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A Framework for Online Segmentation and
Classification of Modeled Actions

Performed in the Context of
Unmodeled Ones

Dimitrios Kosmopoulos, Konstantinos Papoutsakis, and Antonis Argyros

Abstract— In this paper, we propose a discriminative
framework for online simultaneous segmentation and classifi-
cation of modeled visual actions that can be performed in the
context of other unknown actions. To this end, we employ Hough
transform to vote in a 3D space for the begin point, the end
point, and the label of the segmented part of the input stream.
A support vector machine is used to model each class and to
suggest putative labeled segments on the timeline. To identify
the most plausible segments among the putative ones, we apply
a dynamic programming algorithm, which maximizes the like-
lihood for label assignment in linear time. The performance of
our method is evaluated on synthetic as well as on real data
(Weizmann, TUM Kitchen, UTKAD, and Berkeley Multimodal
Human Action databases). Extensive quantitative results obtained
on a number of standard data sets demonstrate that the proposed
approach is of comparable accuracy with the state-of-the-art
approaches for online stream segmentation and classification
when all performed actions are known, and performs consid-
erably better in the presence of unmodeled actions.

Index Terms— Action recognition, action spotting, Hough
transform.

I. INTRODUCTION

IN THIS paper, we deal with the problem of online seg-
mentation of visually observable actions, i.e., we have to

provide action labels given the fact that the visual observations
arrive streamwise in a sequential fashion and we need to decide
on the label shortly after they are received, without having
available the full sequence.
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The video segmentation has been traditionally treated
separately from the classification step; however, these two
problems are very tightly coupled and can be better han-
dled by simultaneously considering the low-level cues and
the high-level models representing the candidate classes
(see [1]–[3]). Following that observation, generative models
can build probabilistic models of actions and can give the
posterior of assigning labels to observations. In case an
unknown activity appears, the posterior probability for the
given known classes will be low, a fact that facilitates the
segmentation of a sequence of observations corresponding
to an unknown action. However, generative models rely on
simplifying statistical assumptions for computing the joint
probability of the states and the observed features, whereas
a more general discriminative model may better predict the
conditional probability of the states for the given observed
features. As a result, several researchers have investigated the
use of discriminative models of actions such as conditional
random fields [4], support vector machines (SVMs) [2], [5],
or random forests [6], [7]. However, the discriminative models
are not without problems, since they cannot easily handle
novel/unknown actions. Such actions are not considered in
training, so when they appear, they are classified as instances
of the known classes.

In the more general formulation of the action segmentation
and classification problem, we cannot exclude the possibil-
ity of previously unseen actions. In dynamic scenes, it is
almost certain that at some point, we will come across some
observations that will not be explainable by the existing
action models. Learning all the possible unknown classes and
assigning a specific class label or multiple class labels to
represent those is not the best solution, since a single or set
of related action models has to be really complex to cover the
variety of possible observations, and most importantly, these
observations are not known in advance. Therefore, as in certain
application domains, we treat unknown actions essentially as
irrelevant/don’t care in the proposed framework.

In this paper, we seek to mitigate the aforementioned limi-
tation of the discriminative methods, by employing a discrim-
inative Hough transform. By collecting the votes generated
by action primitives, we detect putative segments, i.e., the
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Fig. 1. Overview of the proposed framework. Top: action primitives in the considered time span vote in a 3D Hough voting space (begin–end class). The
class-trained binary SVMs receive the votes and suggest the putative segments by assigning action labels. Dynamic programming is used to estimate the final
solution, i.e., the labeling of the putative segments that maximize the likelihood. Bottom: visual observations of a test frame sequence of actions (the series
of representative frames) arrive in a stream-wise sequential fashion and are further converted into action primitives, given the estimated set of those that are
generated based on the training action sequences.

time span as well as the action type associated with each
of them using an SVM. In a following step, we use the
putative segments to assign labels to time instances so that
the observations are best explained; to this end, we employ a
dynamic programming algorithm. Fig. 1 gives an overview of
the method.

More specifically, the innovations of the proposed approach
are as follows:

1) a method to deal with unknown sequential patterns;
2) a generic voting scheme in a 3D Hough parameter space,

which is defined by the start point, the end point, and the
class-specific label in order to segment the observation
stream in an online fashion;

3) a dynamic programming method for label assignment in
linear time.

The rest of this paper is organized as follows. In the
next section, we survey related work. In Section III,
we describe the proposed framework, which includes the
generation of hypotheses via voting and the evaluation via
dynamic programming. Section IV describes the experimental
results, Section V discusses the experiments and key features
of the framework, and Section VI concludes this paper.

II. RELATED WORK

Recently, the simultaneous segmentation and classification
of visual or other time series has gained in popularity.
Generative models have been used extensively. In [8],
a Bayesian nonparametric approach was presented for speaker
diarization that built on the hierarchical Dirichlet process
hidden Markov model (HMM). Typical approaches that exploit

the hierarchical structure of time series to classify actions are
the hierarchical HMMs [9] or the layered HMM [10]. The
semi-Markov model, which explicitly captures the duration of
events/actions, has also been employed [11], [12].

