
Markerless 3D Human Pose Estimation and Tracking
based on RGBD Cameras: an Experimental Evaluation

Damien Michel
ICS-FORTH

N. Plastira 100, Vas. Vouton
Heraklion, Crete, Greece
michel@ics.forth.gr

Ammar Quammaz
CSD/UoC and ICS-FORTH

Vassilika Vouton
Heraklion, Crete, Greece

ammarkov@ics.forth.gr

Antonis Argyros
CSD/UoC and ICS-FORTH

Vassilika Vouton
Heraklion, Crete, Greece
argyros@ics.forth.gr

ABSTRACT
We present a comparative experimental evaluation of three
methods that estimate the 3D position, orientation and ar-
ticulation of the human body from markerless visual obser-
vations obtained by RGBD cameras. The evaluated methods
are representatives of three broad 3D human pose estima-
tion/tracking methods. Specifically, the first is the discrimi-
native approach adopted by OpenNI. The second is a hybrid
approach that depends on the input of two synchronized and
extrinsically calibrated RGBD cameras. Finally, the third
one is a recently developed generative method that depends
on input provided by a single RGBD camera. The exper-
imental evaluation of these methods has been based on a
publicly available data set that is annotated with ground
truth. The obtained results expose the characteristics of
the three methods and provide evidence that can guide the
selection of the most appropriate one depending on the re-
quirements of a certain application domain.

Keywords
Human body tracking; articulated motion tracking; human
skeleton tracking; 3D human pose estimation

1. INTRODUCTION
The estimation of the articulated motion of the human

body is very important to a number of real world appli-
cations, including but not limited to surveillance, gaming,
medical rehabilitation, human-robot interaction, smart en-
vironments and many others. It is considered to be a chal-
lenging problem because of its high dimensionality, the vari-
ability of the tracked persons regarding their appearance and
sizes, the spatially and temporally extended (self)-occlusions,
etc. A number of practical approaches simplify or even avoid
these problems by using special hardware that is placed on
the environment and/or markers/full body suits worn by
the persons to be tracked. However, these are invasive solu-
tions. Uunobtrusive, markerless tracking is definitely prefer-
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able since it does not interfere with the environment, the
subject and the performed actions.

The methods that use markerless visual data as their only
input fall into three basic categories, the generative, the dis-
criminative and the hybrid ones. Each class of methods has
its own characteristics, advantages and disadvantages. Dis-
criminative methods are fast, but rely on a discrete set of
training poses whose selection determines the accuracy of
the obtained results. Typically, they operate as single frame
pose estimation methods, so they do not need to be ini-
tialized and they do not drift. The generative approaches
provide accurate, physically plausible solutions, typically at
a high computational cost. They also require initialization
for the first frame, and may suffer from drift and tracking
failures that are often irrecoverable. Hybrid methods in-
tegrate generative and discriminative components towards
combining the advantages of both worlds.

In this work, we evaluate three approaches for 3D hu-
man pose estimation, one representative of each class. The
evaluation has been performed on a dataset annotated with
ground truth. The obtained quantitative experimental re-
sults help in assessing the relative performance of these meth-
ods and in deciding which is preferable in which situation.
Qualitative results are also presented, based on a scenario
that involves 3D human motion tracking to support the tele-
operation of a NAO humanoid robot.

The rest of the paper is organized as follows. Section 2
reviews existing approaches to the problem of markerless 3D
human pose estimation and tracking. Section 3 provides the
articulated model of the human that was employed in the
experiments and was used to evaluate the performance of
the 3D human pose estimation methods. Section 4 presents
the dataset on which this evaluation has been performed
as well as the evaluation metrics. Section 5 presents the
performed experiments and discusses the obtained results.
Finally, Section 6 summarizes the main conclusions of this
study and outlines possible extensions.

