tracking two hands as in [13]).

2 Method Description

To track the full articulation of a hand wearing a color glove, we built upon the method
presented in [12], where 3D hand tracking is formulated as an optimization problem
on the 26D space of hand 3D pose and articulation parameters. A hand model consists
of 37 appropriately transformed geometric primitives that are connected in a kinematic
structure that matches closely that of a human hand. The optimization problem seeks for
the 27D hand configuration3 that minimizes the discrepancy between hand hypotheses
and hand observations in visual input acquired by an RGBD camera. The optimization
minimizes an objective function that compares a hand hypothesis to hand observations.
The method in [12] deals with markerless observations of the human hand. In our case,
a purposefully designed colored glove provides richer and less ambiguous visual input
and is expected to improve the obtained tracking results. To do so, the 3D hand model
and the objective function of the optimization problem need to be designed carefully so
that tracking takes advantage of the additional information.

2.1 Glove design

The use of a color glove aims at facilitating the robust and accurate identification of spe-
cific parts of the hand. In this work, we aim to detect each finger and the palm as separate
parts. In this direction, the palm is assigned with white color and the pinky, ring, middle,
index and thumb fingers are assigned with the easily identifiable and discriminative red,
blue, yellow, green, and pink colors, respectively (see top left thumbnail in Fig. 1). By
following a model-based, hypothesize-and-test tracking method, different glove colors
or patterns can be used depending on the application, without requiring time-consuming
learning and training processes. For example, new colors should be learned and the

3 The optimization space has one more dimension than the degrees of freedom of the hand model
due to the quaternion representation of 3D hand orientation
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Fig. 1: Feature mapping of the segmented RGB glove image. 1st row: Segmented glove
image and binary masks containing the individual hand parts. 2nd row: global fore-
ground mask and distance transformed versions of the binary masks of the hand parts.

chromatic appearance of the 3D hand model needs to be specified. Still, this does not
depend on the hand configuration, as happens with discriminative/appearance based
methods that have to learn the appearance of hands in different poses anew.

2.2 Hand model

We adopt the kinematic and geometric structure as well as the parametrization of the
hand model defined in [12]. The kinematic structure of the hand is defined as a 26-DOF
forward kinematics model. Six DOFs represent its global position and orientation and
20 DOFs model the articulation of the five fingers. These 26 DOFs define the parametric
space S on which optimization is performed. More precisely, they translate to a total of
27 parameters due to the redundant quaternion representation of hand orientation.

As [12] considers a skin colored hand, geometric primitives are not assigned specific
colors. What is important in that work is the 3D structure of the hand in its various
configurations. In contrast, in the 3D hand model employed in this work we define a
coloring of the relevant primitives to match the glove design.

2.3 Preprocessing

The raw input consists of an RGB image I and an accompanying depth map D, both
in VGA resolution. To filter-out noise, I is first smoothed with a Gaussian kernel. To
perform color classification, we employ a standard method employing a color-based
Gaussian Mixture Model (GMM) [4]. Given a set of training images of the glove and
their manual segmentation, we build a GMM representation of each of the glove colors.
Each color is represented as a mixture of three Gaussians. The parameters of the Gaus-
sians and the mixture weights are estimated based on the EM algorithm. At run time,
each pixel is assigned a color class label, depending on the probability that this color
is drawn from each model GMM. We eliminate noisy labels from the segmented image
by applying morphological filtering.

This segmentation is then employed to generate several features that are provided as
observation input V to our method. First, a foreground binary mask F is generated. The
pixels of F are set to 1 for glove pixels and 0 for non-glove pixels (see the bottom left
image in Fig. 1). A distance map M is also generated by applying the distance transform
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to F . M has a value of 0 in all points that correspond to foreground points of F . All other
points of M (background points of F) have a value that is equal to their distance from
the closest foreground point in F . From D and F a new depth map S is computed,
where only depth values of D that correspond to glove pixels in F are kept. Maps Fl , Ml
and Sl are computed for each and every individual color class l belonging to the set of
color/label classes L. The observation input V consists of V = {F,S,Fl ,Ml ,Sl}.

2.4 Hand model rendering

The evaluation of a hand hypothesis h requires its comparison to the observation input
V . To achieve this, h needs to be transformed to features comparable with observations.
This is achieved by decoding the 27D hypothesis h through graphics rendering. To shape
the hand, we apply forward kinematics over the parameters of h. Given camera calibra-
tion information C, a simulated labels map and a simulated depth map D′ is acquired.
Theses maps correspond to the labels map and D map that result from the acquisition
and preprocessing steps of the RGB-D information. Having those, it is straightforward
to compute all other relevant maps. Thus, comparable features R, which result from the
rendering of a hypothesis h, consist of the set R = {F ′,S′,F ′l ,S′l}.

