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Abstract

We present a method for 3D tracking of deformable sur-
faces with dynamic topology, for instance a paper that un-
dergoes cutting or tearing. Existing template-based meth-
ods assume a template of fixed topology. Thus, they fail
in tracking deformable objects that undergo topological
changes. In our work, we employ a dynamic template
(3D mesh) whose topology evolves based on the topologi-
cal changes of the observed geometry. Our tracking frame-
work deforms the defined template based on three types of
constraints: (a) the surface of the template has to be regis-
tered to the 3D shape of the tracked surface, (b) the template
deformation should respect feature (SIFT) correspondences
between selected pairs of frames, and (c) the lengths of the
template edges should be preserved. The latter constraint is
relaxed when an edge is found to lie on a “geometric gap”,
that is, when a significant depth discontinuity is detected
along this edge. The topology of the template is updated on
the fly by removing overstretched edges that lie on a geomet-
ric gap. The proposed method has been evaluated quantita-
tively and qualitatively in both synthetic and real sequences
of monocular RGB-D views of surfaces that undergo vari-
ous types of topological changes. The obtained results show
that our approach tracks effectively objects with evolving
topology and outperforms state of the art methods in track-
ing accuracy.

1. Introduction

Tracking the deformations of real world shapes from vi-
sual input plays an important role in fields ranging from
computer vision and medical imaging to robotics and com-
puter graphics. There has been a lot of success in the past
on tracking deformable objects of fixed topology [18, 8, 7].
However, tracking deformable surfaces with dynamically
evolving topology is still an understudied problem with
numerous applications. For instance, such a capability
would provide very valuable input towards developing vi-

(a) fixed template (b) dynamic template

Figure 1: Tracking the deformations of a paper due to tear-
ing. We initialize manually the location and geometry of the
paper using a 2D grid (template) shown in green and show
the registration when the paper is half-way torn using (a) a
fixed template and (b) a dynamic template. We observe that
the dynamic template matches more accurately the geome-
try of the paper over time.

sion/robotic systems that can track and reason about activi-
ties such as tearing a paper, cutting a piece of bread, etc. As
another example, tracking cutting and tearing may facilitate
the development of relevant data-driven models or provide
cues for animating the scene using existing elaborate frac-
ture models developed in the graphics community.

Template-based methods have been used extensively for
dense tracking of deformable objects with remarkable re-
sults. Previous work has demonstrated effective tracking
of highly deformable surfaces such as faces [5], clothing
[7], etc. These methods rely on the use of a fixed template,
typically a 3D mesh, describing the shape of the object of
interest and serving as a topological prior for tracking its de-
formations over time. However, the assumption of a topo-
logically fixed template is not valid when the topology of
the tracked object is dynamically evolving, e.g. in cases
such as the gradual tearing of a paper, unzipping a jacket,
etc. Figure 1a shows an example where a template with
fixed topology is deformed unsuccessfully during the tear-
ing of a sheet of paper. Having multiple potential templates
is not practical because, i.e., in the case of tearing, we do
not know beforehand where exactly on the surface the cut
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will occur.
In this paper, we employ a template-based method for

tracking, but we propose instead adapting the topology of
the template based on the observed data. Figure 1b shows
tracking the partial cut of a paper using our method. We
assume that we know the initial shape of the object to be
tracked (template), but have no prior knowledge about its
shape deformations or material properties. Our input is
monocular RGB-D data and the template is represented as
a 3D mesh. For the first (reference) frame the template is
manually registered to the observations. Moreover, a num-
ber of sparse texture features (SIFT) are automatically ex-
tracted and registered to the template. For each frame, our
goal is to deform the template in a way that best achieves
three goals. First, the template surface should be as close as
possible to the surface of the observed 3D point cloud. Sec-
ond, the deformation of the mesh should respect the corre-
spondences of visual (SIFT) features detected in subsequent
frames. To prevent from drifting during tracking, SIFT fea-
tures are also matched between the current and the refer-
ence frame. Finally, in order to prohibit degenerate template
deformations, the lengths of the template edges should not
change considerably. We update the topology of the tem-
plate by detecting edges that lie on a “geometric gap”, i.e.,
edges along which a significant depth discontinuity exists.
Overstretched edges that lie on a “geometric gap” are then
removed from the template.