Dynamic time warping and its variations are also
popularly [13] used a feature weighting variation for gesture
recognition. Reyes et al. [14] proposed a framework for
gesture recognition and spatiotemporal gesture segmentation
using a stochastic dynamic time warping combined with a
variation of the Viterbi algorithm. Another line of research is
followed by methods that seek to exploit the cooccurrence of
tasks (see [15], [16]). Our method does not currently exploit
this information, but this solely depends on how we treat the
overlapping tasks that we recognize. In this paper, we deal
exclusively with the simpler case of actions that do not overlap
with each other on the timeline. Recently, a great deal of
work was done on deep learning, e.g., convolutional neural
networks [17], [18] and restricted Boltzmann machines [19].
These methods can create a feature mapping in an unsuper-
vised way and then they apply standard classification methods.
Our method is agnostic to the employed features and could use
these results.

In [20], a discriminative framework was proposed. The
sequences were assigned to classes and segmented into subse-
quences using conditional random fields. However, the method
requires the full sequence in advance and cannot operate in an
online fashion. Similarly, conditional random fields were used
in [21] and [22]. In [4], hierarchical layers of latent variables
were used to model substructures within actions. In [1], a dis-
criminative approach was introduced under a semi-Markov
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model framework, and a Viterbi-like algorithm was devised
to efficiently solve the induced optimization problem. In [2],
a joint segmentation and classification scheme was presented
and it sought to maximize the confidence of the segment
assignment. To this end, a multiclass SVM was used and a
dynamic programming approach was followed for efficient
seeking of candidate segments and their evaluation. In [5],
latent labels and state durations were optimized in a maxi-
mum margin approach. The results were very promising, but
Tang et al. [5] relied on the assumption that the video
sequences contain only instances of classes that were pre-
viously learned. These schemes have problems if segments
belonging to previously unseen classes appear between the
known ones because the dynamic programming scheme
becomes inapplicable. A possible solution could be to model
the content that does not belong to any of the known categories
as a separate class; however, that approach would not handle
properly the unknown sequences that might appear.

Of some relevance to our method is research relevant to
anomaly detection in time series. In contrast to segmentation of
time series, anomaly detection is the identification of unknown
patterns, i.e., behaviors that deviate from normal, given the
previously seen data. The work in [23] used the one-class
SVM discriminative model to detect novel observations and
outliers after transforming the time series data to a vector,
which is the required input to the SVM. Such approaches
can be used offline, where the whole sequence is known.
Lee and Roberts [24] proposed an on-line (causal) novelty
detection method capable of detecting both outliers and regime
change points in sequential time-series data using a metric
based on extreme value theory. This method is more related
to change point detection methods used when a signal changes,
e.g., in EEG analysis rather than to the classification of more
complex patterns like actions or gestures. Our approach is
different from anomaly detection and the approaches related to
it, since our goal is not the detection of abnormal sequences;
our primary goal is to segment some known sequential pat-
terns, which could be occasionally interrupted by some other
sequences. The later sequences in our experimental settings
are not necessarily anomalous, and they can be just uninter-
esting, e.g., some random actions that cannot be modeled or
should not be modeled because they do not correspond to
known/interesting actions.

Another line of research is the definition of spatiotemporal
approaches, which are followed by matching. In [25], local
descriptors concatenated several histograms from a space–time
grid defined on the patch and generalized the SIFT descriptor
to space–time. A problem with that approach is the lack of
structure capturing, due to the histogram representations. The
work in [26] introduced a space-time descriptor based on
visual space–time-oriented energy measurements, as well as
techniques for matching. Such methods seem to work well
for short-term actions, but do not have invariance to temporal
variations, which are common in longer actions.

Related to our approach is Hough transform, which has
been employed in some recent works for object detection,
where each local part casts a weighted vote for the possible
locations of the object center. In [27], the votes were based on

generative weights, while in [28]–[30], it was reported that this
method produces false positives that can be partially reduced
by introducing discriminative parameters. It was shown that
the weights can be learned in a max-margin framework, which
directly optimizes the classification performance.

Its resilience to noise and the fact that multiple objects
can be present simultaneously make the Hough transform
a very attractive option, which can be generalized to time
series and therefore to gesture and action recognition. In [3],
a new Hough-transform-based segmentation and classification
method was proposed based on discriminative parameters,
where the motion primitives voted for the center and the type
of the action (2D voting). Then a convex optimization scheme
was used to learn the Hough variables and thus how the primi-
tives should distribute their votes on the timeline. The method
was successfully applied to human action segmentation by
relying on skeleton-based features.