2.5 Objective function and its optimization

During the optimization process, Particle Swarm Optimization (PSO) generates a set
of candidate poses that need to be evaluated. An objective function E is defined that
quantifies the discrepancy of a hypothesized hand pose h to the observed hand pose.
Thus, the best-scoring hypothesis is the one that minimizes the objective function. The
input to the objective function is the observation input features V (see Sec. 2.3) and a
hand hypothesis h. As explained in Sec. 2.4, by assuming knowledge of the calibration
parameters C of the employed RGBD sensor, we can transform the hand hypothesis
h to features R that are comparable to observations V . The objective function E(V,R)
consists of the linear combination of three terms:

E(V,R) = w1K(V,R)+w1M(V,R)+w2DT (V,R). (1)

In the above equation, w1 = 0.02 and w2 = 0.002 are experimentally determined weight-
ing factors. The term K(V,R) is defined as

K(V,R) =
∑min(|S−S′|,T )

∑(F ∨F ′)+ ε
+α

(
1− 2∑F ∧F ′

∑F ∧F ′ + ∑F ∨F ′

)
. (2)

The term K(V,R) serves two purposes, (a) penalizes depth discrepancies between
the S and S′ depth maps (left term) and (b) penalizes discrepancies between the F and
the F ′ foreground masks (right term). In Eq.(2), α = 75 is an experimentally deter-
mined normalization parameter, T is a clamp value set to 40mm and ε = 10−6 is added
to avoid possible divisions by zero. In the first term of K(V,R), the sum of depth differ-
ences is clamped with the predetermined threshold T , in order to prevent the influence
of noisy observations. Differences are normalized over their effective areas. In the sec-
ond term of K(V,R), F ∨F ′ and F ∧F ′ yield binary maps, which are the result of the
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pixel-wise disjunction and conjunction respectively, of the corresponding binary maps.
Summations yield the number of foreground pixels in the resulting maps. Essentially,
the second term of K(V,R) represents the F1-score4 between F and F ′.

The term M(V,R) is similar to K(V,R), however, it considers all different hand parts
(the palm and each of the five fingers) individually. For a particular label l, we define:

M(V,R, l) =
∑min(|Sl−S′l |,T )

∑(Fl ∨F ′l )+ ε
+α

(
1−

2∑Fl ∧F ′l
∑Fl ∧F ′l + ∑Fl ∨F ′l

)
. (3)

Given the above definition of M(V,R, l), M(V,R) is then defined as

M(V,R) =
1
|L| ∑
∀l∈L

M(V,R, l), (4)

where |L| is the number of all labels.
The last term DT (V,R) of the objective function is again dependent on each label

and takes into account the distance transformed versions of the observations. We define
DT (V,R, l) as

DT (V,R, l) =
1
N′l

∑MlF ′l . (5)

The pixelwise multiplication of Ml with F ′l is zero when the space occupied by each
color label in the hypothesis is exactly the same as the space it occupies in the observa-
tion. Thus, the perfect hypothesis for the location of a hand part does not introduce any
penalty in this term and the objective function. The summation is normalized with the
number N′l of image points of the rendered label l. Finally, DT (V,R) is defined as

DT (V,R) =
1
|Lo| ∑

∀l∈Lo

DT (V,R, l), (6)

where Lo is the set of observed labels.
The optimization of the resulting objective function is performed based on Parti-

cle Swarm Optimization (PSO) [7, 8] as suggested in [12]. PSO is a population based
stochastic optimization method that iteratively searches the optimal value of a defined
objective function in a specified search space. The population (swarm) consists of par-
ticles each of which represents a candidate solution to the problem. The candidate solu-
tions evolve in runs which are called generations, according to a policy which emulates
social interaction. At the end, the candidate solution that achieved the best objective
function score, through all generations, is selected as the estimated solution. The num-
ber of particles N and generations G determine the computational requirements of the
optimization process, as their product defines the number of objective function evalu-
ations. More details on the application of PSO to the problem of 3D hand tracking as
well as information on the relevant tracking loop are reported in [12].

4 http://en.wikipedia.org/wiki/F1_score
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Fig. 2: Median error MD for hand pose estimation (in mm) for the proposed method
(solid lines) is illustrated in comparison to that of [12] (dashed lines). In all plots the
performance of different PSO budgets is shown. The synthetic sequence used represents
the same hand motion sampled at(a) 30fps (b) 6 fps, (c) 3 fps.

3 Experimental Evaluation

Synthetic as well as real-world sequences were used to evaluate experimentally the per-
formance of the proposed method. In all performed experiments, we compare quantita-
tively and qualitatively the proposed method with the baseline [12]. To do so we utilize
the same C++ code base for both methods, a fact that facilitates their fair comparison.

The quantitative evaluation of the proposed method has been performed using syn-
thetic data. This approach for evaluation is often used in the relevant literature [6, 11]
because ground truth from real-world image sequences is hard to obtain. In order to
synthesize realistic hand motions we first acquired a real-world sequence (30 fps, VGA
resolution) with an Xtion sensor5. Then, we tracked this sequence using [12]. The re-
sulting track was used to generate synthetic sequences through rendering.