2. RELATED WORK
Because of its high theoretical and practical interest, vision-

based human motion capture has been the theme of several
research efforts. The complete review of the relevant works
is beyond the scope of this paper. The interested reader is re-
ferred to [Moeslund et al. 2006, Poppe 2007] where extended
surveys are provided. More recently, Chen et al. [Chen et al.
2013] surveyed methods for human motion estimation based
on depth cameras.

Most commercial solutions to the problem of human mo-
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tion capture make use of special markers that are placed on
carefully selected points of the subject’s body (e.g., joints).
Nevertheless, markerless motion capture techniques are, by
far, more interesting and preferable. Being unobtrusive,
they present important practical advantages over the marker-
based solutions, such as lower setup cost and complexity, no
interference with the performed actions, etc.

Markerless human motion capture techniques may be clas-
sified into three classes, the discriminative (named bottom-
up in [Michel et al. 2015]), the generative (named top-down,
in [Michel et al. 2015]) and the hybrid ones. Discrimina-
tive methods [Sminchisescu et al. 2005, Bisacco et al. 2007,
Shotton et al. 2011, Pons-Moll et al. 2011, Sigal et al. 2012]
extract a set of features from the input images, and try to
map them to the human pose space. This is achieved with
a learning process that involves a typically large database
of known poses that cover as much as possible the space
of possible human poses, or the part of it that is relevant
to the application of interest. The type of descriptors em-
ployed, the mapping method and the actual poses database
are the factors determining the accuracy and efficiency of
these methods. Recent approaches based on CNNs have
produced very promising results [Rogez and Schmid 2016,
Yasin et al. 2016, Li et al. 2015]. Due to their nature, most
of their computing time is spend on the offline processes
of database creation and mapping, while the online compu-
tational performance is rather good. An advantage of the
discriminative approaches is that they perform single frame
pose estimation and they do not rely on temporal continu-
ity. Thus, they do not require initialization and they do not
suffer from drift.

Generative approaches [Deutscher and Reid 2005, Gall
et al. 2009, Gall et al. 2010, Vijay et al. 2010, Corazza et al.
2010, Zhang et al. 2012, Michel et al. 2015] use an artic-
ulated model of the human body and try to estimate the
joints angles that would make the appearance of this model
fit best the visual input. The model is usually made of a
base skeleton and an attached surface. In some methods,
complex surface deformations are allowed [Gall et al. 2009].
Having defined a model of the human body, different pose
hypotheses can be formed. A typical generative method con-
sists of generating hypotheses and comparing them to the in-
put visual data. The comparison is performed based on an
objective function that quantifies the discrepancy between
a pose hypothesis and the actual observations. The mini-
mization of this objective function determines the pose that
best explains the available observations. Typically, this is
formulated as an optimization problem that amounts to the
exploration of the high dimensional space of human poses.
Kinematic constrains based on physiological data are often
applied to the model, excluding non realistic poses and re-
ducing that search space. Constraining not only the pose
but also the motion itself can further help reducing the com-
plexity, for example with Kalman filters [Mikic et al. 2003].
However, this means a reduced generality and the necessity
to build and learn human motion models. Instead of trying
to estimate the full body model in a single step, a variety of
methods first identify body parts. Then, they either report
them as the final solution or they further combine them into
a full model [Shotton et al. 2011, Sigal et al. 2012]. As in
the case of hand tracking and according to the related cat-
egorization of Oikonomidis et al. [Oikonomidis et al. 2011],
we can identify disjoint evidence methods and joint evidence

Characteristics OpenNI HYBRID FHBT

Method type Discrimi- Hybrid Gene-
native rative

Number of cameras 1 2 1
Auto- Yes, spe- Yes, spe- Yes, any
initialization cial pose cial pose pose
Initialization Slow Slow Instant
speed (>3 sec) (3 sec) (0.03 sec)
Auto recovery from Yes Yes Yes
failures
Handles various Yes Yes Yes
body types
Handles occlusions No No Yes
Moving camera(s) No No Yes
Ensure physical No Yes No
plausibility
Mode of operation Online Offline Online
Real time Yes No Yes
performance

