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Abstract

We present a model-based, top-down solution to the problem of tracking

the 3D position, orientation and full articulation of the human body from

markerless visual observations obtained by two synchronized RGBD cameras.

Inspired by recent advances to the problem of model-based hand tracking [15],

we treat human body tracking as an optimization problem that is solved using

stochastic optimization techniques. We show that the proposed approach

outperforms in accuracy state of the art methods that rely on a single RGBD

camera. Thus, for applications that require increased accuracy and can afford

the extra complexity introduced by the second sensor, the proposed approach

constitutes a viable solution to the problem of markerless human motion

tracking. Our findings are supported by an extensive quantitative evaluation

of the method that has been performed on a publicly available data set that

is annotated with ground truth.
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1. Introduction1

The estimation of the articulated motion of the human body is very im-2

portant to a number of real world applications, ranging from surveillance3

to game design and human computer interaction. It is considered to be a4

difficult problem because of its high dimensionality and the variability of the5

tracked person regarding appearance, body dimensions, etc. A number of6

practical approaches simplify or even avoid these problems by using special7

hardware or by interfering with the subject and/or the environment by means8

of visual markers or full body suits [25]. However, unobtrusive, markerless9

tracking is definitely preferable since it does not interfere with the environ-10

ment, the subject and its actions. The methods that use markerless visual11

data as their only input fall into two basic categories, the top-down and12

the bottom-up ones. Top-down approaches can provide accurate, physically13

plausible solutions at the cost of a high computational complexity. Bottom-14

up methods are typically faster, but rely on a discrete set of training poses15

whose selection determines the accuracy of the obtained results.16

In this paper, we propose a model-based, top-down solution to the prob-17

lem of tracking the 3D pose and articulation of a human body. This is for-18

mulated as a optimization problem that minimizes the discrepancy between19

the 3D occupancy of hypothesized instances of a human body model and20

the volume reconstructed from the observations. The input to the method21

comes from two wide baseline, extrinsically calibrated, off-the-shelf RGBD22

sensors [27] whose depth maps are fused to give rise to the required volumetric23

representation of the human body. The required volumetric representation24

can also be obtained by computing the visual hull of a human body figure25

through standard techniques [24] employing a network of multiple, conven-26

tional cameras. Nevertheless, the setup of two RGBD cameras is preferable27

due to its lower cost and complexity.28

Optimization is performed based on an a stochastic method (Particle29
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Swarm Optimization - PSO) [9]. We demonstrate experimentally the accu-30

racy achieved by the baseline PSO (bPSO) optimization method that bor-31

rows directly from recent advances on the problem of tracking the articulated32

motion of the human hand [15]. We also propose a new variant called per-33

turbed PSO (pPSO) which systematically perturbs the solutions provided34

by bPSO. We demonstrate that pPSO outperforms bPSO. We also com-35

pare both bPSO and pPSO with a widely employed method [17] which we36

will refer to as OpenNI for estimating the human skeleton based on a single37

RGBD camera. Experimental results show that compared to OpenNI, the38

proposed pPSO method provides more accurate results. Thus, in applica-39

tions where increased accuracy is worth the extra complexity introduced by40

the second sensor, pPSO is the preferred choice. On the other hand, both41

bPSO and pPSO, being model-based tracking approaches, require knowledge42

of the parameters of the human body and its 3D pose in the first frame of a43

sequence. To address these practical problems, we also propose and evaluate44

another variant, called HYBRID, which combines pPSO and OpenNI, aiming45

at combining the merits of both in a single method.46

The rest of the paper is organized as follows. Section 2 reviews existing47

approaches to the problem of markerless human motion capture and track-48

ing. Section 3 describes the proposed approaches, by detailing the human49

body model employed, the observation model, the objective function used to50

compare hypotheses and observations as well as the optimization methods51

used to minimize it. It also presents how pPSO and OpenNI are combined52

into the HYBRID method. Section 4 presents the experimental evaluation of53

the proposed method in a standard dataset that in annotated with ground54

truth. Finally, Section 5 summarizes the paper by drawing the main conclu-55

sions from this research.56
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2. Related work57

Because of its high theoretical and practical interest, human motion cap-58

ture based on vision has been the theme of numerous research efforts. The59

complete review of these works is beyond the scope of this paper. The in-60

terested reader is referred to [11, 19] where extended surveys are provided.61

More recently, Chen et al. [2] surveyed methods for human motion estimation62

based on depth cameras.63

Most commercial solutions to the problem of human motion capture make64

use of special markers that are placed on carefully selected (e.g., joints) points65