The resulting method allows for tracking both the non-
rigid deformations of the surface of interest as well as its
topological changes. While we assume almost inextensible
surfaces, no other prior knowledge on the material prop-
erties of the surface to be tracked is required. Although
the term “topological changes” refers to both cutting and
merging geometries, we focus on cutting or tearing of a sur-
face because (a) these topological changes are encountered
more frequently in real life object manipulation scenarios,
(b) merging is not always meaningful. For instance, when
tearing a paper into 2 pieces, the torn mesh should not be
stitched back when the sides of the cut come spatially close.

To the best of our knowledge, this is the first work that
addresses tracking surfaces of dynamic topology due to
complex tearing effects.

2. Related Work
We track highly deformable surfaces with dynamic

topology from monocular RGBD input. There has been
very limited work on tracking surfaces whose topology
changes over time, e.g. objects that break, get torn etc.
Therefore, we review methods that perform monocular
tracking of deformable objects under the assumption of a
fixed topology. Our method is also related to template-
based tracking, 3D surface reconstruction, registration and
3D shape matching, so we briefly review relevant methods,

regardless of the number of cameras they involve. Finally,
we review a few works that are related to the tracking and
modeling of surface cuts and tearing.

Monocular tracking of deformable objects: Recover-
ing the shape of deformable surfaces from single images
is inherently ambiguous [26], given that many different
shape/camera configurations can produce the same images.
The main approaches for deformable surface reconstruction
based on 2D information either assume that a reference 2D
template and corresponding 3D shape are known [20, 21, 1]
or perform 2D tracking throughout a sequence of images
[9, 8] (non-rigid Structure from Motion). As an example of
the first class of methods, Ngo et al. [20] address the prob-
lem of 3D reconstruction of poorly textured, occluded sur-
faces, proposing a framework based on a template-matching
approach that ranks dense robust features by a relevancy
score. Ostlund et al. [21] track control points of a surface
in 2D and infer its 3D shape using the control points and
a Laplacian deformation model. Bartoli et al. [1] perform
template-based deformable 3D reconstruction from a single
input image and provide analytical solutions to the problem
accounting for both isometric and conformal surface defor-
mations. The works in [9, 8] present optical flow-based sur-
face tracking. In [9] the optical flow field is regularized
with a 2D mesh-based deformation model. The formula-
tion of the deformation model contains weighted smooth-
ing constraints defined locally on topological vertex neigh-
borhoods. Garg et al. [8] exploit the high correlation be-
tween 2D trajectories of different points on the same non-
rigid surface by assuming that the displacement of any point
throughout the sequence can be expressed in a compact way
as a linear combination of a low-rank motion basis. This
subspace constraint acts, effectively, as a trajectory regular-
ization term leading to temporally consistent optical flow.

When it comes to tracking from single view pointcloud
data, Schulman et al. [27] proposed a real-time tracking al-
gorithm based on a probabilistic generative model that in-
corporates observations of the point cloud and the physical
properties of the tracked object and its environment. The al-
gorithm is able to track robustly various types of deformable
objects, including ones that are 1D such as ropes; 2D such
as cloth; and 3D such as sponges. Tzionas et al. [29]
track deformable objects in interaction with human hands,
jointly. The hands and objects are represented as articulated
meshes and their pose is inferred by fitting the meshes to the
pointcloud data while ensuring physical plausibility by per-
forming a physics-based simulation of the scene. Wuhrer
et al. [31] combine a tracking-based approach with fitting
a volumetric elastic model to improve the estimation of the
unobserved side of an object from pointcloud data. Petit et
al. [23] track in real-time a 3D object which undergoes large
deformations such as elastic ones, and fast rigid motions.
They perform non-rigid fitting of a mesh to the 3D point-