Table 1: Overview of the evaluated methods
(OpenNI [OpenNI 2010], HYBRID [Michel et al. 2015],
FHBT [Michel and Argyros 2016]) with respect to a
number of key characteristics and properties.

methods [Deutscher and Reid 2005, Gall et al. 2009, Gall
et al. 2010, Vijay et al. 2010, Corazza et al. 2010, Zhang
et al. 2012]. Joint evidence methods handle effortlessly colli-
sions, self occlusions and all part interactions while disjoints
evidence methods have to handle them explicitly. The main
advantage of generative methods is their flexibility. The em-
ployed model can be changed easily, and the whole search
space can be explored without any form of training. The
price to pay for this flexibility is the computational cost of
the online process. Due to their generative nature, most of
the computational work needs to be performed online. Two
more shortcomings of generative methods is that typically,
they require knowledge of the body model parameters of the
individual to be tracked and they must be initialized for the
first frame of a sequence.

Finally, hybrid methods have been proposed [Michel et al.
2015] that combine the benefits of the discriminative and
generative approaches. The basic idea is to use a discrimi-
native part that provides a rough 3D human pose for every
frame, which is then refined based on a generative compo-
nent. This way, hybrid methods manage to achieve the ac-
curacy of the generative ones without need for initialization
and with robustness to tracking failures.

2.1 The evaluated methods
This paper presents a comparison between three meth-

ods that fall within different categories of the classification
scheme presented above.

The OpenNI method [OpenNI 2010]: This is a widely
employed, purely discriminative method. It is applied on
the input of a single RGBD camera.

The HYBRID method [Michel et al. 2015]: As a hy-
brid method1, it consists of a discriminative and a generative
component. The generative, joint evidence component of the

1See also https://youtu.be/n5irgHVuFwc
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Figure 1: The employed human body model. Model
points with a red “+” denote joints whose 3D po-
sition is taken into account in defining the tracking
error.

method requires input from two extrinsically synchronized
RGB-D cameras that is used to reconstruct the 3D volume
occupied by the human body. Then, human pose estimation
is formulated as an optimization problem that minimizes
the discrepancy between the 3D occupancy of hypothesized
instances of a human body model and the volume recon-
structed from the observations. To track the human pose,
solutions for a certain frame are initialized at the vicinity of
solutions estimated at the previous frame. However, the so-
lution suggested by the discriminative component (OpenNI)
of the method is also considered as a human pose hypothe-
sis to (a) adjust the human model parameters to the tracked
individual and (b) safeguard from abrupt human motions as
well as from tracking failures.

The FHBT method [Michel and Argyros 2016]: This is
a generative, disjoint evidence method that performs track-
ing by-detection. Body parts are identified independently
and then assembled together in a complete model2

The main characteristics of the evaluated methods are
summarized in Table 1. For more details, the reader is re-
ferred to the corresponding references. In general, OpenNI
is a flexible and fast method. As suggested by the extensive
evaluation performed in this paper, its accuracy is moderate.
One of its main drawbacks is its long initialization time. The
HYBRID method inherits the long initialization time from
OpenNI. Moreover, it relies on a more complex setup of two
extrinsically calibrated RGBD sensors and its computational
requirements are quite high, i.e., near-real-time performance
can only be achieved with an elaborate GPU-based imple-
mentation on a high-end computer featuring a state of the
art graphics card. The experimental results demonstrate
that in return, the HYBRID method outperforms the two
others in terms of accuracy. The FHBT method is less ac-
curate than HYBRID but on par with OpenNI. This fact,
together with other advantages of the method (see Table 1),
make it an attractive solution to a number of applications

2See also https://youtu.be/ZKlC9PA1IDg

Figure 2: The twelve subjects of the MHAD dataset.

that require knowledge of the human body pose.