of the subject’s body. In this paper we are interested in markerless motion66

capture techniques because, being unobtrusive, present obvious practical ad-67

vantages over the marker-based solutions.68

Markerless human motion capture techniques may be classified into two69

broad classes, the bottom-up and the top-down ones. Bottom up meth-70

ods [22, 1, 20, 18, 21] extract a set of features from the input images, and71

try to map them to the human pose space. This is achieved with a learning72

process that involves a typically large database of known poses that cover as73

much as possible the whole human poses search space. The type of descrip-74

tors employed, the mapping method and the actual poses database are the75

factors determining the accuracy and efficiency of these methods. Due to76

their nature, most of their computing time is spend on the offline processes77

of database creation and mapping, while the online performance is rather78

good.79

Top-down approaches [4, 6, 5, 26, 3, 28] use a fully articulated model of80

the human body and try to estimate the joints angles that would make the81

appearance of this model fit best the visual input. The model is usually made82

of a base skeleton and an attached surface. In some methods, complex surface83

deformations are allowed [6]. Having defined a model of the human body,84

different pose hypotheses can be formed. A typical top-down method consists85
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of generating hypotheses and comparing them to the input visual data. The86

comparison is performed based on an objective function that measures the87

discrepancy between a pose hypothesis and the actual observations. The88

minimization of this objective function determines the pose that best explains89

the available observations. Typically, this is formulated as an optimization90

problem that amounts to the exploration of a very high dimensional search91

space. Kinematic constrains based on physiological data are often applied92

to the model, excluding non realistic poses and reducing significantly that93

search space. Constraining not only the pose but also the motion itself can94

further help reducing the complexity, for example with Kalman filters [10].95

However, this means a reduced generality and the necessity to build and learn96

human motion models.97

The main advantage of top-down methods is their flexibility. The em-98

ployed model can be changed easily, and the whole search space can be99

explored without any form of training. The price to pay for this flexibility100

is the computational cost of the online process. Due to their generative na-101

ture, most of the computational work needs to be performed online. Two102

more shortcomings is the requirement for knowing the body model parame-103

ters of each individual and the requirement of providing an initial pose to be104

tracked.105

Instead of trying to estimate the full body model in a single step, a106

variety of methods first identify body parts. Then, they either report them107

as the solution or they further combine them into a full model [20, 21].108

As in the case of hand tracking and according to the related categorization109

of Oikonomidis et al. [16], we can identify disjoint evidence methods and110

joint evidence methods [4, 6, 5, 26, 3, 28]. Joint evidence methods handle111

effortlessly collisions, self occlusions and all part interactions while disjoints112

evidence methods have to handle them explicitly.113

This paper presents a model-based, top-down pose estimation method114
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that employs a single hypothesis. Furthermore, it is a joint-evidence method.115

The 3D body pose recovery is treated as a minimization problem whose ob-116

jective function quantifies the discrepancy between the 3D structure and117

appearance of hypothesized 3D body model instances, and visual observa-118

tions of a human body. Observations come from two off-the-shelf Kinect119

sensors. Optimization is performed through a variant of PSO tailored to120

the needs of the specific problem. Zhang et al. [28] proposed a solution to121

articulated human motion tracking that is also based on two RGBD sensors.122

Their approach differs in the observation model that is being used and in123

the employed optimization technique. Other versions of PSO have been em-124

ployed in the past for human body pose tracking [26, 3, 12], as well as for125

multicamera-based and RGBD camera-based hand pose estimation [14, 15].126

For example in [26] body-pose hypotheses are used to render silhouettes that127

are compared with respective observations. They adopt a hierarchical ap-128

proach to the problem and employ a PSO variant to solve it. Their approach129

differs from our methodology both in the observation model and in the opti-130

mization strategy. In particular, we propose and present a novel PSO variant131

(pPSO). We also present another variant, called HYBRID, which combines132

the pPSO with the OpenNI method and lifts the requirements for knowing133

the body model parameters and the initial body pose.134

An extensive evaluation on a standard, publicly available data set anno-135

tated with ground truth shows that pPSO outperforms the baseline (bPSO)136

optimization method and is more accurate than an extensively used, bottom137

up OpenNI approach [17] to the same problem. Finally, the HYBRID ap-138

proach performs slightly worse compared to pPSO with respect to accuracy.139

This is because pPSO operates with more accurate, manually derived human140

body models, while HYBRID estimated them automatically, but with some141

error. Nevertheless, HYBRID is far more practical as it avoids cumbersome142

initialization processes.143
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3. Tracking human body articulations144

The input to the proposed method is a volumetric representation of the145

human body (Figure 1(e)). This can be obtained by two RGBD sensors that146

are configured in a wide baseline setup, or by computing the visual hull of the147

human body based on a number of conventional RGB cameras. The first op-148

tion is preferable because it involves fewer cameras and because the resulting149

volumetric representation describes more accurately a 3D shape compared150

to its visual hull. The depth information also facilitates the segmentation of151

the human figure from the rest of the environment.152

The adopted 3D human model comprises of a set of appropriately as-153

sembled geometric primitives. Each body pose is represented as a vector154

of 35 parameters. Body articulation tracking is formulated as the problem155

of estimating the 35 body model parameters that minimize the discrepancy156

between the body hypotheses and the actual observations. To quantify this157

discrepancy, a representation of the volume occupied by a given body model158

is produced and compared to the volumetric representation generated by the159

two RGBD cameras. An appropriate objective function is thus formulated160

and a variant of PSO is employed to search for the optimal body configura-161

tion. The result of this optimization process is the output of the method for162

the given frame. Temporal continuity is exploited to track the body articu-163

lation in a sequence of frames. The remainder of this section describes these164

algorithmic steps in more detail.165

3.1. Observing a human166

At a certain moment in time, the input to the method is a set of two167

640× 480 depth images of a human, as provided by two intrinsically and ex-168

trinsically calibrated RGBD sensors [27]. Figure 1(a), (b) and (c), (d), show169

the RGB and depth information acquired by two such sensors. Foreground170

is segmented through change detection that is performed on the depth in-171
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formation. More specifically, depth views of the environment without and172

with the human are available. Image points that exhibit pixelwise depth173

differences that exceed a certain threshold are detected and attributed to the174

scene foreground. The threshold used in this process is determined based175

on a study of the depth error estimation of the Kinect [23]. The resulting176

largest foreground blob in each depth image is kept for further consideration.177