cloud of the object based on the Finite Element Method
to model elasticity and on geometrical point-to-point corre-
spondences to compute external forces exerted on the mesh.
Template-based tracking: In template-based tracking
methods, a template, typically a 3D mesh, serves as a
topological prior for the object of interest. In addition,
various shape deformation priors are built based on the
template either in the form of a deformation model such
as blendshapes [5], thin plate splines [15], NURBS [11]
or using generic smoothness constraints to preserve the
structure of the tracked object. Example smoothness con-
straints include enforcing similar transformations [13], ve-
locity fields [18, 19] between nearby template vertices, or
similar triangle transformations between neighboring trian-
gles [10]. Existing methods for template-based tracking as-
sume that the tracked template mesh is topologically fixed.
Given that the smoothness constraints are defined based on
the topology of the fixed template, they fail to capture sur-
face deformations of objects whose topology changes. It
has to be noted that dividing the object into parts and as-
signing a different template per part is not practical because
neither the location of the cut nor the shapes of the result-
ing parts is known a priori. Letouzey et al. [12] present
a method for inferring the optimal template for tracking.
However, the inferred template is tailored to a specific se-
quence and does not adapt over time.
3D shape reconstruction, registration and matching:
Recently a number of methods for the 3D reconstruction
of dynamic geometries have been proposed [32, 3, 14, 19].
Contrary to these methods, our goal is to perform model-
based tracking of such dynamic, topologically varying
geometries and to provide dense point correspondences
among all input frames. Our method can operate on top
of such 3D reconstruction techniques.

Tam et al. [28] present an overview of previous work
on registering 3D data. We distinguish the Coherent Point
Drift method [18] for non-rigid registration as one of the
most robust ones to changes in topology. This is due to the
fact that the neighborhood of a vertex on the template is
not defined based on edges, but rather using Gaussians with
infinite support centered on the template vertices.

Most of the existing 3D shape matching approaches [30]
typically provide sparse correspondences between the
matched shapes. In contrast, our approach provides dense
correspondences. Moreover, many of the proposed shape
descriptors used for matching are based on the isometry as-
sumption [4], according to which the geodesic distances be-
tween surface points are preserved. However, this assump-
tion does not hold in surfaces of changing topology.
Tracking and modeling tearing: Fracture modeling has
attracted the interest of the graphics community for a long
time and very elaborate fracture models for objects of vari-
ous materials have been proposed [6, 25]. Due to the low-

resolution of our input data (especially the depth) as well as
for computational efficiency, we employ weak generic de-
formation priors that resemble a spring-based model with
stretching constraints similar to the ones in Position Based
Dynamics [17, 2].

Recently, Paulus et al. [22] and Petit et al. [24] presented
augmented-reality oriented methods for tracking the tearing
of deformable objects. Contrary to our method, they as-
sume knowledge of the material properties of the object to
be tracked which is then used to built a physics-based model
of the object. Setting the parameters for such a model is
typically a cumbersome process that has to be repeated for
each object (material) type. Moreover, having a physics-
based representation makes it hard to track accurately com-
plex tearing effects. For instance, [22] handles single cuts.
In contrast, our approach is able to handle multiple, inter-
secting cuts.
Our contribution: To the best of our knowledge, we
present the first method that is able to track accurately,
highly deformable surfaces that undergo multiple, intersect-
ing cuts based on RGBD input. We support our claim based
on an extensive, quantitative evaluation of the proposed
method that is performed on a new dataset1 of synthetic
sequences that is annotated with ground truth information.
The employed surface templates consist of a large number
(∼ 1K) of vertices. We also compare the results we ob-
tain with those of existing, state of the art methods [18, 8].
The comparison reveals that the proposed method performs
comparably to the state of the art in tracking deformable
objects of fixed topology, but clearly outperforms it for sur-
faces of evolving topology. Additionally, we provide quali-
tative results on real world sequences. These show that our
method can track challenging topological changes of ob-
jects with very different physical properties (the opening of
a door, the cutting of a loaf of bread and the double cutting
of a deformable sheet of paper), all treated with the same
algorithmic parameters.