To quantify the accuracy for a given optimization configuration, we adopt the metric
used in [6]. For each processed frame, we compute the mean Euclidean 3D distance be-
tween the estimated phalanx endpoints and their ground truth counterparts. The average
of this measure for all frames constitutes the resulting error estimate D. Since the opti-
mization is stochastic, each distinct configuration was conducted 20 times. The median
MD of the resulting Di=1..20 errors quantifies the accuracy obtained for a particular set
of particle and generations counts.

In a first experiment, we employed a synthetic dataset of 682 frames where a hand
performs motions and gestures, such as finger counting, closed fist formation, palm
rotations, etc. For this dataset, two variants were identified. In the first, all hand parts
were assumed to be uniformly colored, so that the sequence can be fed to the method
of [12]. In the second variant, hand parts were colored according to our colored glove
design, so as to give rise to input that is appropriate for the proposed approach.

Figure 2(a) shows the median errors Md for both methods, as a function of PSO pa-
rameters. Each distinct line represents a particle configuration. We observe that the pro-
posed work marginally outperforms [12], except for results coming from low PSO bud-
gets. Both approaches exhibit similar behaviour as the particle and generation counts

5 http://www.asus.com/Multimedia/Xtion_PRO/overview
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Fig. 3: Errors in hand tracking (in mm) for the proposed method (red points) in compar-
ison to that of [12] (blue points). Each row corresponds to a different image acquisition
fps. Figure columns correspond to different particle counts. Each point represents a sin-
gle run. For a particular parameter set, 20 runs were performed. The number assigned
to each group of points denotes the standard deviation of the error is these 20 runs.

increase. The increase of accuracy for configurations larger than 32 particles and 30
generations is very small compared to to the increase of the computational budget.

Individual errors D take values between 3.3mm and 18.7mm for the proposed method
and between 2.9mm and 52.3mm for [12]. Moreover, as shown in the first row of plots of
Fig 3, the resulting standard deviation for low computational budgets (N = 16, N = 32
and G = 10), is an order of magnitude lower for the proposed method (σ ' 0.7mm)
compared to that of [12] (σ ' 6mm).

We use the same dataset but we only employ one out of each 5 frames. The resulting
synthetic sequence is subject to a dual interpretation. It is either a dataset which contains
a hand acting five times faster than the previous one, or a dataset with five times lower
acquisition rate. Lower acquisition rates occurs either because of higher computational
requirements, or when the framework is employed on weaker hardware. Moreover, in
the new dataset a decrease in accuracy is expected due to larger displacement of the
hands between consecutive frames.

Figure 2(b) shows the corresponding median errors obtained in the new dataset. It
can be verified that the proposed method performs strikingly better compared to [12].
The performance of our method for 16 particles is better than the performance of [12]
for 128 particles. This constitutes a more than 8-fold reduction of the computational
time. Additionally, in the second row of Fig. 3, the obtained errors D are visualized
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Fig. 4: Snapshots from an experiment with real data. Cropped 320×240 regions from
the original 640×480 images are shown. 1st row: proposed method, 2nd row: the per-
formance of the method in [12] with the same computational budget (64 particles run-
ning for 50 generations). See text for details.

for all 20 experiments and for different particle counts. As it can be verified, in our
method errors are not only smaller in absolute terms, but the variability in performance
in different runs is also very much decreased.

The third experiment is similar to experiment 2, with the difference that we tempo-
rally subsample the original dataset every 10 frames (3 fps). Figure 2(c) as well as the
third row of Fig. 3 demonstrate that the difference in performance between the proposed
and the baseline method is further widened, in favour of the proposed method.

Towards the qualitative evaluation of the proposed approach in real data, several
long real-world image sequences were captured. Figure 4 illustrates indicative results
obtained from one such sequence (690 frames) where the human hand wears the de-
signed color glove. As it can be observed in the first row of snapshots, the estimated
hand models are in very close agreement with the image data, despite the complex ar-
ticulation of the performing hand and the low (3 fps) framerate. The color information
was also processed to come up with a full hand segmentation so as to make the method
in [12] applicable to this input. As shown in Fig. 4, 2nd row, [12] fails in this case. A
video accompanying the paper6 illustrates the obtained results.

4 Summary

The interest on markerless 3D hand tracking is unquestionable. Nevertheless, the inter-
est in systems that perform mildly invasive, marker-based, 3D hand tracking is also un-
deniable. In this work we capitalized on a powerful 3D hand tracking approach and we
enabled it to benefit from color information that disambiguates hand parts. We achieved
this by purposefully designing a color glove and by appropriately modifying the hand
model and the objective function of the baseline approach. Quantitative and qualita-
tive experimental results demonstrate that our approach achieves dramatic accuracy im-
provement over the baseline (smaller errors and error variances in several runs) with a
fraction of the computational resources. Future work includes the design and the eval-
uation of gloves tailored to specific applications, in order to minimize invasiveness and
maximize accuracy, robustness and computational performance.

6 http://youtu.be/9nkHIgFYtzE
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