A conservative estimation of the human spatial extend is performed by ap-178

plying a closing morphological operator to these blobs with a circular mask179

of radius r = 1. Due to sensor limitations, the depth of some points that180

lie within the detected foreground is unknown. However, it is necessary to181

give at least an approximate depth value to these points in order to produce182

a correct 3D reconstruction that is needed for further processing. Thus, the183

depth at such points is set equal to the median of the non-null depths of184

points within a radius of 2 pixels. Averaging instead of median filtering was185

also tested, giving rise to negligible differences in accuracy. The depth values186

of the background pixels is set to infinity.187

A 3D space of 150× 150× 150 voxels is then considered. Each voxel is a188

cube with side equal to sv = 15mm resulting in a volumetric representation189

of a 3D space of 2.25 × 2.25 × 2.25 meters. The center of this space is190

set equal to the mean position of the 3D points located onto the largest191

foreground blob of one of the two RGBD cameras. Each voxel of this space192

is set to 1 representing the initial assumption that the whole voxel space193

is fully occupied by the human figure. Then, the depth values of the two194

extrinsically calibrated RGBD cameras are used to carve out voxels that are195

not occupied. More specifically, for each 3D voxel v we compute its Euclidean196

distance d from an RGBD camera and compare this to the distance d̂ that is197

estimated from the depth values provided by that camera. If d < d̂ then this198

voxel should be carved out and takes the value of 0. This test is performed199

for both RGBD views. At the end of this process, voxels with a value of 1200

8



provide the volumetric representation ov of the human. An example of such201

a representation is shown in Figure 1(e).202

We also compute the outer surface os of ov. On os, we apply a 3D distance203

transform using a spherical kernel of a radius equal to 7 voxels. In the204

resulting map osd, voxels that also belong to os have a value of 1, voxels that205

are more than 7 voxels apart from any surface voxel have a value of 0 and206

the rest of the voxels have a value from 1 to 0 that is inversely proportional207

to their distance (0 to 7 voxels) to the closest voxel of os.208

The observation model o = {ov, osd} that feeds the rest of the process209

consists of ov and osd.210

3.2. Modeling a human211

The employed human model consists of a main body, two legs, two arms212

and the head (Figure 1(f)). The main body is modeled with two articulated213

elliptic cylinders and three ellipsoids for the caps and the junction. The head214

is made of one cylinder and a sphere. Each arm consists of three spheres and215

two truncated cones, while a leg has two such cones, two spheres for the knee216

and the ankle, respectively, and one ellipsoid for the foot. In Figure 1(f), the217

human model is depicted with color-coded geometric primitives (yellow for218

elliptic cylinders, red for ellipsoids, green for spheres and blue for truncated219

cones). For the bPSO and the pPSO variants, the parameters of these primi-220

tives (lengths, radii, etc) are manually set. For the HYBRID approach, these221

are automatically estimated based on the output of the OpenNI method.222

The kinematics of each arm is modelled using six parameters encoding223

angles. Two parameters determine the shoulder position with respect to the224

torso, three parameters the upper arm with respect to the shoulder and one225

parameter the elbow with respect to the upper arm. Six parameters are also226

used for a leg, three for the root, one for the knee and two for the ankle. Two227

parameters are used for the head, and three parameters for the articulation228
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between the torso and the hip. The global position of the body is represented229

using a fixed point on the hip. The global orientation is parametrized using230

Euler angles. The above parametrization encodes a 35 degrees of freedom231

(DOFs) human model with each DOF represented by a single parameter.232

3.3. Evaluating a human hypothesis233

Having defined the parametric 3D model of a human, the goal is to esti-234

mate the model parameters that are most compatible to the visual observa-235

tions (Section 3.1). To do so, given a human pose hypothesis h, a volumetric236

representation hv of the human model at pose h is generated through graph-237

ics rendering. The volume hv is rendered in a voxel space with identical238

characteristics to those of ov. A distance function Dv(hv, ov) is defined as239

follows:240

Dv(ov, hv) = 1− 2
∑

(ov ∧ hv)∑
(ov ∧ hv) +

∑
(ov ∨ hv)

. (1)