3. The Proposed Method

Our input data is a monocular RGBD sequence
{If , Df}Kf=1 consisting of K frames where If and Df

are the RGB image and corresponding depth map at frame
f , respectively. To eliminate high-frequency noise on the
depth values, we perform bilateral filtering on each depth
map. Additionally, we treat points on the depth map with
no measurements as if they belong to the background. We
assume knowledge of the camera’s projection matrix P and,
based on this, we derive a point cloud Pf out of each depth
map Df .

We denote with Mf = (Vf , Ef ) the template mesh at
a frame f . The reference template consists of N vertices

1Publicly available at http://www.ics.forth.gr/cvrl/tearing/.

http://www.ics.forth.gr/cvrl/tearing/


stored in Vf = [vf
1 . . .v

f
N ] ∈ R3×N where each column

represents a vertex. Thus, in general, vj
i represents the i-th

vertex of the mesh at frame j. Additionally, the connectivity
of the template mesh is expressed through a set of edges
Ef ⊂ Vf × Vf . We assume that for the first (reference)
frame of the sequence the template is manually registered
to the visual data, that is M1 = (V1, E1) is known.

For each RGB frame If , we extract a set Sf of Nf SIFT
features [16], Sf = {sfi }

Nf

i=1. Given the registration of If
with Df and Pf , we assume that all SIFT features sfi are
represented as 3D points in the camera centered coordinate
system. Finally, we denote with Ck(s

f
j ) the corresponding

of feature sfj at frame k.
Our goal is then to infer {Mf = (Vf , Ef )}Kf=2, that is the

3D coordinates of the template vertices {Vf}Kf=2 as well as
the template connectivity expressed through the set of edges
{Ef}Kf=2.

3.1. Rigid registration

At each frame f , we initially perform a rigid registration
of the previous set of vertices Vf−1 and the point cloud Pf

based on the 3D coordinates of the SIFT feature matches
between frames f − 1 and f . In practice, this step reduces
the number of optimization steps needed later to infer Vf at
the current frame.

To do so, we estimate the rigid transformation Tf that
connects the SIFT feature correspondences between frames
f − 1 and f . In this process, we do not take into account
SIFT matches involving features at frame f − 1 that are
located further than d = 1cm, for real data, from the surface
of the templateMf−1. Subsequently, the transformed nodes
Vf are computed by applying the transformation matrix Tf
to the nodes of Vf−1.

3.2. Non-rigid registration

As a next step, we perform non-rigid registration be-
tween Vf and the pointcloud Pf and get an updated estimate
V ′f of Vf . We cast it as a minimization problem

V ′f = argminVf
E(Vf , Pf , Sf , Sf−1, S1, Ef , V1) (1)

of the following energy function:

E(Vf , Pf , Sf , Sf−1, S1, Ef , V1) = λGEG(Vf , Pf )

+ λFEF (Vf , Sf , Sf−1, S1)

+ λSES(Vf , Ef , V1).
(2)

3.2.1 Registering the geometry of the template to the
point cloud

The first term in Eq.(2) aims at bringing the geometry of the
template as close as possible to that of the point cloud. So,

EG(Vf , Pf ) is defined as:

EG(Vf , Pf ) =

N∑
i=1

||vf
i − gf

i ||
2
2, (3)

where gf
i is the closest point of (the current estimate of) the

template vertex vf
i on the pointcloud Pf .

3.2.2 Accounting for feature correspondences

We, additionally, drive the fit of the template to the observed
geometry by matching SIFT features between frames. For
a certain frame f , this is performed relative to the previous
frame f − 1. However, to minimize drift, this is also per-
formed relative to the reference frame f = 1. Typically, the
SIFT matches with respect to the reference frame are much
fewer than the matches with respect to the previous frame.