3. HUMAN BODY MODEL
The employed articulated model of the human consists of

a main body, two legs, two arms and the head (Figure 1).
The kinematics of each arm is modelled using six parame-
ters encoding angles. Two parameters determine the shoul-
der position with respect to the torso, three parameters the
upper arm with respect to the shoulder and one parameter
the elbow with respect to the upper arm. Six parameters are
also used for a leg, three for the root, one for the knee and
two for the ankle. Two parameters are used for the head,
and three parameters for the articulation between the torso
and the hip. The global position of the body is represented
using a fixed point on the hip. The global orientation is
parametrized using Euler angles. The above parametriza-
tion encodes a 35 degrees of freedom (DOFs) human model
with each DOF represented by a single parameter.

On top of the 35 mobilities of this model, 9 parameters
control the lengths of certain human body parts. These are
the upper body length (UBL), the lower body length (LBL),
the shoulders neck distance (SND), the head neck distance
(HND), the legs hip distance (LHD), the back arm length
(BAL), the forearm length (FAL), the back leg length (BLL)
and the front leg length (FLL). Table 2 presents ground
truth values for these parameters for the subjects of the em-
ployed dataset. The parenthesis next to a parameter name
refers to the corresponding body segment(s) in Figure 1.

It has to be noted that individual methods employ their
own, internal models for 3D human pose estimation. The
model described above and illustrated in Figure 1 is used
for the evaluation of the performance of the benchmarked
methods, only. Thus, the relation of the above model to the
ones used internally by each method has been established
and used to bring all results to the same reference frame so
as to enable their direct comparison.

4. DATASET & EVALUATION METRICS
We provide information on the dataset that was employed

for the evaluation of the 3D human pose estimation methods

https://youtu.be/ZKlC9PA1IDg


Subject S01 S02 S03 S04 S05 S06
Metric G O F G O F G O F G O F G O F G O F

UBL (HI) 26 19 22 30 21 24 33 21 23 29 20 22 32 22 23 28 20 24
LBL (IJ) 15 19 22 17 21 24 18 21 23 17 20 22 19 22 23 17 20 24
SND (CH, C’H) 19 15 17 19 15 17 17 14 17 15 15 17 17 16 17 19 14 17
HND (GH) 20 25 23 20 25 23 20 25 23 20 21 21 20 26 26 20 20 22
LHD (FJ, F’J) 10 9 10 11 9 10 10 8 10 9 9 10 9 9 10 9 8 10
BAL (BC, B’C’) 24 25 28 28 27 31 31 28 33 24 23 25 26 28 33 26 26 30
FAL (AB, A’B’) 23 26 21 25 31 29 26 32 29 24 25 23 25 31 28 24 27 25
BLL (EF, E’F’) 36 41 39 43 47 41 44 47 41 37 39 39 42 45 40 42 44 42
FLL (DE, D’E’) 42 37 39 48 42 41 47 43 41 41 35 40 45 42 40 45 41 41

(a)
Subject S07 S08 S09 S10 S11 S12
Metric G O F G O F G O F G O F G O F G O F

UBL (HI) 25 20 21 30 20 24 27 20 21 27 21 23 28 20 23 24 20 23
LBL (IJ) 15 20 21 18 20 23 15 20 21 16 21 23 16 20 23 21 20 23
SND (CH, C’H) 17 17 17 18 15 16 15 13 17 17 14 17 17 15 17 18 14 17
HND (GH) 20 20 21 20 21 20 20 17 23 20 24 21 20 25 22 20 24 22
LHD (FJ, F’J) 8 7 10 9 9 10 8 7 10 8 8 10 8 9 10 9 8 10
BAL (BC, B’C’) 22 25 26 24 26 28 23 22 24 27 25 30 26 27 31 25 25 27
FAL (AB, A’B’) 22 24 23 24 26 24 23 27 22 24 29 24 24 28 24 22 27 24
BLL (EF, E’F’) 35 39 38 39 40 41 35 42 38 41 43 40 41 44 41 38 43 41
FLL (DE, D’E’) 41 35 37 43 39 41 41 37 40 43 40 40 44 41 41 41 39 41

(b)

Table 2: Body part lengths (in cm) for the human subjects of the MHAD dataset, (a) subjects 01-06, (b)
subjects 07-12. Columns (G) are the manually measured, ground truth values, columns (O) the one estimated
by the OpenNI method, and columns (F) are the ones estimated by the FHBT method. The parenthesis next
to the name of each body part to the corresponding body segment(s) in Figure 1 (see also Section 3).

as well as on the criteria used to quantify their performance.