Intuitively, Dv quantifies the volumetric discrepancy between the observation241

volume ov and the hypothesis volume hv. In Eq.(1), symbols ∧ and ∨ denote242

logical operations between the binary values of corresponding voxels and243

summations are over the set of all voxels. When the volumes hv and ov are244

disjoint, the quotient in Eq.(1) is equal to 0. If these volumes are identical245

and coincide, the quotient is equal to 1. Thus, Dv is equal to 0 if volumes246

coincide and 1 if they are totally disjoint.247

Besides volumetric discrepancy, we also compute a surface alignment dis-248

crepancy. To define this, we first compute the outer surfaces hs of the vol-249

umetric representation hv of the hypothesis h. Then, the surface alignment250

discrepancy Ds(osd, hs) is defined as:251

Ds(osd, hs) = 1− 1

np

∑
(osd · hs). (2)

In Eq.(2), the sum is over all voxels and · denotes standard multiplication of252

the values of the corresponding maps. osd is defined as in Section 3.1. Thus,253
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Ds takes a value of 0 if the surface of the hypothesis coincides perfectly with254

that of the observation.255

Given the distance functions Dv and Ds, it is now possible to define the256

function E(o, h) that measures the discrepancy between the observation o257

and a given body pose hypothesis h:258

E(o, h) = Dv(ov, hv) + Ds(osd, hs). (3)

The minimization of E(o, h) with respect to h yields the body pose that best259

(as quantified by the objective function) explains the observations. The next260

section details how this minimization is actually achieved.261

It should be noted that the reconstructed volume of the subject is a262

superset of his/her actual volume. This is a direct effect of the fact that 3D263

reconstruction is performed with a space-carving-like method, which cannot264

handle occlusions. As an example, assume that a human is observed from265

sideways and the volume between his arm and torso cannot be reconstructed,266

as the arm occludes this space. Having two RGBD cameras in a wide baseline267

configuration minimizes this type of effects but does not eliminate them. This268

is exactly why the objective function of the optimization process employs269

the term Ds(osd, hs) that is related to the coverage of the surface of the270

reconstruction. As the 3D reconstruction is a superset of the actual volume,271

solutions that “float” in the 3D reconstructed space are equally good in terms272

of volume coverage. For the case of the previous example, these are all arm273

configurations that occupy some of the reconstructed volume. From those,274

the additional surface coverage term selects the one that best matches also275

the visible surface of the 3D reconstruction. If the 3D reconstruction did not276

suffer from these extra, non-carved voxels, then the volume term would be277

enough to guide optimization and the surface term would not introduce any278

further useful constraints.279
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3.4. Particle Swarm Optimization280

Particle Swarm Optimization (PSO) is a popular optimization algorithm281

that was introduced by Kennedy and Eberhart in [8, 9]. PSO looks for the282

optimum of an objective function employing a population of entities that283

evolve according to rules that emulate social interaction.284

Cenrtal to PSO are the notions of particles and generations. A particle285

holds a position/candidate solution in the parametric space where the search286

is performed. Each particle can estimate the fitness of its position by eval-287

uating the objective function at that point. Each particle is aware of the288

position at which it has achieved its own best objective function value. It289

also knows the global best position that has ever been achieved by any of the290

rest of the particles. Two forces are defined that attract a particle to these291

two positions. The particles evolve themselves by moving in the search space292

under the previously described forces in iterations called generations. The293

details of this process are provided in [15].294

It has been observed that given enough particles and generations, the295

swarm reaches the global minimum of the objective function. The required296

number of particles and generations is problem-dependent and, thus, experi-297

mentally identified. A number of studies have shown that PSO is very compe-298

tent in optimizing complex, multidimensional, multimodal, non-differentiatable299

objective functions. The product of the number of particles to that of gener-300

ations determines the computational requirements of the optimization pro-301

cess. This is because this product represents the number of objective function302

evaluations that constitutes the most computationally demanding part of the303

algorithm.304

Typically, the particles are initialized at random positions and zero veloc-305

ities. Each dimension of the multidimensional parameter space is bounded in306

some range. As in [15], if during the position update a particle has a velocity307

that forces it to move to a point po outside the bounds of the parameter308
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space, that particle effectively moves to the point pb inside the bounds that309

minimizes the distance |po − pb|.310

3.5. Baseline PSO (bPSO)311

In this work, PSO operates on the 35-dimensional 3D body pose pa-312

rameter space. This also implies that the intrinsic human model parameters313

(lengths and radii of the primitives of the human model) need to be known in314

advance. The objective function to be optimized (i.e., minimized) is E(O, h)315

(Eq. 3) and the population is a set of candidate 3D body poses hypothesized316

for a single frame. Thus, the process of tracking a human requires the solu-317

tion of a sequence of optimization problems, one for each acquired frame. By318

exploiting temporal continuity, the solution over frame Ft is used to generate319

the initial population for the optimization problem for frame Ft+1. More320

specifically, the first member of the population href for frame Ft+1 is the321

solution for frame Ft. This implies that for the first frame F0, a human body322

configuration close to the actual one needs to be provided. The rest of the323

population consists of perturbations of href . The variance of these perturba-324

tions is experimentally determined and depends on the characteristics of the325

observed motion and the image acquisition frame rate. The optimization for326

frame Ft+1 is executed for a fixed amount of generations. After all genera-327

tions have evolved, the best hypothesis hbest constitutes the solution for time328

