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ABSTRACT

We propose an efficient method for model-based 3D tracking of
hand articulations observed from an egocentric viewpoint that aims
at supporting the manipulation of virtual objects. Previous model-
based approaches optimize non-convex objective functions defined
in the 26 Degrees of Freedom (DoFs) space of possible hand articu-
lations. In our work, we decompose this space into six articulation
subspaces (6 DoFs for the palm and 4 DoFs for each finger). We
also label each finger with a Gaussian model that is propagated
between successive image frames. As confirmed by a number of
experiments, this divide-and-conquer approach tracks hand articu-
lations more accurately than existing model-based approaches. At
the same time, real time performance is achieved without the need
of GPGPU processing. Additional experiments show that the pro-
posed approach is preferable for supporting the accurate manipula-
tion of virtual objects in VR/AR scenarios.

CCS Concepts

eComputer systems organization — Computer vision problems;
Tracking; eHuman-centered computing — Human computer in-
teraction (HCI);
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1. INTRODUCTION

Hand tracking, an actively studied problem in the field of com-
puter vision nowadays, is employed to manipulate virtual objects
in Virtual Reality (VR) and Augmented Reality (AR) appications
such as those presented in [1, 2]. Among many available means of
interaction, the human hand is distinctive in that it functions as a
natural and intuitive 3D interface through which various activities
are performed. Therefore, tracking the articulations of the hand in
3D is crucial for the success of scenarios involving the manipula-
tion of virtual objects.
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3D tracking of hand articulations is faced with challenging prob-
lems. Some computational difficulties are due to the high DoF of
the human hand and its uniform color appearance. This problem
becomes even more challenging in an egocentric camera placement
(i.e., the hand is observed by a camera placed close to the eyes of
the human whose hand is tracked), as self-occlusion of the human
hand occurs more frequently and to a stronger degree.

There are largely two main classes of approaches to 3D hand
tracking, the discriminative and the generative ones. Discrimina-
tive methods require training of a classifier, which is used mainly
to estimate the hand pose in a single frame. Generative methods de-
fine an objective function that quantifies the discrepancy between
visual observations from 3D image sensor and rendered 3D hand
model hypotheses. Typically, the defined objective function is mul-
timodal, non-differentiatable and with several local minima. Al-
though GPGPU processing has resulted in real-time performance
[6, 7], model-based methods are computationally intensive. This is
because their objective function needs to be evaluated repeatedly at
several points in the high (26D) dimensional space of hand configu-
rations. Additionally, due to the uniform appearance of hand parts,
there may be tracking failures because of mismatches between real
fingers and their model counterparts.

In order to cope with these problems, in our work, we perform
model-based optimization, which has been actively studied to al-
leviate the problems. More specifically, after the 6 DoFs for the
position and orientation of the palm are estimated, the remaining
20 DoFs are processed in a row in 5 threads, on for the 4 DoFs
of each finger. This divide-and-conquer approach leads to a set of
much simpler optimization problems. A similar decomposition is
proposed in [4]. However, also in that work, real time performance
is achieved based on GPGPU processing. And, labeling each fin-
ger is also demonstrated in [9]. However, [9] depends on a color
glove that the user wears, while in our work, we perform automatic
labeling of the fingers of a bare hand.

2. RELATED WORK

In this section, we review briefly existing work on 3D hand pose
estimation and tracking. There are three broad classes of solutions
to these problems, the generative, the discriminative and the hybrid
approaches.

Generative approaches first define a 3D hand model whose artic-
ulation is controled with a set of parameters. Then, they solve an
optimization problem whose goal is to estimate the 26 parameters
of the hand model that make it fit to the set of available observa-
tions. To do so, they define an objective function that quantifies the
discrepancy between a hand model and the set of available obser-
vations [6, 7]. The optimization of this objective function involves
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Figure 1. The flowchart of the proposed hand articulations
tracking method.
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its evaluation at several points in the 26D hand configuration space.
This raises considerably the computational requirements of gener-
ative methods.

The discriminative approaches estimate the articulation parame-
ters through the use of pre-trained classifiers that learn the mapping
between 3D hand configurations and actual observations. A benefit
of all these discriminative methods is that they perform hand pose
estimation in a single frame, i.e., they do not capitalize on tracking
[11, 12]. However, a disadvantage is that some of these methods
only recognize (rather than estimate) hand poses that are present in
the dataset on which they were trained.

Hybrid approaches [8, 10] have recently emerged and aim at
coupling the benefits of both the generative and the discriminant
methods. The general idea is to use a discriminative method that
provides a solution close to the actual one, combined with a gener-
ative component that fine tunes this solution by performing search
in the continuous space of solutions around the solution of the dis-
criminative method.