For each SIFT feature sfi we compute its projection
bf (s

f
i ) on the surface of Mf . Essentially, this entails (a)

finding the triangular patch of Mf on which sfi projects and
(b) expressing sfi in barycentric coordinates. This way, a
SIFT feature is expressed as a function of the coordinates
of the vertices of the template which permits the deforma-
tion of the template.

Given the above, EF (Vf , Sf , Sf−1, S1) is defined as:

EF (Vf , Sf , Sf−1, S1) = t1

pf∑
j=1

∣∣∣∣∣∣bf−1(sf−1j )− cf (sf−1j )
∣∣∣∣∣∣2
2

+ t2

rf∑
k=1

∣∣∣∣b1(s1k)− cf (s1k)∣∣∣∣22 .
(4)

The first term in Eq.(4) accounts for the pf feature corre-
spondences between frames f − 1 and f , while the second
term accounts for the rf feature correspondences between
frames 1 and f . The scalars t1, t2 determine the relative
importance of the features from the previous and reference
frames and are set empirically to t1 = 1, t2 = 2.

3.2.3 Preserving structure

Finally, the third term in Eq.(2) aims at preserving the
lengths of the edges of the template, as those were defined
in M1. Thus, ES(Vf , Ef , V1) is defined as:

ES(Vf , Ef , V1) =
∑

eij∈Ef

wij

(
||vf

i − vf
j ||2 − ||v

0
i − v0

j ||2
)2

(5)

where eij = {vf
i ,v

f
j }. In Eq.(5), wij is a scalar that

weights the contribution of each edge to the error term. Dur-
ing this step all wij are set equal to w = 1. However, wij



assume different values when accommodating for topologi-
cal changes of the template (see Sec. 3.3).

3.2.4 Optimization

At each frame f , the minization problem of Eq.(1) is solved
based on the Levenberg-Marquardt method, initialized with
the inferred coordinates of the template vertices at the pre-
vious frame f−1 after rigid registration (see Sec. 3.2). The
weights λG, λF and λS weigh the relative importance of the
corresponding error terms, were empirically set to λG = 2,
λF = 15 and λS = 7 and were kept constant throughout all
experiments. The optimization stops either when the aver-
age distance between the inferred 3D locations of the tem-
plate vertices at two consecutive iterations is less than 1mm
or when a maximum number of 20 iterations is reached.

3.3. Non-rigid registration handling topological
changes

In the case of topological changes, the non-rigid registra-
tion step above will yield a not so meaningful fit to the data
because the assumption of edge length preservation is no
longer valid. To accommodate changes in topology, we re-
peat the previous step by adjusting the weights wij of edges
in Eq.(5) based on whether they lie on a “geometry grap”,
that is whether there is a depth discontinuity on the depth
map along a certain edge.

To determine the likelihood y(i, j) that an edge {vf
i ,v

f
j }

lies on a geometric gap, we consider L = 100 3D points
{u(i,j)

l }Ll=1 uniformly distributed along the edge in 3D. We
project these 3D points on the depth map Df and then we
lift these projections to 3D points {d(i,j)

l }Ll=1. Then, we
define

y(i, j) =
1

L

L∑
l=1

zij(||u(i,j)
l − d

(i,j)
l ||2), (6)

with

zij(x) =

{
1, if x > Tij

0, otherwise.
(7)

In Eq.(7), we set Tij = ||vf
i − vf

j ||. Then, we update the
weights wij as follows:

wij = we−cy(i,j). (8)

In Eq.(8), we set c = 6. Minimizing the energy in Eq.(2)
using V ′f for initialization and the weights in Eq.(8) results
in the final estimate V ′′f of the template at the current frame
f .

