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Abstract. Recently, model-based approaches have produced very promising re-
sults to the problems of 3D hand tracking. The current state of the art method
recovers the 3D position, orientation and 20 DOF articulation of a human hand
from markerless visual observations obtained by an RGB-D sensor. Hand pose
estimation is formulated as an optimization problem, seeking for the hand model
parameters that minimize an objective function that quantifies the discrepancy
between the appearance of hand hypotheses and the actual hand observation. The
design of such a function is a complicated process that requires a lot of prior expe-
rience with the problem. In this paper we automate the definition of the objective
function in such optimization problems. First, a set of relevant, candidate image
features is computed. Then, given synthetic data sets with ground truth informa-
tion, regression analysis is used to combine these features in an objective function
that seeks to maximize optimization performance. Extensive experiments study
the performance of the proposed approach based on various dataset generation
strategies and feature selection techniques.

1 Introduction

The automatic capture and analysis of human motion has several applications and
high scientific interest. Long standing unresolved human-computer interaction prob-
lems could be solved by directly using the human body and, in particular the human
hands for interacting with computers.

Several solutions have been proposed for the problem of 3D hand tracking [6, 11].
These solutions can be divided into two main categories, the appearance-based and
the model-based approaches. The appearance-based approaches try to solve the prob-
lem by defining a map between the feature space and the solution space. This map is
usually constructed with offline training of a prediction model, which can be either a
regression or classifier model. The regression models are used to predict the exact con-
figuration of the hand in the solution space, while the classifier models usually try to
predict the posture of the observed hand. In contrast, model-based approaches operate
directly on the solution space. Usually this involves making multiple hypotheses in the
solution space that are evaluated in feature space by comparing the appearance of the
observed hand and the estimated appearance of the hypotheses. This is formulated as an
optimization problem whose objective function evaluates hypotheses (candidate hand
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configurations that are rendered through graphics techniques by taking into account its
kinematic model) against the actual hand observations. The objective function has a
determining role in the quality of the obtained solutions as well as to the convergence
properties of the optimization process. Its formulation requires prior-experience on the
problem and a lot of fine tuning that is performed on a trial-and-error basis.

In this paper, our aim is to automate the process of objective function definition
with a methodology that does not demand deep prior-knowledge of the problem. More
specifically, a set of features that are relevant to the problem are supposed to be given.
Then, regression analysis is used to define an objective function that given the available
features, approximates as better as possible the true distance between different hand
poses. To do so, synthetic datasets are used which are built by sampling the multi-
dimensional solution space with two different strategies.

2 Related work

A lot of published work exists for recovering the full 3D configuration of articulated
objects, especially the human body or parts of it like hands, head etc. Moeslund et
al. [11] have made an extensive survey on vision-based human body capture and analy-
sis. Hand tracking and body tracking problems share many similarities, like hierarchical
tree structure, problem dimensionality and complexity, occlusions and anatomic con-
straints. Erol et al. [6] present a variety of methods for hand pose estimation or tracking.
Depending on the output of these methods they are divided in partial and full pose esti-
mation methods. Further categorization is between appearance-based and model-based
methods. Typically appearance-based methods [14, 15, 17] solve the problem by mod-
elling the mapping between the feature space and the pose space either analytically, or
through machine learning techniques that are trained on specific datasets to perform ei-
ther classification or regression. Appearance-based methods perform fast on prediction
and are suitable for gesture recognition. A common problem though, for these methods,
is that they usually demand large training dataset which, thus, is typically relevant to
a specific application and/or scenario. To compensate for potential bias of the training
dataset, Shotton et al. [15] generated a large synthetic dataset, permitting good general-
ization.

On the other hand, model-based methods [5, 8, 10, 12] search directly for the so-
lution in the configuration space. Each hypothesis is rendered in feature space. An
error/objective function evaluates visual discrepancies, which usually demands high
computational resources. On the positive side, model-based methods do not need of-
fline training, making them easier to employ as they are not biased to specific training
datasets.