We propose a discriminative Hough transform for time
series analysis, where motion primitives are used instead of
local descriptors, as opposed to [28]. We deal with concurrent
segmentation and classification in time series, instead of object
detection in images where the voting is different. We vote in
a 3D space, which is defined by the time span and type of
segment (begin point, end point, and class label) and therefore
does not require learning how to vote as in [3]. Then we
use dynamic programming for the final label assignment.
Another interesting approach for the problem of action recog-
nition using Hough was presented in [6], where the action
segmentation was coupled to the action positioning problem
for a single actor. By considering features such as optical
flow, intensity, and position, a Hough forest was built and
then used to cast votes in real scenarios. Compared with
that work, we decouple the position estimation problem from
the classification and segmentation problem, which reduces
the dimensionality of the voting space. In [6], the actor was
represented by a rectangle. Thus, it is unclear how such
a coupled framework would generalize to more complex
problems involving high-dimensional models (e.g., multiple
actors, skeleton models, and region descriptors). The method
presented in [31] also used the described a Hough-transform-
based scheme to classify actions by comparing pose-based
features derived from articulated 3D joint information and
appearance-based and combined features for action recogni-
tion. The goal was to investigate whether pose estimation
is useful for action recognition or if it is better to train a
classifier only on low-level appearance features drawn from
video data. The results showed that pose-based features can
outperform appearance-based features. Hough transform was
also used in [32]. However, unlike our work, which uses voting
for actions, it used voting for pose estimation.

An early version of this paper has been presented in [33].
The current work extends [33] by updating the state-of-the-art
section to include the latest developments, by proposing a
new method for primitive selection, which improves our
previous results, and by including two additional experi-
ments with two standard data sets. Furthermore, we report
a detailed quantitative comparison with other state-of-the-art
methods.
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III. PROPOSED FRAMEWORK

A. Hypotheses Generation via Discriminative Voting

In the discriminative voting framework, we seek to simul-
taneously identify the following:

1) the instances of classes C as subsequences in time-series
data;

2) the location x of the class-specific subsequence, in other
words the begin and the end time point of an action in
the observations.

Let ft denote the feature vector observed at time instance t
associated with an action primitive and let S(C, x) denote the
score of class C at a location x ((C, x) is a cell in a 3D voting
space). The implicit model framework obtains the overall score
S(C, x) by adding up the individual probabilities p(C, x, ft )
over all observations within a sliding window, that is

S(C, x) =
∑

t

p(C, x, ft ) =
∑

t

p(ft )p(C, x|ft ). (1)

We define M action primitives, which result from clustering
of the visual observation vectors ft . Let Pt denote the action
primitive in time t . By assuming a uniform prior over features
and marginalizing over the action primitives, we get

S(C, x) =
∑

t

p(C, x|ft )

=
∑

i,t

p(Pt = i |ft )p(C, x|Pt = i, ft ). (2)

We observe that p(C, x|Pt = i, ft ) depends only on the
matched primitive Pt and simplifies to p(C, x|Pt = i).
Therefore, we obtain

S(C, x) =
∑

i,t

p(Pt = i |ft )p(C, x|Pt = i)

=
∑

i,t

p(Pt = i |ft )p(x|C, Pt = i)p(C|Pt = i). (3)

The term p(Pt = i |ft ) can be calculated by applying the
Bayes rule assuming uniform distribution for ft : p(Pt =
i |ft ) ∝ p(ft |Pt = i)p(Pt = i). We use Gaussian mixture
models (GMMs) to represent the distributions of the observa-
tion vectors and to express one primitive by one component
of the GMM. The first factor can be simply obtained by
evaluating the respective component of the GMM, while the
latter is given by the associated prior.

Returning to (3), the term p(x|C, Pt = i) gives the temporal
distribution of the begin–end points x for the given class C
and with respect to the primitive Pt , i.e., what is the number
of action primitives between Pt and the begin/end points. This
can be learned from the training samples and is a simple
bivariate discrete distribution. The third term is the weight
of the primitive Pt emphasizing how confident are we that
the primitive Pt at time t matches the class C as opposed to
another class.

Our voting framework can be the basis for a discriminative
voting scheme for time-series data. It is inspired by the frame-
work presented in [28], which dealt with object detection.
We can use maximum margin optimization if we observe

that the score S(C, x) is a linear function of p(C|Pt = i).
By considering (3), we obtain

S(C, x) =
∑

i,t

p(Pt = i |ft )p(x|C, Pt = i)p(C|Pt = i)

≈
∑

i

p(C|Pi )
∑

t

p(Pt = i |ft )p(x|C, Pt = i)

=
∑

i

wi × ai (x,C) = W T
c A(x,C) (4)

where Pi is denoted by the i th primitive, A(x,C) =
[a1a2, . . . , aM ]T (hereafter mentioned as the activation
vector), and ai is given by

ai(x,C) =
∑

t

p(x|C, Pt = i)p(Pt = i |ft ). (5)

The weights W T
c are class specific and they can be optimized

in a discriminative fashion to facilitate labeling. For a given
training sequence that is observed, we set the respective class-
specific labels in the respective xi , i.e., at the bins that
correspond to the correct begin/end points. The rest of the
locations are defined to belong to an idle class. In other words,
we define the ground-truth labels for all possible xi within a
time window. For each of the xi , we find the activation vectors
A(xi ,C), which are calculated using (5). Given the labels
and the respective A(xi ,C), we calculate the weights Wc

and the bias, which can be regarded as a threshold for the
acceptable score. To this end, we learn multiple one-versus-
all binary SVMs.