3. METHODOLOGY

3.1 Initialization

The primary goal of the initialization step is to estimate the ini-
tial pose of the hand before running the tracker. We assume that
hand object is segmented well with simple threshold method in
depth and HSV space, and wrist position X,, is detected initially
from wirstband before running our algorithm. The hand contours
of segmented binary image are extracted through edge detection
from sobel operation. It is assumed that hand has a pose so that
the boundaries of the fingers are close to vertical. Parts of the con-
tour that correspond to individual fingers are identified and labeled
by a clockwise scanning of the extracted contours and by grouping
the edges with positive and negative responses to the sobel filter.
Then, the corresponding 3D points (from the depth image) are as-
sociated to each finger. Finally, the hand model is fitted into these
observations.

3.2 Hand model and hand 3D points from Kine-
matics

We now present the employed 3D hand model and the method
with which 3D points from kinematics are retrieved. Such points
are used in generation of initial Gaussian models for labeling fin-
ger observations and in the formulation of the objective function
to compare a given hand hypothesis against the available observa-
tions. Unlike [6, 7] using full rendering of a hand model to get 3D
points in the model, we sample a number of points between hand
joints based on forward kinematics.

(@) (b)

Figure 2. (a) The result of labeling each finger (b) The result of
model fitting.

More specifically, the rotation matrix and the translation vector
of the i-th joint can be embedded into the 4 x 4 displacement matrix
T; with forward kinematic transformation Q. Thus, 7; is

T; = 0(01)0(62)...0(6), (D
where the motion of the hand is constrained by the kinematic pa-
rameters ©1,...,0;. Therefore, the i-th joint position is obtained as

the translation vector of 7;. With this formulation, we cut a finger
object into 9 slices, and one slice evenly has 4 points. Finally, we
get 36 points in the finger. In the palm model, 10 points are sam-
pled between a proximal phalanx and wrist point. Finally, we get
50 points in the palm model.

3.3 Tracking

Labeling finger observations.

To label each finger, we use Gaussian distributions that model the
3D points of the fingers. A Gaussian model is useful to label corre-
sponding finger in observation because it can be used to calculate
Mabhalanobis distance and generated easily from 3D points of the

hand model. We assume that a Gaussian distribution G;(¢)=(((¢),Zi()),

1 <i <5, models the 3D points of the i-th finger at frame 7. Thus,
a certain 3D point X, in observation is assigned to the label ¢ as
defined in the following equation:

¢ = argmin \/ (Xo — (1) TZi () (X — pi(t))- 2

The assignment of 3D points to fingers at frame ¢ (based on Eq.
2) is based on the Gaussian distributions of fingers as those were
defined from the solution at the previous time step. However, the
iterative update is performed for a Gaussian i at frame ¢ if the dis-
placement of a finger between ¢ —2 and ¢ — 1 (that is, |y;(r —2) —
wi(t — 1)|) is larger than an empirically decided threshold value.
To do so, we adopt an iterative Expectation-Maximization (EM)
like update of the parameters of the Gaussians. The iterative adap-
tation of the Gaussian distributions is performed until either a max-
imum number of iterations (10) is reached or the mean vectors of
all distributions have converged (i.e., they all remain unchanged be-
tween successive iterations). The result of labeling each finger is
shown in Fig. 2 (a).

Objective functions for pose estimation.
The objective function Egp for the optimization of the palm pose
is defined as follows:
N,

Ny
Esp =Y |1X5 = Xpill /No+ Y, Kp(X}5) /Nim, 3)
i=1 j=1
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where N, is the number of detected labels so that the maximum
value is five and N, is the number of points in the palm model.
The first term of Eq.3 represents the discrepancy between the prox-
imal phalanx points X}, in the observation and the corresponding
proximal phalanx points X;? in the model. X} is decided as the
center of labeled region within the predefined distance from wrist
position which is initially detected by the wrist band. Furthermore,
we add the additional term K)(X}) to fit the palm model to the
observation. The j-th 3D point Xl’fli sampled from the palm model
are projected to the image plane. If these pixels project outside the
hand image, the corresponding solution is penalized.

The objective function E4p for the optimization of the each fin-
ger pose is defined as follows:

N
Eap =}, (min||XE; = X7 + Kp(X[)) /Non, @
Jj=1
where N, is the number of points in finger model and X is the
j-th point in the i-th finger model. The first term in Eq. 4 is to fit
the points in the finger model to the labeled 3D point clouds in the
observation. The 48 points are sampled randomly among labeled
3D point clouds in the observation. The term K), (lel) operates
similarly as in Eq. 3. However, in this case, it is calculated from
the 3D points projected to the labeled finger image.

Optimization.