4.1 The MHAD data set
The comparative evaluation and comparison of the three

human pose estimation/tracking methods was based on the
Berkeley Multimodal Human Action Database (MHAD) [Ofli
et al. 2013]. This dataset features 12 human subjects (see
Figure 2). From this figure it can be verified that the MHAD
data set involves subjects of considerable variability with re-
spect to age, size and body types. This is also shown quanti-
tatively in Table 2, columns (G), which provide the lengths
of body parts for all the subjects.

The subjects perform 11 different activities (01-jumping,
02-jumping jacks, 03-bending, 04-punching, 05-waving two
hands, 06-waving one hand, 07-clapping, 08-throwing, 09-
sit down/stand up, 10-sit down and 11-stand up). In each
sequence, each activity is repeated several times. The ac-
tivities are recorded with a multicamera setup consisting of
several conventional cameras as well as by two extrinsically
calibrated Kinect sensors. In all experiments reported in
this paper, the methods employ the RGBD feeds (both of
them for the HYBRID method and the same, single feed
for the FHBT and OpenNI methods). The resulting track-
ing results are compared against the ground truth resulting
from the motion capture data.

4.2 Evaluation metrics
To quantify the accuracy in body pose estimation, we

adopt the metric used in [Hamer et al. 2009]. More specifi-
cally, the Euclidean distance between a set of corresponding
3D points (skeleton joints) in the ground truth and in the

estimated body model is measured. Each such point (four
per leg, three per arm and one for the head) is marked with
a red cross in Figure 1. The average of all these distances
over all the frames of the sequence constitutes the resulting
error estimate ∆.

Another metric reports the percentage A(t) of these dis-
tances that are within some predefined threshold t for a cer-
tain sequence. We will refer to this metric as the accuracy
in human body pose estimation. For example, an accuracy
of A(10) = 70% for a sequence means that in the frames of
that sequence, 70% of the joints have been estimated within
10cm from the ground truth.

5. COMPARATIVE EVALUATION
Several experiments were carried out to assess quantita-

tively and qualitatively the accuracy and the performance
of the evaluated human articulation tracking methods.

5.1 All-subjects-one-action experiment
A first experiment aimed at evaluating the performance

of the methods across different human subjects. All twelve
sequences showing the twelve different subjects performing
the same activity (activity 04, boxing) were considered.

Figure 3(a), (b) illustrate the error ∆ and the accuracy
A(10cm), respectively, of the FHBT, HYBRID and OpenNI
methods. These measures have been estimated over all the
joints of the human model that a particular method esti-
mates. It can be verified that the HYBRID method outper-
forms the OpenNI and FHBT methods which perform com-
parably. This is expected, given the fact that HYBRID uses
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Figure 3: Quantitative evaluation of the method applied to 12 subjects performing the same action (boxing).
(a) Error ∆ and variances over all frames and joints. (b) Accuracy A(10cm) over all frames and joints. (c)
Percentage of joints for which a method provided an estimation. (d), (e): Error ∆ and accuracy A(10cm) over
the joints for which FHBT provided an estimation. FHBT: green bars, HYBRID: red bars, OpenNI: blue bars.
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Figure 4: Quantitative evaluation of the method applied to 11 actions performed by the same subject (s09).
(a) Error ∆ and variances over all frames and joints. (b) Accuracy A(10cm) over all frames and joints. (c)
Percentage of joints for which a method provided an estimation. (d), (e): Error ∆ and accuracy A(10cm) over
the joints for which FHBT provided an estimation. FHBT: green bars, HYBRID: red bars, OpenNI: blue bars.

more information than the two other methods (two RGBD
feeds as opposed to only one).