In the (4), p(C|Pi ) does not depend on the temporal
location t of Pi , which is not necessarily true. However, we do
this approximation, which may give false positives, only for
generating more hypotheses. The hypothesis evaluation will
be treated in the next section, where the order is considered
via the priors and transitions between primitives.

In testing, we vote in the 3D space using (4) and then we
apply the SVMs in a sliding time window to get the putative
segments. As may happen in many cases, the local maxima
in the Hough parameter space may be the result of noise
and thus may not correspond to a real segment. Therefore,
an additional evaluation step is normally applied to eliminate
some false positives using an HMM-like likelihood function,
which is learned by training a standard HMM. An illustrative
example of the proposed hypothesis generation process and the
additional evaluation step is shown in Fig. 3(b) and (c) in the
context of the proposed algorithmic steps presented in Fig. 1.

B. Hypothesis Evaluation via Dynamic Programming

The processing described in the previous section results in,
say, G putative segments; G is many orders of magnitude
smaller than the number resulting from exhaustive consider-
ation of all possible combinations of classes and begin–end
points. However, these G segments are typically overlapping
and belong to different classes. Their possible combinations
are O(G!), which according to our experimental observations
could still be a computational bottleneck even if we use
evolutionary algorithms for fast estimation. We also observed
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A(Ct−1,Ct ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

M∑

i=1

M∑

j=1

ptr
(
Pi

t−1, P j
t

∣∣Ct−1
) · p

(
ft−1

∣∣Pi
t−1,Ct−1

)
p
(
ft
∣∣P j

t ,Ct
)

if Ct = Ct−1

M∑

i=1

M∑

j=1

pe
(
Pi

t−1

∣∣Ct−1
)

p
(
ft−1

∣∣Pi
t−1,Ct−1

) · pb
(
P j

t

∣∣Ct
)

p
(
ft
∣∣P j

t ,Ct
)

if Ct �= Ct−1.

(8)

that in most of the cases, the discriminative framework pro-
poses, among others, segments that are close to the ground
truth. These observations motivated an approach that seeks to
consider only the proposed segments to explain the sequence
of measurement vectors on the timeline. If for parts of the
timeline there are no putative segments, these parts remain
unassigned and account for unknown observations.

We merge the putative segments that overlap and have
the same label, but typically there are also overlaps between
segments of different labels, which compete for the same
time windows. Assuming only one label for each time slot,
we propose a variation of the Viterbi algorithm for linear cost
label assignment with regard to the number of input frames.

We define the likelihood δt , which is calculated after the
optimal labeling of time instances. The optimal sequence of
labels for a time instance t = 1, . . . , T , which is covered
by overlapping putative segments of different labels, is given
by the path ψT = C1,C2, . . . ,CT , where Ct is the assigned
label for the t th time instance taking values from a subset
of 1, . . . , L , by considering only the labels of the putative
segments that cover the time segment. If the time segment
is not covered by any putative segment, then it remains
unlabeled. The initialization of the likelihood δt for t = 1
is then given by

δ1(C1) =
M∑

i=1

p(f1|Pi ) · pb(P
i |C1) (6)

where pb(Pi |C1) denotes the prior probability that the
action C1 begins with primitive Pi .

At time t , which accounts for the first t time instances,
we get a recursive expression

δt (Ct ) = max
Ct−1

{δt−1(Ct−1) · A(Ct−1,Ct )}

·
M∑

i=1

p(ft |Pi )p(Pi |Ct ) (7)

where the sum expresses the likelihood of p( ft |Ct ),
δt−1(Ct−1) is the recursive factor (typical for dynamic
programming algorithms), and A(Ct−1,Ct ) accounts for
switching from action label Ct−1 to Ct , further analyzed
in Equation (8), as shown at the top of this page, treats
separately the case of switching between different actions from
t − 1 to t (handled in the second branch) from the case
that two consecutive primitives belong to the same action
(handled in the first branch). In the first case, the transition
likelihood ptr(Pi

t−1, P j
t |Ct−1) is involved, while the label

remains the same (Ct−1). In the times t − 1 and t , we
observe the primitives Pi and P j , respectively, as indicated

by the subscripts. There is no hard assignment of primitives,
so all transitions are evaluated and weighted by the respective
observation likelihoods.

The second branch accounts for switching between differ-
ent labels, so the termination likelihood pe is involved for
label Ct−1. A new segment with a different label begins at t ,
so the begin likelihood pb for the new class label Ct is
involved. These are weighted by the respective observation
likelihoods for the given classes Ct and Ct−1 and the respec-
tive primitives. Again, all possible combinations are evaluated.