The objective functions defined in Eqgs. 3 and 4 are optimized
based on Particle Swarm Optimization [3]. It operates by defining
particles (candidate problem solutions) that move in the solution
space based on simple rules that emulate social interaction. Parti-
cles move for a number of generations. To exploit temporal conti-
nuity, the solution in the present frame is used to generate the initial
particles in the next frame.

The updating of the velocity v of a particle in each generation is
performed based on:

Vig1 = w(vi + 11 (pr —xk) +c2ra(gk — xx))- 6)

In the above equations py is the local best position of the particle
and gy is the global best position of all the particles of the swarm.
¢y is the cognitive component, ¢; is the social component, and ry, 7,
are random numbers in the range from O to 1. The values ¢1=2.8,
=13,and w=2/]2 —¥ — VW2 —4¥| with ¥ = ¢| +¢; are used
as in [6].

Given the above, the updating of the position x of a particle in
each generation is performed based on:

X1 = X+ Vi1 (6)

4. EXPERIMENTS

4.1 Quantitative results

We synthesized a touch-based interaction scenario in which a
human hand has to interact with virtual objects. To achieve this,
25 particles in a 5 x 5 grid were arranged. The distance between
the position of each fingertip and the corresponding particle was
measured. We repeated the experiment 10 times and calculated
the average achieved distance. We evaluated comparatively three
methods: ours, the hand tracking method of [6] (called FORTH)
and the method at [5] (called INTEL). The videos acquired from
all the performed experiments are shown in the supplementary ma-
terial accompanying this paper.
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Figure 3: (a) Experimental result about (a) clearly visible palm
and (b) not clearly visible palm.

4.1.1 Interaction Experiment 1: clearly visible palm

In the first experiment, all evaluated method showed overall good
performance during the 10 trials (see Fig. 3(a)). The palm region
of the hand was clearly visible and, thus, the 6 DoFs of the palm
can be estimated easily. With respect to the INTEL and FORTH,
the discrepancy between real fingers and virtual ones was relatively
higher than ours for some trials, but they mostly succeeded to touch
the virtual objects.

4.1.2 Interaction Experiment 2: not clearly visible
palm

Unlike the first experiment, the palm was not so clearly visible
in the second one. Only some fingers and partial region of the palm
were visible. Furthermore, the some fingers were hidden by other
fingers. When a large-scale occlusion occurred owing to wrist ro-
tation, the estimation of the hand articulation was not accurate be-
cause of the mismatch between the real fingers and corresponding
finger models.

In this case, 3D hand tracking in articulation subspaces was ben-
eficial. Even though palm region is not clearly visible, some visi-
ble fingers are labeled so that correspondence between observation
and model is more clear. Furthermore, optimization problem is
more simple due to divided dimensions. Finally, compared to other
methods, ours showed a lower level of discrepancy between result
and the ground truth, and succeeded to touch virtual objects.

4.2 Qualitative results: virtual object manip-
ulation

We built an application for virtual object manipulation that com-
pares our method with other approaches such as INTEL [5] and
FORTH [6] based on real (i.e., not synthetic) data. The task was
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Figure 4. (a) Initial configuration for virtual object manipu-
lation (relocation) and (b) manipulation result, compared with
other algorithms. See text for more details.

to interact with a set of virtual (red) spheres and to relocate them
in some target positions. The system for interaction was imple-
mented in Unity3D. When the particle lies in the wrong position,
the color remains red. If the particle is positioned correctly, the
color changes to green, giving a visual feedback. Sample frames
from relevant experiments are shown in Fig. 4.

A video acquired from this experiment are shown in the sup-
plementary material accompanying this paper. As it can be ver-
ified, compared to the rest of the evaluated algorithms, the algo-
rithm proposed in this paper achieves more accurate hand tracking
and is shown to be able to better support hand object interaction in
VR/AR scenarios.

S. CONCLUSION

The model-based approaches to 3D hand tracking provide fairly
accurate solutions to the challenging problem. However, they may
result in tracking failures as a result of high dimensional space and
the inherent ambiguities resulting from the uniform color appear-
ance of the fingers. In this work, we provide solutions to these prob-
lems (a) by decomposing the optimization problem into divided di-
mensional ones and (b) by propagating finger labels between suc-
cessive frames. The proposed algorithm achieves a more accurate
tracking result compared with other model-based approaches. This
conclusion is supported by a series of quantitative and qualitative
experiments in both synthetic and real datasets.

We focused on the tracking approach itself, rather than issues
concerning single frame hand pose estimation. We believe that
model based tracking approaches and single frame hand pose es-
timation methods can be combined to safeguard from tracking er-
rors. Thus, further research on detection-guided tracking (i.e. hy-
brid methods) to improve the performance of virtual object manip-
ulation is planned for the immediate future.
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