3.4. Template topology update

The last step of the method is to update the topological
constraints of the template. Essentially, this amounts to re-
moving template edges defined between nodes that should

Figure 2: Synthetic data. We show the final frame per se-
quence where the cut of the surface is most pronounced.
The ground truth template consists of ∼ 1K vertices and
each sequence consists of 25-30 frames.

not be connected anymore due to topological changes of
the surface. We update the template edges Ef by tak-
ing into account the template edges Ef−1 of the previous
frame f − 1 and by removing edges based on two crite-
ria: (a) whether an edge lies on a geometric gap and, (b)
whether the topology prior is violated, that is an edge is
overstretched. More specifically, if an edge lies on a geo-
metric gap and is stretched more than Ts, as a ratio with
respect to its initial size, it is removed. We set Ts = 1.1,
that is an edge is considered overstretched when its current
length is more than 10% larger than its initial length. In
notation:

Ef = {{vf
i ,v

f
j } | {v

f−1
i ,vf−1

j } ∈ Ef−1 ∧

y(i, j) > 0 ∧
||vf

i − vf
j ||

||v0
i − v0

j ||
> Ts}.

(9)

One might think that updating the topology of the tem-
plate could potentially be performed in a trivial way, i.e.,
by using an existing non-rigid template registration method
and by removing edges based on whether they lie on a ge-
ometric gap. This simple idea does not work in practice
because the cut of the surface affects the overall fit of the
template to the data (see Figure 1a). Thus, removing tem-
plate edges in this naive way may lead to over-removal of
edges.

4. Experimental Results
Public datasets that showcase geometries that change

topology over time are limited in the sense that topology
changes occur mainly due to objects that come into con-
tact and then separate again. We evaluate quantitatively
our method using synthetic data generated through physics-
based simulation in the 3D modeling software Blender (Fig-
ure 2) as well as qualitatively based on monocular RGBD
data of surfaces of various materials captured with a Mi-
crosoft Kinect 2 (Figure 6).

4.1. Evaluation on synthetic data

We define two variants of our method. The “no cut”
variant employs the template-based registration part (sec-
tions 3.1 and 3.2) without updating the template topology.
The “cut” variant treats also topological changes (sections



Figure 3: Evaluation on tracking deformable surfaces with
no change in topology. We show the per-vertex Euclidean
distance from ground truth for deformable surfaces with
around 400 and 600 vertices. The distance is averaged over
all vertices and over all 73 and 30 frames of the two se-
quences, respectively. Additionally, it is expressed as a per-
centage of the cell width (the largest side) of the underlying
grid.

3.3 and 3.4). We compare both variants against CPD [18],
a non-rigid registration method that considers only the ob-
served geometry, and MFSF [8] that operates only on image
(2D) data. For both CPD and MFSF we use the implemen-
tations available online2. Comparison with previous work
on tracking cuts [22, 24] and monocular tracking of de-
formable surfaces from RGBD [27, 11] was not feasible due
to unavailability of code and/or data.

4.1.1 Evaluation metrics

We evaluate the above mentioned methods using three error
metrics. The first one, E1, denotes the average Euclidean
distance between the 3D locations of the template vertices
as inferred by each method and their ground truth locations.
Given that [8] operates only in 2D, we calculate the 3D lo-
cations of the template vertices on the observed pointcloud
using the camera’s projection matrix. In this case, however,
vertices that map to the “background” of the depth map can
be arbitrarily far from the pointcloud of the deformable sur-
face. To make the comparison among methods as fair as
possible, we consider only the vertices vf

i , i ∈ N∗f , that are
“on surface” at each frame f and we do that for all methods.
Thus,

E1 =

K∑
f=1

∑
i∈N∗

f

||vf
i − xf

i ||2, (10)

where xf
i is the ground truth location of vertex vf

i .
To highlight the effect of topological changes on the reg-

istration, we evaluate the same metric but only on a neigh-
borhood around the topological change. This neighbor-
hood, N∗∗f , comprises of all vertices adjacent to the ground

2MFSF: https://bitbucket.org/troussos/mfsf,
CPD: https://sites.google.com/site/myronenko/research/cpd