At this point, we should note that ptr , pb, and pe are learned
by a standard EM-learning procedure for HMMs similar
to [34]. We trained one HMM for each action. ptr corresponds
to the transition matrix, and pb and pe correspond to the
priors for the first and last primitives (states) of the action,
respectively.

In (7), only the rightmost factor needs to be evaluated for
each class, while the left part is already available from the
t − 1 step. The overall cost of the calculation is linear and is
appropriate for online applications. To retrieve the sequence of
assignments, we keep track of the argument that maximized (7)
through the array ψt , which is given by

ψt (Ct ) = arg max{
Ct−1=1..L

δt−1(Ct−1) · A(Ct−1,Ct )}. (9)

An illustrative example of the hypothesis evaluation process
is shown in Fig. 3(d) for the two experimental configurations
that are provided, resulting in the final classification and
segmentation of actions. The proposed dynamic programming
algorithm differs from the typical Viterbi algorithm because
the transition between labels on the timeline has to be treated
differently in the case that the same segment continues [label
remains the same—the first case in (8)] than the case that a
new segment begins [label changes—the second case in (8)].

C. Estimation of Primitives

A crucial part of the proposed methodology is the estimation
of action primitives, which actually represent typical poses of
the actors during the action or gesture. A highly discriminative
primitive is one that is associated only with specific actions
(labels), so that its presence is typical of only those specific
actions. Typical estimation methods such as the widely used
k-means or similar methods do not involve such specificity
criteria, and therefore, their results may be suboptimal.

One way to define the primitives is to optimize an objective
function that has a term that penalizes the appearance of
primitives under multiple classes. Here we propose to solve
the problem of primitives definition by penalizing primitives
that appear in multiple classes and thus are less informative
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Fig. 2. (a) Demonstration of primitive estimation in comparison with k-means for k = 3 and two classes. (b) Proposed method favors clusters that are more
class specific. The black cluster is mainly composed of elements of the red class and the magenta and green clusters are mainly composed of members of
the blue class. (c) In contrast, with k-means, the black cluster contains elements of both the red and blue classes.

for classification. To this end, we define the modified k-means
algorithm as follows.

Let ft , t = 1, . . . , T be the set of T observations. Let ft j

denote the j th feature of ft . Define for t = 1, . . . , T and
m = 1, . . . ,M

utm =

⎧
⎪⎨

⎪⎩

1, if the t-th observation belongs

to the m-th cluster

0 otherwise

(10)

vt l =

⎧
⎪⎨

⎪⎩

1, if the t-th observation belongs

to the l-th class

0 otherwise.

(11)

Then for the matrices U = [utm], V = [vt l] holds

utm ∈ {0, 1} and
M∑

m=1

utm = 1 (12)

vt l ∈ {0, 1} and
L∑

l=1

vt l . = 1. (13)

The matrix V is constant (defined by the label of each sample)
and we seek to find the optimal matrix U.

The centroid of the mth cluster is calculated by

cmj =
∑T

t=1 utm ft j∑T
t=1 utm

. (14)

We seek to find the optimal values for U that minimize the
objective function as follows:

arg min
U

[g(U,F,C)− λ · h(U,V)] (15)

where

g(U,F,C) = 1

MT

M∑

m=1

T∑

t=1

utm

d∑

j=1

( ft j − cmj )
2 (16)

and

h(U,V) =
M∑

m=1

L∑

l=1

∑T
t=1 utmvt l∑T

t=1 utm
· log

(∑T
t=1 utmvt l∑T

t=1 utm

)

(17)

while λ weighs the contribution of the h factor (either user
defined or obtained by cross validation), C is the M × d
centroid matrix, and F is the T × d observation matrix. The
first factor accounts for the within cluster variation, which

is a standard metric to minimize in the k-means framework
(see [35]). The second factor represents the entropy of the
distribution of primitives to different classes. If we define
as p(Pm |l) the likelihood that a primitive with index m
will be part of action with label l, then the entropy is
given by

−
M∑

m=1

L∑

l=1

p(Pm |l) · log(p(Pm |l)) (18)

where

p(Pm |l) =
∑T

t=1 utmvt l∑T
t=1 utm

. (19)

Clearly, the entropy is a measure that can quantify the
primitive’s specificity. It is maximized when p(Pm |l) = 1/L
for all labels l (equal probability therefore minimal specificity),
while it becomes zero for p(Pm |l0) = 1 and p(Pm |l) = 0 for
l �= l0 (maximum specificity).

The optimization problem can be solved using one of
the many available methods for discrete optimization such
as a baseline genetic algorithm (GA) method [35] or some
of the many discrete particle swarm optimization variations
like those in [24] or [36]. The solution vector (chromosome)
is of dimension equal to T , where each cell takes a value
between 1 and M .

Fig. 2 presents a simple qualitative example in 2D, to give
an intuition on how the proposed method clusters together
elements of the same class, thus leading in most cases to more
discriminative primitives. In the following section, we report
the quantitative results about the effectiveness of the proposed
technique and the gain toward the overall performance of our
framework.