In all optimization problems, there are two major components, the error/objective
function and the optimization algorithm. Different options exist for both components
but the performance is dependent on the correct combination of the two. As an ex-
ample, de La Gorce et al. [5] used a quasi-newton optimization algorithm and a hand
made error function that considers textures and shading of the model which proved to
perform well on the problem. Oikonomidis et al. [12] used the Particle Swarm Opti-
mization (PSO) algorithm and they also crafted a special objective function, taking into
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Fig. 1: Overview of baseline method pipeline (left) and the proposed modification
(right) In the proposed work, the objective function is not handcrafter but rather es-
timated through an offline trained regression model.

account the skin color and depth information provided by a RGB-D sensor or from
a multi-camera setup [13]. Recent works have tried to combine the advantages of both
methods basically using machine learning. Xiong et al. [18] mentioned the effectiveness
of 2" order descendent methods, as well as the difficulty in using them in computer vi-
sion, mainly because it is hard to analytically differentiate the objective function. They
proposed instead, a supervised descent method that models the behaviour of an objec-
tive function in offline training. At prediction time, this method consults the learned
model to estimate the descent direction, allowing the usage of any non linear objec-
tive function. Cao et al. [4] have presented an appearance-based method for tracking
facial expression. In their work, they have used regression analysis for modelling the
correlation between the feature space and the 3D positions of a face shape model.

3 The baseline method

For the purposes of studying and evaluating an alternative method for constructing the
objective function of model-based hand-trackers, we used the work of Oikonomidis
et al. [13]. In that work, the authors present a model-based approach for recovering
and tracking the full configuration of a human hand with 27 DOFs. The problem is
formulated as an optimization problem seeking the best solution in the configuration
space of 27 dimensions. The methodology can be divided into 3 main components.

— Observation: Responsible for acquiring input from the sensor and pre-processing
data. At the pre-process stage, it detects and isolates all the areas with skin color [2].

— Hypothesis evaluation: For each hypothesis made in configuration space its discrep-
ancy to the observed hand pose must be evaluated. This component is responsible
for quantifying this discrepancy by considering the visual discrepancies in feature
space. To estimate the appearance of each hypothesis, rendering techniques are
used to project the hypothesis in the feature space. To achieve this, the hand shape
and its kinematic model are supplied to the rendering pipeline.

— Optimization: Performs optimization on solution space in order to find the hypoth-
esis with the minimum distance to the observed hand. The PSO [9] optimization
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algorithm was chosen for this task and the hypothesis evaluation component is used
to score all candidates during the optimization process.

Figure 1 (left) illustrates a high-level flow diagram of the methodology followed in [13].
The objective function defined in [13] receives the configuration of the hypothesized
hand 4 and the visual observation model of the tracked hand O and quantifies their
discrepancy as:
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The first term of Eq. (1) measures the difference between depth maps of an observed
and a hypothesized hand pose. The second term of Eq. (1) performs a comparison of
the segmented region of the hand with the corresponding map of the hypothesis. To
perform the comparison, a mapping of the hypothesis & to feature space is applied by
means of rendering. Finally, the third term adds a penalty to kinematically implausible
hand configurations by penalizing adjacent finger interpenetration. For more details in
that approach the reader is referred to [13].

4 Methodology

In this work, various simple features are computed to create a vector of scalar feature
discrepancies. Then, by using regression methods, the correlation between the vector of
feature discrepancies and the frue distance is modeled and a learned function E; (.) is
defined to replace baseline objective function E(h,O) (Eq. (1)). Figure 1 (right) shows
how the new E,,;(.) function is integrated in the baseline method. The proposed method
consists of three-steps, (a) create a set of algorithms to calculate per feature discrepancy,
quantified in a scalar variable (Sec. 4.1), (b) construct a dataset that will be used to train
and evaluate the performance of various objective functions (Sec. 4.2) and, (c) train a
machine-learned function using the dataset from the previous step. This function, will
form the new objective function E,,; (Sec. 4.3).

4.1 Features and their comparison

We consider a number of features as well as functions D;(O, k) that measure the dis-
crepancy of each of the feature between the observation O and a hypothesis A. In the
following, o, is the depth map of the observation, o is the skin map segmented using
skin color detection, and r, is the rendered depth map of hypothesis 4. In all cases N is
the total number of pixels of the feature maps.

Sum of depth differences D;(.) Depth discrepancy is very informative of the correla-
tion between two poses. Unlike the baseline method, we define it without any data type
of post-processing (e.g., clamping etc):

Di(0,h) =Y |04 —ral- )
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Variance of depth distances D,(.) This provides another statistical perspective of the
depth discrepancy and is defined as:

D3(0.1) = \/Efou—ra)* )

Occupied area D3(.) This is defined as the difference of the areas (in pixels) covered
by the segmented hand observation and hypothesis The area is calculated based on the
corresponding depth maps as the number of non zero-valued pixels:

Y 1—- Y 1.