(a) E1: Euclidean distance from ground truth

(b) E2: Euclidean distance from ground truth around tearing area

(c) E3: Number of vertices off the surface

Figure 4: Evaluation on tracking deformable surfaces with
change in topology (see text for details).

truth torn edges as well as the vertices one edge away. Thus,

E2 =

K∑
f=1

∑
i∈N∗∗

f

||vf
i − xf

i ||2. (11)

Ideally, no template vertex should appear off the surface
of the observed pointcloud. Therefore, the third metric E3

shows the number of such vertices:

E3 =

K∑
f=1

|Of |, Of = {vf
i | ||v

f
i − gf

i ||2 > Tb}. (12)

In Eq.(12), vertices are included in the set Of if their dis-
tance to the closest point on the point cloud, gf

i , is larger
than a predetermined threshold Tb = 1cm.

4.1.2 Deformable tracking with no topological change

Out of the four methods mentioned above, only our method
is intentionally designed to account for topological changes.
To establish a baseline performance per method as well as
provide a comparison among them that is not influenced by
topological changes, we assess their performance on two se-
quences of deforming surfaces with no topological changes.

https://bitbucket.org/troussos/mfsf
https://sites.google.com/site/myronenko/research/cpd


seq1 seq2 seq3 seq4 seq5

CPD [18]

MFSF [8]

Ours (no cut)

Ours (cut)

Figure 5: Visual evaluation of the performance of CPD [18], MFSF [8], our method using a fixed template (no cut) and
our method using a dynamic template (cut) for the last frame of each of the five synthetic sequences that exhibit changes in
topology. We observe that our method which accounts for topological changes provides more meaningful registration than
the rest of the methods.

The sequences were generated by animating a grid with ap-
proximately 400 and 600 vertices respectively. Figure 3
shows the per vertex distance from ground truth (E1 met-
ric, see Sec. 4.1.1), averaged over all frames of the two
sequences, along with the standard deviation of these dis-
tances. The distance is expressed as a percentage of the
largest edge of the template. We observe that all meth-
ods are quite effective at tracking deformable surfaces with
fixed topology. The higher error for CPD is justified by the
fact that it relies solely on geometry for registration which
may lead to “sliding” of the template along the observed
surface. Our method is more accurate than the rest. We
also observe that both variants of our method (“cut” and “no
cut”) perform equally well, which shows the robustness of
the “cut” method in the case where no topological changes
are present.

4.1.3 Deformable tracking with topological change

We evaluate the four methods mentioned above using the
five synthetic sequences in Figure 2 displaying a variety

of topological changes. Starting with a single cut (seq1),
we progress to multiple non intersecting cuts (seq2), two or
more intersecting cuts (seq3, seq4), multiple internal cuts
of various shapes (seq 5). The surfaces of all sequences
are also subject to small elastic deformations. In each se-
quence, the ground truth surface is represented as a grid of
∼ 1K equally spaced vertices. Each sequence contains 25-
30 frames.

Figure 4 displays the performance of each method based
on the three presented error metrics E1, E2 and E3. Our
method (cut) outperforms all other methods that do not ac-
count for topological changes both in terms of the distance
from ground truth as well as the number of template ver-
tices that end up off the surface of the observed geometry.
The difference in performance is more pronounced when
considering a neighborhood around the tearing area. This is
also evident in Figure 5 that provides a visual evaluation of
all methods for the last frame of each sequence. Our online
video (https://youtu.be/Hxa7nKUvsso) provides
full tracking results of the abovementioned methods for all
synthetic sequences.

https://youtu.be/Hxa7nKUvsso


4.2. Evaluation on real data

We, additionally, evaluate our method on sequences of
real objects and surfaces captured with a Microsoft Kinect
2.