IV. EXPERIMENTAL RESULTS

To verify the validity of our framework, we have exper-
imented with synthetic as well as various real data sets
from the field of visual action recognition. For our com-
parisons, we implemented (using the CVX [37]) the opti-
mization scheme that maximizes the confidence for segments
similarly to [2] [hereafter denoted by MaxConfidence (MC)]
and the scheme that maximizes the overall score similarly
to [1] [hereafter denoted by MaxScore (MS)]; these are
state-of-the-art methods that do online segmentation, like does
our method.
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Fig. 3. Two sample results from the Berkeley data set (one example per column). (a)–(d) Actions 1–10 are illustrated as color-coded segments. The horizontal
axis represents the timeline in frames. On the left column example, modeling and training of the proposed method is applied using all actions 1−10, performed
by subjects 1–7. Testing is applied on an image sequence that contains each action once performed by subjects 8–12. The final result is illustrated in the left
subfigure of (d), matching the ground truth in (a). On the right column example, training using only actions 6–10 for subjects 8–12 was performed (the actions
1–5 are unknown). A test sequence was compiled concatenating all available actions once, from subjects 1–7. The final labeling, shown in right subfigure
of (d), demonstrates the segmentation and classification of the modeled actions in the context of the unmodeled actions 1–5, which are considered as unknown
in that case, and thus no recognition results are present during the first five actions. (e) Corresponding key frames of the recognized actions are illustrated.
(The figure is best viewed in color.)

A. Synthetic Data

We generated a data set of 2D data sequences. We created
randomly ten HMM models, each composed of up to three
different states, by random definition of means, covariances,
priors, and state transitions. Then for each of them, we per-
formed sampling and we produced 100 sequences of length
between 450 and 750 each. These sequences were concate-
nated at random order to form bigger sequences consisting of
one instance per class.

Given the data set, we investigated two different settings.
To make our method comparable to the existing work, we ini-
tially made the assumption of a multiclass problem, where all
the knowledge was given in advance to the system, i.e., no
instances stemming from unknown latent classes appeared.
This implies that a label from the known set of labels had
to be assigned to every frame. We used 50% of the sequences
for training and the rest for testing.

Fig. 4 presents per-class classification accuracies of our
method, MC and MS, on a frame-by-frame basis. The size of
the sliding window was defined by the maximum action length.
Our method shows a similar or higher accuracy, i.e., 89.44%
versus 87.65% and 81.71% of MC and MS, respectively. Our
method is agnostic to the existence of instances stemming from
unknown sequential patterns; therefore, small gaps falsely
assigned to novel observations may appear. This is the largest
source of error, i.e., segments that have actually larger duration
are detected as shorter because the longer ones are some-
times not suggested as putative segments. On the contrary,

Fig. 4. Classification accuracy (%) per class for the synthetic experiment.
Class 0 denotes the novel observations. (a) Training with full data set.
(b) Training with subset.

MC and MS assume that all observations are known and that
there are no gaps between the putative segments.

Next, we assumed that some of the observed actions resulted
from unknown latent classes (hereafter denoted with the
label 0). MC and MS are not able to classify instances
of previously untrained actions; therefore, to make a fair
comparison, we trained an HMM for each known action and
we checked the likelihood of each segmented subsequence
using the respective model. For low likelihoods, we classi-
fied the actions as unknown. We excluded the instances of
five classes from training and we learned the rest.

Our method gave promising results, exhibiting accuracy
96.16% (assignment of instances from 6–10 to 0 were con-
sidered true). The best results for MC and MS were 52.42%
and 37.34%, respectively, and were obtained using a length-
normalized threshold of 10−7 and M = 30. Their inferior
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Fig. 5. Actions in MHAD. Jumping, Jumping jacks, Bending, Punching,
Waving two hands, Waving one hand, Clapping, Throwing, Sit down/stand
up, Sit down, and Stand up. The images were taken from [38].

performance can probably be attributed to the requirement for
continuous labeling of the whole timeline, which inevitably
couples together the actions and necessitates a suboptimal
postprocessing step to detect unseen actions; in contrast, our
method is optimized to classify known and detect unknown
actions without that constraint.

B. Berkeley Multimodal Human Action Database

The next experiment is related to visual recognition of
actions, which involve the whole human body. To this
end, we use the Berkeley Multimodal Human Action Data-
base (MHAD) [38], which consists of temporally synchro-
nized and geometrically calibrated data. The data set contains
11 actions performed by 13 subjects: Jumping, Jumping jacks,
Bending, Punching, Waving two hands, Waving one hand,
Clapping, Throwing, Sit down/stand up, Sit down, and Stand
up, as illustrated in Fig. 5.

The data set contains about 660 action sequences, which
correspond to about 82 min. In the original data set, the
different actions were provided as segments. For the purpose of
identifying actions in continuous data, we concatenated those
videos. We did not consider the action Sit down/stand up as
a separate action, but as the composition of the actions Sit
down and Stand up; this approach is justified by the continuous
recognition that we do. Therefore, we actually classified only
ten different actions.