pixel(04)#0 pixel (rq)#0

Accuracy of the skin map D4(.) Measures the compatibility between the observed
skin color map and that of the hand hypothesis. This is quantified as the F'1 measure
between the two maps as:

D4(0O,h) =2TP/(2TP+FP+FN), 5)
where TP =Y 04 Arq, TN =Y —04 \N—rg and FN =Y 04 \ —ry.
Depth map edges Ds(.) Edges are computed with the Canny edge detector [3] result-
ing in the edge maps o, and r, for observation and hypothesis, respectively. Then the

Euclidean distance map (¢, distance transformation) o, is generated over the edge map
0., using [7]. A scalar value is the computed as:

Ds(0,h) =Y ocqAre. (6)

Hand contour D¢(.) The method used in feature discrepancy Ds(.) is also applied
to compare contours rather than skin colored regions. Specifically, the oy map and the
binary mask r,, that corresponds to the occupied pixels of r; are used to generate the
edge maps of the observation and the hypothesis. Thus,

Dg(0,h) =Y 0ga Nra, (7

where oy, is the distance transform of oy.

4.2 Dataset

Given two hand poses &y and hg we define their true distance A (hq, hg) as

1 37
A(hocahﬁ):3772||pi(ha)_l’i(hﬁ)||' ®)
i=1

A(hg,hg) is the averaged Euclidean distance between the centers of the 37 primitive
shapes p; comprising the hand model [13].
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A dataset with examples of compared hand poses is needed for modeling the cor-
relation between feature discrepancies and true distance. Every example in this dataset
consists of the feature discrepancy vector F; and the true distance A; between an ob-
served hand model and a hypothesis. To create a dataset, the search space of the op-
timization procedure must be sampled appropriately. The size of this space is huge
to permit dense sampling. Therefore, two different sampling strategies are introduced.
The first one uses a low-discrepancy sequence to select hand poses quasi-randomly. The
second samples densely around the area that is mostly used during optimization.

Sampling with low-discrepancy sequence: The advantage of using low-discrepancy
sequences is that they offer more uniform sampling of a multidimensional space, even
for a few samples. Several such algorithms have been developed. In this paper we use
the Sobol sequence [16]. The sampling procedure is performed in the following steps:
(a) Create a set P of n quasi-random hand pose configurations (b) Generate the feature
maps py and p; (depth, skin map) for every hand pose in P and (c) for all possible
combinations of P set, generate an example in the dataset that consists of the the true
distance Ay and the F; feature discrepancies vector calculated by the D;(.) functions.
The bounds of each dimension are selected based on the usable frustum of the Kinect
sensor and the possible movements of hand joints based on anatomical studies [1]. In
particular, for the 27-DOF parameters of the hand pose the boundaries of the global
position are selected so that the hand is always inside the perspective frustum. The
boundaries of each finger are the same as the boundaries of the PSO optimization mod-
ule in baseline method. In the special case of global orientation, another quasi-random
algorithm is used to create random quaternions.

Sampling biased to optimization: The previous method provides a good strategy for
uniformly sampling the search space. However, in practice, the optimization module of
the baseline method considers solutions close to the actual one. This happens because
the particles of PSO are distributed around the previous solution of the previous frame.
Therefore, a second sampling strategy is proposed that samples the search space where
the baseline method usually searches. To do so, we use the logs of previous hand tracked
poses and the particles that PSO considered.

4.3 Regression Model

E,.i(.) (Eq. (9)) is constructed by modelling the fraining dataset that was created using
either of the methods described in Sec. 4.2. That is, given the outcomes of D;(.) func-
tions (Sec. 4.1) we need to come up with a function E,;(.) that approximates as closely
as possible the true distance A(.)

Eml:f(Dl(')7D2(~)7"'5Dn(~)) ()]

Different regression analysis algorithms have been developed to find the correlation be-
tween parameters on a dataset, depending on the nature of their relation. In our problem
formulation, we have employed and experimented with four different models, (a) linear
model using mean squared error, (b) polynomial model of 2" degree, (c) polynomial
model of 3 degree and (d) random forests with 6 sub-trees.
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Fig. 2: Performance of models when trained on dataset that contained only one feature,
compared to performance when trained on all features simultaneously.

5 Experimental Evaluation

The experimental evaluation of the proposed approach was performed based on both
synthetic and real data. All experiments ran on a computer equipped with a quad-core
intel i7 930 CPU, 16 GBs RAM and the Nvidia GTX 580 GPU with 1581 GFlops
processing power and 1.5 GBs memory.