step t + 1.329

3.6. Perturbed PSO (pPSO)330

It has been verified experimentally that bPSO is competent in estimat-331

ing the 6D global pose of the human body. However, the estimation of the332

29 remaining parameters that are related to limb angles is not equally sat-333

isfactory. The swarm often gets stuck to local minima. To overcome this334

problem and to increase accuracy, we propose a PSO variant which we call335
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pPSO that performs systematic perturbations/randomization on the articu-336

lation parameters. More specifically, the human body model is decomposed337

into seven branches, as shown in Figure 2. Each branch consists of a set338

bp of primitives and has a set bd of internal articulation parameters. pPSO339

operates exactly as bPSO for a percentage of its generations. This percent-340

age has been identified experimentally to be 40%. After those generations,341

each particle is perturbed in a very specific way. First, one branch is ran-342

domly selected. Then, only the parameters of this branch are perturbed343

and replicated in the global particle representation. Additionally, the local344

(particle-dependent) best position for this particle is reset to the new particle345

position. After each and every particle is perturbed in this way, all particles346

are left to interact as in the bPSO scheme for gp generations. In all reported347

experiments, the value of gp was set to 6 generations. The process is repeated348

until the rest 60% of the PSO generations are lapsed.349

Two different perturbation strategies have been identified and tested. In350

the first one, samples are drawn from a uniform distribution in the range351

of minimum/maximum allowed values of the corresponding parameter. In352

the second case, samples are drawn from a Gaussian distribution centered353

at the particle’s previous position and with a standard deviation equal to354

one sixth of the range of the corresponding uniform distribution. It has355

been verified experimentally that both result in the same tracking error but356

the error variance is slightly higher for the case of Gaussian perturbation.357

In fact, Gaussian perturbation performs better on slow actions, but worse358

on fast actions. This can be explained by the fact that Gaussian sampling359

performs a more local search in the parameter space compared to the uniform360

sampling, making it more difficult to recover from track loses.361

Special care should be taken when a particle is perturbed with respect to362

its torso or hip branches. As shown in Figure 2, these two branches are not363

leafs in the kinematics hierarchy. Thus, the perturbation of these branches364
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affects the parameters of the rest of the branches, too. For this reason, as365

soon as these branches are perturbed, the global human kinematics model366

consistency needs to be enforced. This is achieved by employing inverse367

kinematics. Consequently, a perturbation on the torso or the hip will in fact368

influence most, if not all the 35 parameters.369

The particular scheme for perturbing particles/candidate solutions is jus-370

tified by the study of the morphology of the human body and the objective371

function of the optimization problem. The human torso accounts for most372

of the body’s volume and, therefore, for the largest part of the objective373

function. Fine tuning a solution requires checking alternative configurations374

of the human limbs that are much smaller in size and less influential to the375

objective function. Thus, a targeted particle perturbation that affects only376

a branch at a time gives more chances to the algorithm to explore the true377

minimum of the objective function.378

Another reason why perturbation proves valuable stems from the coarse-379

ness of the employed model. Consider, for example, the case in which the380

arms of a subject are stretched straight and turned around at the shoulder381

joint for 90 degrees. In this particular case, the method will probably loose382

tracking of the roll around the shoulder joint because this motion does not383

produce some significant, observable difference in the volume occupied and384

the surface covered by the subject. Due to the perturbation step of pPSO,385

several solutions relatively far from the computed one will be tested. This386

prevents pPSO from getting trapped in local minima and enables the effective387

tracking of subsequent, unambiguous motions.388

3.7. Hybrid human body pose tracking (HYBRID)389

As stated is sections 3.5 and 3.6, both bPSO and pPSO require390

• Knowledge of the human body shape parameters (i.e., lengths, radii of391

the geometric primitives comprising the human body model).392

15



• A coarse estimation of the human body pose for the first frame of a393

sequence.394

These requirements hinder the practical exploitation of these algorithms be-395

cause their fulfilment is associated with considerable effort. In order to alle-396

viate this problem, we capitalize on the OpenNI appearance-based method397

for human skeleton estimation [17] to come up with a new variant, which we398

call HYBRID and which operates as follows.399

At a first stage, given an input RGBD sequence of an articulating human,400

the OpenNI method is employed to estimate the articulation. The result of401

this process is twofold:402

1. The lengths of the parts of a skeletal model of the human body for each403

frame of the sequence.404

2. An estimation of the human body pose for each frame of the sequence.405

Based on (1), we compute a human body model of constant shape pa-406

rameters that consists of primitives that are compatible to those estimated407

by the OpenNI method. More specifically, on top of the 35 mobilities of408

our model, 9 parameters (constant for each sequence) are added to be able409

to fit the human body model to a particular subject. These are the upper410

body length (UBL), the lower body length (LBL), the shoulders-neck dis-411

tance (SND), the head neck distance (HND), the legs-hip distance (LHD),412

the back-arm length (BAL), the forearm length (FAL), the back-leg length413

(BLL) and the front-leg length (FLL). Table 2 presents ground truth values414

as well as estimations of these parameters for a number of subjects. The415

parenthesis next to the name of each parameter refers to the corresponding416

body segment(s) in Figure 2.417

For a certain sequence, the human skeletons estimated by OpenNI provide418

the 3D positions of human body joints and extremities. For each valid frame,419

the aforementioned distances are calculated (9 parameters, 15 distances, since420
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some appear twice for the two arms and legs). The median value for each421