All available 3D skeleton joints were used to build our
representation of human motion for each frame. We used the
3D orientation of each joint with respect to its ancestor in the
kinematic skeletal chain based on quaternions. In addition,
the 3D coordinates of each skeletal joint with respect to the
hips joint were computed for each mocap record. Finally, the
distance of the hips joint to the ground plane was also incor-
porated to the feature set for each frame. The last two subsets
of our feature representation were normalized for each actor
of the data set, given the total length of the skeletal chain.
The feature vector had 220 dimensions 103 representing all
the joint angles and 117 representing all the joint positions.

We trained with the first seven subjects and tested with the
last five ones as in [38]. Each subject repeated the same actions
four times. Fig. 6 gives the per-class accuracy. Our method
gave the overall accuracy 92.17% compared with 76.22% of
MC and 82.46% of MS when training with all classes. For
reference purposes, we mention that the best results reported
in [38] using the same skeletal data were 79.93% using
kernel-SVM with the χ2 kernel for classification. However,
the setting was different, i.e., unlike ours, the classification

Fig. 6. Classification accuracy (%) per class for the Berkeley experiment.
Class 0 denotes the novel observations. (a) Training with full data set.
(b) Training with subset.

Fig. 7. Examples of video sequences and extracted silhouettes from
the Weizmann database (from [39]) showing Waving two hands, Running,
Walking, and Galloping sideways.

was performed on segmented videos and the Sit down/stand
up action was treated separately.

We then examined the effect of unknown sequences, using
the same postprocessing step as in the synthetic experiment to
make the competing methods comparable to ours. We trained
with classes 6–10 and then tested using the same data as in the
previous experiment. The illustrative experimental results are
demonstrated in Fig. 6. Our method had an overall accuracy
of 89.04%, outperforming MC with 74.25% and MS with
75.14% (threshold 10−5, M = 30), which verifies the merit
of the proposed method.

C. Weizmann Data Set

We also used the classification database of the Weizmann
data set [39]. Fox et al. [8] collected a database of 81 low-
resolution (180 × 144, 25 frames/s) video sequences showing
nine different people, each performing nine natural actions
such as Running, Walking, Jumpingjack, Jumping forward on
two legs, Jumping in place on two legs, Galloping sideways,
Waving two hands, Waving one hand, and Bending (see Fig. 7).

Based on the aligned binary foreground masks that are also
available in the data set, we computed the Zernike moments
up to order 20 [40]. We exploited only the even polyno-
mials (excluding zero-based polynomials) and concatenated
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Fig. 8. Classification accuracy (%) per class for the Weizmann experiment.
Class 0 denotes the novel observations. (a) Training with full data set.
(b) Training with subset.

Fig. 9. TUM kitchen data set [41]. Example images of various actions
performed by different subjects and viewpoints.

the resulting amplitude and phase values resulting in feature
vectors of size 220. In the following, we applied a GMM-based
clustering to build a dictionary of M = 30 motion primitives
that represent the notion of spatiotemporal keywords in our
framework. As in [2], we concatenated each set of videos
of a subject into a single longer sequence; consequently,
we composed nine long videos of contiguous actions and used
five of the videos for training and four for testing.

The results per class are illustrated in Fig. 8. We used
a threshold of 10−5 and M = 30. The training with
all data yielded 90.82%, 67.64%, and 79.31% for our
method, MC, and MS, respectively; the partial training with
classes 1–5 yielded 89.23%, 69.34%, and 65.14% for the three
methods, respectively. For reference purposes, we mention
that in [2], 94% accuracy was reported for the MC, which
is justified by the use of spatiotemporal features, while in our
experiments, we used only spatial features.

D. TUM Kitchen Data Set

The next experiment was related to the TUM Kitchen
Multimodal data set [41] (see Fig. 9). It consists of a col-
lection of activity sequences recorded in a kitchen environ-
ment equipped with multiple complementary sensors, such
as color cameras, RFID, motion capture, and magnetic data.
The recorded actions regard naturally performed manipulation
tasks as encountered in everyday activities of human life.
Several instances of a table-setting task were performed by
different subjects, involving the manipulation of objects and
the environment (e.g., Lowering an object, Releasing grasp
of an object, Opening a drawer, etc.). We treat each episode
of the data set as sample for training or testing. An episode
consists of a sequence of frames showing a single subject
performing various daily manipulation tasks in a continuous
manner. Our framework acquires as input the available motion
capture data for each episode.

Fig. 10. Classification accuracy (%) per class for the TUM Kitchen
experiment when training (a) with the full data set and (b) with a subset
of the first five classes. Class 0 denotes the novel observations.