It has to be noted that the FHBT method estimates only
a subset of the joints, depending on whether the method’s
confidence on them exceeds an internally set threshold. Fig-
ure 3(c) shows the percentage of joints that were estimated
by each method. For the OpenNI and HYBRID methods
this is always 100% while for the FHBT method this is
75% on average, across different subjects. In a subsequent
measurement, we evaluated the error ∆ and the accuracy
A(10cm) (Figures 3(d), (e), respectively) for all methods,
but only over the joints and the frames for which the FHBT
method provided some estimation. It can be verified that
when error and accuracy is measured over these joints, the
performance of the OpenNI and the HYBRID method in-
creases. This indicates that the confidence that FHBT esti-
mates for the joints is trustworthy.

5.2 All-actions-one-subject experiment
In a second experiment, the goal was to assess the pro-

posed method with respect to different activities. For that
purpose, the evaluation was performed on image sequences
showing a single subject performing the eleven different ac-
tivities. Figure 4 illustrates the obtained results in a way
analogous to that of Figure 3. Again, HYBRID outperforms
the rest of the methods with respect to the mean error ∆ and
accuracy, while the rest two methods perform comparably.
It should also be noted that for actions like bending (action
03) and sit-down/stand-up (action 09) that exhibit consid-
erable self- and body-object occlusions, the FHBT method
estimates the least number of joints (see Figure 4(c)).

5.3 Aggregated results
Table 3 summarizes the performed experiments by provid-

ing ∆, A(10) numerical values for the cases of all-subjects-
one-action and all-actions-one-subject experiments, as well
as for the union of the corresponding datasets. A number of
interesting conclusions can be drawn: (a) Overall, the HY-
BRID method is the one that results in the lowest errors
and error variances and the highest accuracy, (b) FHBT
and OpenNI perform comparably, (c) FHBT exhibits mini-
mum performance variability between the two experiments
with respect to ∆ and its standard deviation, while OpenNI
exhibits minimum performance variability with respect to
A(10) and, (d) HYBRID has the maximum variability in all
metrics.

In the results of Figures 3 and 4, the accuracy A(t) has
been computed for t = 10cm. While this choice of t is com-
patible with the requirements of many applications, it is
interesting to know how the accuracy of a certain method
varies as a function of t. Figure 5 presents this informa-
tion. For the three evaluated methods, we measure their
accuracy for various values t in the range [0..20] cm. The
top row of plots shows these results over the joints that the
FHBT method estimated, while the bottom row shows the
same results over all the joints. It can be verified that the
HYBRID method is consistently more accurate compared
to the other two, regardless of t. FHBT and OpenNI per-
form comparably. Moreover, the plots show for which error
tolerances each method becomes preferable.

5.4 Estimation of body sizes
The HYBRID method relies on its discriminative part



Dataset S09 A04 Aggregate
Method Mean ∆ Std. ∆ A(10) (%) Mean ∆ Std. ∆ A(10) (%) Mean ∆ Std. ∆ A(10) (%)

FHBT 58.0/58.0 40.7/40.7 89.2/89.2 58.1/58.1 41.3/41.3 85.5/85.5 57.6/57.6 41.0/41.0 87.5/87.5
OpenNI 69.4/52.8 63.1/50.1 80.7/89.4 67.6/58.7 69.5/58.9 80.1/84.9 67.9/55.1 66.3/54.2 80.6/87.4
HYBRID 36.1/32.3 20.3/19.0 98.5/98.9 42.6/40.5 34.7/32.7 93.5/94.9 39.7/36.7 28.3/26.5 95.8/96.7

Table 3: Comparison of FHBT, HYBRID and OpenNI methods in all datasets. Mean ∆ and std. of ∆ are
measured in mm. The two numbers in each slot of the matrix refer to the quantity measured over all
joints/the quantity measured over the joints computed by FHBT.
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Figure 5: The accuracy A(t) of the evaluated methods as a function of t in the range [0..20]cm, for all
experiments. Left column: all-subjects-one-action, middle column: all-actions-one-subject, right column: the
union of the two datasets. Top row: results for the joints estimated by FHBT. Bottom row: results for the
joints that each individual method estimates.