parameter across all the sequence is selected as the representative one. Other422

dimensions (i.e, radii of primitives) are set accordingly, based on anatomical423

studies.424

These parameters are then used to define the human body model and425

inverse kinematics fits the model to the OpenNI solution for the first frame.426

Then, pPSO is employed to track the derived human model. Moreover,427

the solution suggested for each frame by OpenNI identifies a particle for428

pPSO. This has the additional advantage that in case of a tracking loss from429

pPSO, tracking can be recovered by considering the fairly accurate OpenNI430

recommendation as a candidate solution.431

4. Experimental evaluation432

The experimental evaluation of the proposed method was based on the433

Berkeley Multimodal Human Action Database (MHAD) [13]. This dataset434

features 12 human subjects.435

Figure 3 shows one frame of each subject. From this figure it can be ver-436

ified that the employed data set includes subjects of considerable variability437

with respect to age, size and body types. This is also shown quantitatively438

in Table 2.439

The subjects of the dataset perform 11 different activities (01-jumping,440

02-jumping jacks, 03-bending, 04-punching, 05-waving two hands, 06-waving441

one hand, 07-clapping, 08-throwing, 09-sit down/stand up, 10-sit down and442

11-stand up). In each sequence, each activity is repeated several times. A443

motion capture system has been used to provide ground truth information444

regarding the position of all joints in all sequences. Additionally, the activi-445

ties are recorded with a multicamera setup consisting of several conventional446

cameras as well as by two extrinsically calibrated Kinect sensors. In all447

experiments reported in this paper, the RGBD data provided by the two448
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Kinect sensors feed the proposed methods. The resulting tracking results are449

compared against the ground truth resulting from the motion capture data.450

To quantify the accuracy in body pose estimation, we adopt the metric451

used in [7]. More specifically, the distance between a set of corresponding452

3D points in the ground truth and in the estimated body model is measured.453

Each such point (four per leg, three per arm and one for the head) is marked454

in Figure 2 with a red “x”. The average of all these distances over all the455

frames of the sequence constitutes the resulting error estimate ∆. Another456

metric reports the percentage of these distances that are within some pre-457

defined threshold At. We will refer to this metric as the accuracy in human458

body pose estimation. At was set to 10cm for all experiments. For example,459

an accuracy of At = 70% for a sequence means that 70% of the joints were460

estimated at positions that are within less than 10cm from the ground truth,461

in all frames.462

Several experiments were carried out to assess quantitatively and qualita-463

tively the accuracy and the performance of the proposed human articulation464

tracking method. The goal of the first experiment was to assess the error in465

joints position estimation as a function of the computational budget devoted466

to PSO. To do so, we choose one of the sequences of the MHAD dataset that467

consists of 80 consecutive human poses showing a human performing activity468

02 (jumping jacks). The rationale for selecting this particular activity and469

sequence is that (a) it is executed in high speed and (b) it involves the whole470

body, so all body model parameters change values as a function of time.471

Thus, it is expected that this sequence constitutes a worst case scenario, at472

least among activities represented in the specific dataset.473

Figure 4 illustrates the error ∆ in joints position estimation as a function474

of the pPSO parameters (number of generations and particles per genera-475

tion). As explained in Section 3, the product of these parameters determines476

the computational budget of the proposed methodology, as it accounts for477
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the number of objective function evaluations. The horizontal axis of the plot478

denotes the number of PSO generations. Each plot of the graph corresponds479

to a different number of particles per generation. Each point in each plot480

is the average of the error ∆ for 5 runs of an experiment with the specific481

parameters. A first observation is that ∆ decreases monotonically as the482

number of generations increase. Additionally, as the particles per generation483

increase, the resulting error decreases. Nevertheless, employing more that 65484

generations and more than 200 particles results in a reduction of the error ∆485

that is disproportionally low compared to the increase in the required com-486

putational budget. For this reason, 200 particles evolving in 65 generations487

was retained in all further experiments.488

The second experiment aimed at evaluating the performance of the meth-489

ods across different human subjects. All twelve sequences showing the twelve490

different subjects performing the same activity (activity 04, boxing) were491

considered. bPSO and pPSO require knowledge of the parameters of the492

human body models as well as body configuration parameters for the first493

frame of a sequence. In our experiments, these subject-specific model pa-494

rameters and initial model configurations were estimated manually for bPSO495

and pPSO, and automatically for HYBRID, based on the results obtained by496

the OpenNI method (see Section 3.7). Additionally, the pPSO, bPSO and497

HYBRID methods were assigned exactly the same computational budget.498

Figure 5 illustrates the error ∆ and the accuracy of the pPSO and the499

HYBRID methods. For the purposes of comparative evaluation, errors and500

accuracies are also provided for bPSO and for the OpenNI skeleton estima-501

tion method [17]. Table 1 summarizes the individual errors and accuracies502

shown in Figure 5. It can be verified that the pPSO method outperforms503

all other methods in all aspects (average error, standard deviation of er-504

ror and accuracy). HYBRID outperforms the bPSO and OpenNI, showing505

that model-based optimization improves the guess made by OpenNI. Still,506
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Method Mean ∆ Std. ∆ Accuracy (%)

OpenNI 52.9 49.5 87.3

bPSO 62.2 69.5 82.3

pPSO 41.8 33.1 94.4

HYBRID 45.5 44.1 92.5

Table 1: Comparison of pPSO and HYBRID with the baseline PSO

method (bPSO) and the OpenNI method for the case of different

humans performing the same action (boxing).