Figure 6a shows an example of a 3D scene evolution.
Starting with a 3D mesh of a scene, a door and its surround-
ing wall, the opening of the door causes topological changes
in the observed geometry which are reflected on the topol-
ogy of the scene mesh. Note that our method is tolerant to
non-frontal views as long as there is no self-occlusion.

The scene described above is piecewise rigid. Our
method has been applied successfully to tracking surfaces
that are cut in a less principled way as well as highly de-
formable surfaces. Figure 6b shows tracking the surface of
a loaf of bread cut into two pieces. Although it happens that
the template is cut along a single column of the template
grid, the underlying geometry around the tearing area could
not have been produced e.g. using a cutting plane. We also
observe that the initial (reference) template of the surface
does not need to be planar.

Figure 6c shows tracking the deformations of a paper
and the change in its topology during tearing. The tem-
plate matches effectively both the shape of the paper around
the tearing area as well as the deformations of the paper
on the rest of its surface. The ability of our method to
adapt the topology of the template during tracking and pro-
vide global correspondences over all frames in a sequence
is more prominent when the paper is torn twice, consecu-
tively. For a more detailed view of the tracking results, see
https://youtu.be/Hxa7nKUvsso.

5. Conclusions and Discussion

We presented the first method that is able to track ac-
curately highly deformable surfaces that undergo multiple,
intersecting cuts based on RGBD input. Our method as-
sumes knowledge of the initial shape and position of the
object of interest, but has no prior knowledge about the type
of shape deformations and topological evolutions that will
be observed. In order to deal with the dynamic topology
of deformable surfaces we proposed tracking using a tem-
plate with dynamic topology. The edges of the template are
constrained to retain their initial lengths; this constraint is
relaxed when an edge lies on a geometric gap to allow for
potential edge stretching in order to match the underlying
geometry. We update the template by removing edges that
lie on a “geometric gap” and get overstretched. Experimen-
tal results demonstrated the effectiveness of the proposed
method and its improved accuracy compared to the current
state of the art.

In our work, we focus on objects represented as 2D sur-
faces. We also assume that we start with full knowledge
of the shape of the object provided by a template mesh and

(a) door opening

(b) bread cutting

(c) paper tearing

Figure 6: Visual evaluation of our method on real data ob-
tained with a Microsoft Kinect 2. (a) Tracking the evolution
of a scene comprising of a door and its surrounding walls,
(b) cutting a loaf of bread, (c) tearing a paper twice. Our
method is able to track successfully multiple topological
changes on surfaces that undergo large shape deformations
such as in (c). It is also tolerant to non-frontal views as in (a)
as long as there is no self-occlusion. Although we assume
knowledge of the template mesh at the reference frame, the
template does not need to be planar (a,b).

the object is always visible. That is, we do not consider
the scenario of fusing geometry as we see different sides of
the object. Future work will explore extending the method
to tracking 3D objects from monocular or multiview data
towards raising these limiting assumptions.
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and S. Rusinkiewicz. Temporally coherent completion of dy-
namic shapes. ACM Transactions on Graphics (TOG), 31(1),
January 2012. 3

[15] J. Lim and M.-H. Yang. A direct method for modeling non-
rigid motion with thin plate spline. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
1196–1202, 2005. 3

[16] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision,
60(2):91–110, Nov. 2004. 4

[17] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff. Posi-
tion based dynamics. Journal of Visual Communication and
Image Representation, 18(2):109–118, 2007. 3

[18] A. Myronenko and X. Song. Point set registration: Coher-
ent point drift. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32(12):2262–2275, 2010. 1, 3, 6, 7

[19] R. A. Newcombe, D. Fox, and S. M. Seitz. DynamicFu-
sion: Reconstruction and tracking of non-rigid scenes in real-
time. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 343–352, Boston, MA, USA,
June 2015. 3

[20] D. T. Ngo, S. Park, A. Jorstad, A. Crivellaro, C. Yoo,
and P. Fua. Handling occlusions and sparse textures
in a deformable surface tracking framework. CoRR,
abs/1503.03429, 2015. 2
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