(which is the OpenNI method) in order to initialize the
tracking process and to set the proper human body model
parameters. The FHBT method has its own mechanism to
provide an estimation of these parameters. Table 2 shows,
for each subject, the ground truth information (columns
(G)) as well as the ones estimated by the OpenNI (columns
(O)) and FHBT (columns (F)) methods. It can be verified
that the FHBT method is slightly more accurate in estimat-
ing body shape parameters than OpenNI. In particular, for
each method, we computed the mean error (among subjects)
in the estimation of each body part length. Then, we esti-
mated the mean and the standard deviation of these errors
for all body parts. The results show that the mean error in
the estimation of the body parts for the OpenNI method is
3.44cm with a standard deviation of 0.68cm, while for the
FHBT method we obtain a mean error of 2.86cm with a
standard deviation of 0.71cm. The analysis also shows that
the most inaccurate measurements are obtained for the hu-

man torso-related parts, while the lengths of the limb parts
(arms, legs) are estimated more accurately.

5.5 Qualitative results
Figure 6 shows characteristic snapshots of the MHAD

dataset and the skeletons that have been extracted by the
HYBRID, OpenNI and FHBT methods superimposed on the
RGB frame of one of the two employed RGBD sensors. It
can be verified that the estimation performed by HYBRID
(top row) is the most accurate one, followed by OpenNI
(middle) and then by FHBT (bottom). Interestingly, the
pose in the 2nd column cannot be estimated at all by FHBT.
For the 5th pose, FHBT estimates only partial information.

Finally, Figure 7 provides representative snapshots from
an experiment where FHBT was used to teleoperate a NAO
humanoid robot through the tracking of the human body
motion. A more complete view of the results are available
at http://cvrlcode.ics.forth.gr/projects/fhbt/.

http://cvrlcode.ics.forth.gr/projects/fhbt/


Figure 6: Qualitative comparison of the HYBRID (top), OpenNI (middle) and FHBT (bottom) methods based
on frames of the MHAD dataset.

Figure 7: Snapshots from a FHBT-guided humanoid robot (NAO) teleoperation experiment. Top row: In
each frame, we show the fitted human skeleton (top-left), the inferred NAO pose (right) and its actual robotic
realization (bottom left). Notice that FHBT does not estimate the joints of the legs as they are not visible
from the specific camera viewpoint. Bottom row: External views from the actual experiment.

6. DISCUSSION
We performed a comparative evaluation of three methods

for the estimation of the articulated motion of the human
body. A series of experiments performed on a ground-truth-
annotated data set demonstrated quantitatively and qual-

itatively the performance of the evaluated methods. The
results show that in situations where small error and high
accuracy is more important that the burden and the over-
head of using a second RGBD sensor, the HYBRID method
is the preferred one. Interestingly, the HYBRID method is
slightly less accurate than other purely generative methods



like pPSO [Michel et al. 2015] that are aware of an accu-
rate human body model. Still, the fact that HYBRID is
fully automatic, is a significant advantage that, depending
on application, might be more important than its lacking ac-
curacy. Another result is that FHBT and OpenNI perform
comparably. FHBT has some additional practical advan-
tages that make it an attractive alternative for estimating
human 3D pose. For example, it initializes instantly (in a
single frame), can cope with partially visible human bodies
and operates with a moving camera, even in jerky motion. It
should be stressed that the employed MHAD dataset does
not showcase such difficult situations which are, neverthe-
less, abundant in several real-life scenarios3. Future exper-
imental work will address the quantification of the perfor-
mance of FHBT in such scenarios that require 3D human
pose estimation in the wild.
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