HYBRID does not outperform pPSO. The reason for this is that HYBRID507

operates on automatically estimated human body models that are less ac-508

curate compared to the ones on which pPSO operates (identified manually).509

Table 2 shows characteristic distances and metrics regarding the 12 human510

subjects as measured manually (columns G) and as estimated in the HY-511

BRID algorithm (columns H). It can be verified that the body dimensions512

estimated by HYBRID deviate considerably from the actual, ground truth513

measurements.514

One interesting question that arises is how HYBRID would perform if515

it was provided with the manually estimated human body models on which516

pPSO operates. It turns out that in this case, mean ∆ is 40.9, the standard517

deviation of ∆ is 32.6 and the accuracy is 94.7%. Thus, HYBRID outperforms518

marginally pPSO in that case. The slight difference in performance between519

HYBRID and pPSO is explained by the fact that no track loss occurred520

during pPSO tracking from which HYBRID could recover.521

In a third experiment, the goal was to assess the proposed method with522

respect to different activities. For that purpose, the evaluation was performed523

on image sequences showing a single subject performing the eleven different524
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Subject S01 S02 S03 S04 S05 S06

Metric G H G H G H G H G H G H

UBL (HI) 26 19 30 21 33 21 29 20 32 22 28 20

LBL (IJ) 15 19 17 21 18 21 17 20 19 22 17 20

SND (CH, C’H) 19 15 19 15 17 14 15 15 17 16 19 14

HND (GH) 20 25 20 25 20 25 20 21 20 26 20 20

LHD (FJ, F’J) 10 9 11 9 10 8 9 9 9 9 9 8

BAL (BC, B’C’) 24 25 28 27 31 28 24 23 26 28 26 26

FAL (AB, A’B’) 23 26 25 31 26 32 24 25 25 31 24 27

BLL (EF, E’F’) 36 41 43 47 44 47 37 39 42 45 42 44

FLL (DE, D’E’) 42 37 48 42 47 43 41 35 45 42 45 41

(a)

Subject S07 S08 S09 S10 S11 S12

Metric G H G H G H G H G H G H

UBL (HI) 25 20 30 20 27 20 27 21 28 20 24 20

LBL (IJ) 15 20 18 20 15 20 16 21 16 20 21 20

SND (CH, C’H) 17 17 18 15 15 13 17 14 17 15 18 14

HND (GH) 20 20 20 21 20 17 20 24 20 25 20 24

LHD (FJ, F’J) 8 7 9 9 8 7 8 8 8 9 9 8

BAL (BC, B’C’) 22 25 24 26 23 22 27 25 26 27 25 25

FAL (AB, A’B’) 22 24 24 26 23 27 24 29 24 28 22 27

BLL (EF, E’F’) 35 39 39 40 35 42 41 43 41 44 38 43

FLL (DE, D’E’) 41 35 43 39 41 37 43 40 44 41 41 39

(b)

Table 2: Characteristic measures of the shape of the human sub-

jects of the MHAD dataset, (a) subjects 01-06, (b) subjects 07-12.

Columns (G) are the manually measured, ground truth values and

columns (H) the one estimated by the HYBRID method. The paren-

thesis next to the name of each measure refers to the corresponding

body segment(s) in Figure 2.
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Method Mean ∆ Std. ∆ Accuracy (%)

OpenNI 54.5 46.2 86.3

bPSO 50.6 48.8 89.5

pPSO 39.3 27.3 96.3

HYBRID 42.8 25.2 96.3

Table 3: Comparison of pPSO and HYBRID with the baseline PSO

method (bPSO) and the OpenNI method for the case of all actions

performed by the same subject (subject 09).

activities. Figure 6 illustrates the obtained results in a way analogous to that525

of Figure 5. Again, pPSO outperforms the rest of the methods with respect to526

the mean error ∆. It should also be noted that for actions like bending (action527

03) and sit-down/stand-up (action 09) that exhibit considerable self- and528

body-object occlusions, the proposed method performs considerably better.529

In this experiment, the HYBRID method has the smallest error variance and530

equal accuracy to that of pPSO.531

We again tested the performance of HYBRID in the case that it is fed with532

the manually estimated human body model for that subject. It turns out533

that mean ∆ is 37.9, the standard deviation of ∆ is 22.9 and the accuracy is534

98.2%. Thus, HYBRID outperforms pPSO in that case, showing that, given535

accurate models, the combination of the bottom-up OpenNI method with536

the top-down pPSO method improves the tracking performance.537

Finally, Table 4 summarizes all performed experiments. It can be verified538

that pPSO achieves a significant reduction in mean error and error variance539

compared to the rest of the methods as well as a significant increase in540

accuracy. If HYBRID is employed on the manually estimated human body541

models, then mean ∆ becomes 39.7, the standard deviation of ∆ becomes 28.4542
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Method Mean ∆ Std. ∆ Accuracy (%)