5.1 Evaluation on synthetic data

We evaluated the performance of tracking on a synthetic data set that was created using
recorded real-life hand motion. Having such a dataset, we evaluate the performance of
a tracker by measuring the error between the ground truth and the solution proposed by
the tracker using the A(.) function in Eq. (8).

Regression models performance: We first evaluate the performance of each feature
D;(.) depending on the employed regression model. For this test we trained the four
proposed models (Section 4.3) using only one feature discrepancy function D;(.) and
using simultaneously all six D;(.) functions. In all cases the models were trained on the
same training dataset and were evaluated on the same ground truth dataset. The PSO
was configured to 64 particles and 25 generations. Figure 2 illustrates the results of
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this test. Note that the combination of all features produced better results than using
any single feature. Using only one feature resulted in almost the same accuracy for all
D;(.) functions except for D3(.) which showed reduced performance. It is interesting
that the random forest algorithm had different performance compared to other models
when using one D;(.) function or all six combined. Specifically, it was significantly
outperformed by all other closed form algorithms when using only one feature. Still, it
had better performance than all other algorithms when using all D;(.) functions together.

Tracking Performance: We evaluated different configurations for the regression model,
the training dataset and the PSO algorithm. More specifically with respect to the regres-

sion model we considered (a) a linear model (b) 2" degree polynomial and (c) random

forests. For the training dataset we employed one with 4096 poses using quasi-random

sampling and a second one generated on previous tracking logs. PSO ran with 5, 10,

15, 20, 25 generations and 8, 32, 64 particles. Due to the stochastic nature of PSO, for

each configuration, the test was run 20 times and the mean error was considered. The

error was measured in mm using the A (.) function Eq. 8.

Figure 3 (left) shows tracking accuracy for the training dataset generated by guasi-
random sampling. The baseline method has 10.7mm minimum error which is the best
for all cases. However, a simple linear method with no prior knowledge of the problem
complexity is only 8mm worse than the baseline method. The polynomial method has an
error of 28.0mm. The explanation for this is that the polynomial function was over-fitted
on the dataset which had more samples at long distances as explained in Section 4.2.
This led to poor generalization at small distances which are extensively searched by the
PSO. Finally, the Random Forests algorithm had the worst performance with 100.4mm
minimum error and 1500mm maximum error. Random Forests make no assumption
of the modelled space which makes them a bad predictor for areas where no training
samples exist.

Figure 3 (right) shows the same test but using the training dataset generated from a
previous tracking log. The major difference with Figure 3 is that all regression models
have improved performance on low PSO budget. For higher PSO budget configura-
tions, optimization performance varies in relation to the regression model used. More
specifically, both the linear and the polynomial regression models perform worse than th
previous datasets but now polynomial performs better that the liner model. In contrast,
Random Forests have improved performance. This is expected as this dataset includes
examples of poses that are not that far apart, so Random Forests managed to learn the
behaviour of the objective function in that area of the pose space.

The results of this test show that the proposed method is sustainable and can, to
some degree, replace the manual procedure of designing an objective function. At the
same time, it has also been shown that the generation of a training dataset plays a key
role on performance and should not be overlooked.

6 Discussion

In this work, we acknowledge the importance of the structure of the objective function
on the optimization problem and the difficulties one has to face in order to construct
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Fig. 3: Tracking performance tested on the ground truth “cooljason” dataset. Models
were trained on dataset generated by 4096 quasi-random poses (left) and on the tracking
logs using the objective function (right).

a function that performs well within the problem. The goal of this work was to find a
systematic, automated method to construct such an objective function without a deep
knowledge of the problem at hand. To apply and evaluate our method, different regres-
sion algorithms were tested on two different training dataset generation techniques. We
evaluated the influence of several feature comparison functions D;(.) isolated against
each tested regression model. The experiments showed that all D;(.) functions could
approach the solution but the performance of their combination was by far the best. An-
other interesting result is that the Random Forests algorithm used for regression analy-
sis was more effective in multi-dimensional space than any of the other methods. In the
last step of evaluation, we measured the performance of hand-tracking by replacing the
baseline objective function with the automatically estimated objective function E,,[(.).
For this experiment we tested multiple configurations of the PSO algorithm, regression
models and training dataset generation approaches. It has been verified that none of the
configuration profiles managed to outperform the baseline objective function but many
profiles approached competitive results. This is quite important, especially considering
the reduced demands of expertise on the problem of hand tracking. Finally, we should
mention that this method is not constrained to the problem of hand-tracking but can be
used in any optimization problem that depends on complex objective functions.
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