OpenNI 54.5 46.2 86.3

bPSO 50.6 48.8 89.5

pPSO 39.3 27.3 96.3

HYBRID 44.5 35.4 94.2

Table 4: Aggregate comparison of pPSO and HYBRID with the

baseline PSO method (bPSO) and the OpenNI method for all tested

sequences.

and and the accuracy becomes 96.3%. So, its performance is considerably543

improved, but it does not outperform that of pPSO.544

Figure 7 shows characteristics snapshots of the MHAD dataset and the545

skeletons that have been extracted by the pPSO, OpenNI and bPSO methods546

superimposed on the RGB frame of one of the two employed RGBD sensors.547

Finally, Figure 8 provides additional characteristic examples of the solutions548

provided by the pPSO method. A much more complete qualitative assess-549

ment of the performance of the proposed method can be performed based550

on the supplementary material accompanying this paper which is available551

at http://youtu.be/n5irgHVuFwc. It should be noted that no temporal552

smoothing has been performed between successive frames.553

The proposed method runs on a computer equipped with a 8-core Intel554

i7 950 CPU, 4 GBs RAM. On this system, the average computing time for555

our non-optimized CPU-only implementation is 20 sec/frame. However, all556

involved computations are inherently data parallel and tailored for a GPU557

implementation. This is also evidenced by the real-time performance (20 fps)558

that is achievable by GPU implementations of similar approaches for the case559

of 3D hand tracking [15].560

23

http://youtu.be/n5irgHVuFwc


5. Discussion561

We proposed a model-based method for tracking the articulated motion562

of the human body using a volumetric 3D representation that is built by563

fusing the depth measurements provided by two calibrated RGBD sensors.564

The proposed method follows a hypothesize-and-test approach that casts565

the articulated motion tracking problem into a search problem in a high-566

dimensional space. Searching is performed with a stochastic optimization567

technique, called PSO, resulting in a baseline implementation called bPSO.568

We also proposed a perturbation scheme that is applied on top of the bPSO569

solutions that results in the pPSO method. Finally, in order to raise the570

practical difficulties the limitations of pPSO with respect to its need for571

tailored human models and initialization in the first frame, we proposed the572

HYBRID method that combines pPSO with OpenNI. A series of experiments573

performed on a ground-truth-annotated data set demonstrated quantitatively574

and qualitatively that pPSO outperforms in error and accuracy the rest of575

the methods. This is even more striking in the challenging cases where the576

body configuration exhibits significant self occlusions. Thus, in situations577

where small error and high accuracy is more important that the burden and578

the overhead of using a second RGBD sensor, the proposed pPSO marker-579

less human articulations tracking method constitutes an attractive approach.580

HYBRID performs worse than pPSO because of the less accurate (yet auto-581

matic) estimation of the human body models. Still, the fact that HYBRID582

is fully automatic, is a significant advantage that, depending on application,583

might be more important than its lacking accuracy. In fact, as demonstrated584

experimentally, if HYBRID is given the chance to operate on accurate (non-585

automatically extracted) human body models, it performs comparably and,586

in some cases, better compared to pPSO.587
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(a) (b)

(c) (d)

(e) (f) (g)

Figure 1: Graphical illustration of the proposed method. Two RGB

frames ((a), (c)) and the corresponding depth maps ((b), (d)). The

volume (e) occupied by the person is reconstructed using the depth

maps. The proposed method fits the employed human body model

(f) to this volume, recovering the body articulation (g).
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Figure 2: Definition of human body branches. The perturbation of

the torso and hip branches results in changes in the parameters of

their child branches. Model points with a red “x” denote joints whose

3D position is taken into account in defining the tracking error in the

quantitative experimental evaluation of the method.
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Figure 3: The twelve subjects of the MHAD dataset.
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Figure 4: Quantitative evaluation of the performance of the method

with respect to the pPSO parameters.
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Figure 5: Quantitative evaluation of the method applied to 12 sub-

jects performing the same action (boxing). (a) Error ∆ and variances,

(b) accuracy for the proposed method (pPSO, green bars), baseline

method (bPSO, red bars), OpenNI human skeleton estimation (blue

bars) and HYBRID (purple bars).
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Figure 6: Quantitative evaluation of the method applied to 11 actions

performed by the same person. (a) Error ∆ and variances, (b) accu-

racy for the proposed method (green bars) OpenNI human skeleton

estimation (blue bars) and HYBRID method (purple bars).
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Figure 7: Qualitative comparison of the pPSO (left), OpenNI (mid-

dle) and bPSO (right) methods based on characteristic frames of the

MHAD dataset.
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Figure 8: Various configurations on different subjects evaluated by

the method.
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