We processed the streams of skeletal (motion capture) data
of five subjects performing actions from the data set, following
the same experimental protocol as in [31], and thus we split
the available video sequences into training and testing parts.
More specifically, we used 0–2, 0–8, 0–4, 0–6, 0–10, 0–11,
and 1–7 for testing and the remaining 12 episodes of the data
set for training.

Moreover, we split the idle/carry class according to whether
the subject was walking or standing, as also performed in [42].
We further employed the associated action labels for the
left hand, resulting in ten different labels for the ground
truth, namely, Reach Up, Take Object, Lower Object, Release
Grasp, Open Door, Close Door, Open Drawer, Close Drawer,
Carrying/Walk, and Carrying/Still.

We produced the same single articulation features based on
the full set of skeletal joints provided per frame for the data
set, as in [3], in order to maintain consistency and produce
comparable quantitative results. The single articulation feature
corresponded to the 3D position of one articulation that had
been quantized independently for each articulation, using the
k-means algorithm. The same value for k was considered for
all articulations of the body model (k = 10). We used M = 30
primitives. Performances were measured by the total number
of correct predictions over the total number of frames in testing
videos, which is in accordance with the rest of the reported
results in the literature.

The per-class results are given in Fig. 10. Our
method gave the overall accuracy 79.32% compared with
73.35% and 72.99% of the MC and MS.

Furthermore, compared with the results in the related
literature for reference, [3] gave 83.0% using 27 joints and
more sophisticated features (poses, speeds, and tracklets) than
we use. The same paper reported 77.60% accuracy using
features similar to ours. The work in [31] reported 81.5%
using pose-based features, however, solving the easier problem
of classifying segmented actions.

In our next experiment, we learned only the first five action
classes and we considered the rest as unknown similarly to
the experiments with the previous data sets. The overall per-
formance degraded to 78.47% due to the presence of additional
unknown actions (classes 6–10 of the original data set). For
the MC and MS methods, the accuracies were 56.85% and
55.19%, respectively (with a cutoff threshold of 10−10).

E. UTKAD Data Set

Finally, we conducted experiments on the University of
Texas Kinect-Action Dataset (UTKAD) [43] (see Fig. 11).
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Fig. 11. Examples of actions from videos of the ten activities in the
UTKAD [43].

Fig. 12. Classification accuracy (%) per class for the UTKAD experiment.
Class 0 denotes the unknown observations.

It is composed of ten indoor activities in a human–machine
interaction setting, performed by ten different individuals
in varied views: nine males and one female. Each subject
performed the set of actions twice, in a continuous manner
per sequence. In total, it consists of 200 action samples in
20 video sequences, captured by a single stationary Kinect.
The set of actions include Walk, Sit down, Stand up, Pick up,
Carry, Throw, Push, Pull, Wave, and Clap hands.

As in TUM data set, we processed the streams of skeletal
data of the available action sequences following the same
experimental protocol as in [3] and [43]. Thus, performances
were measured using leave one out cross validation. Moreover,
we utilized the single articulation features for single frames,
used also in [3] achieving the highest scores, if only joint
position data are considered.

Various unlabeled motions performed by the subjects were
also interleaved to known actions in the sequences. We con-
sidered that configuration as ideal for our methodology, as we
aspire to maximize the performance of simultaneous segmen-
tation and classification of actions in the presence of unknown
ones. Thus, there was no need to exclude from training any
classes, as we did with the previous data sets.

The per-class results are given in Fig. 12. Our method gave
the overall accuracy 81.65% compared with 74.8% in [3]
(best overall performance in this paper using single articulation
features) and 90.9% in [43]. However, the latter methodology
and results refer to the task of action classification to already
segmented data.

The MC and MS methods were also compared with ours,
in combination with an HMM, to label the data as unknown if
the normalized log-likelihood of the segment was lower that
an experimentally optimized threshold (10−4.2 for MC and
10−4.1 for MS). We used M = 30. The comparison per class
is given in Fig. 11. Clearly, the comparison verifies the results

of the previous experiments with our method giving overall
superior results 81.65% compared with 48.50% and 37.41%
of MC and MS, respectively.

F. Computational Cost

The cost of the proposed method can be analyzed as
follows. We initially group the observation vectors to prim-
itives, eventually after low-pass filtering, depending on their
distance from the associated primitive centers obtained from
k-means. Consecutive observations that are close to the same
center count as a single primitive. For each time window,
we sum up the votes of all primitives, which has a linear cost to
the number of primitives. Assuming that n primitives fit in the
window, and given that the starting primitive of the segment is
always the first window primitive, the primitive that ends the
segment must be selected from the n−1 remaining ones. Each
of the n −1 starting–ending primitive combinations represents
an x and is evaluated against C action classes, so that the
A(x,C) is calculated according to (4). For each A(x,C), the
classification result is calculated using an SVM, which gives
the putative segments. Therefore, the cost for each window is
∼O((n − 1)× C) or ∼O(n × C). After the putative segments
are calculated, the dynamic programming algorithm verifies
the hypotheses with cost that is linear to the total number of
primitives, i.e., linear to the number of observations.

MS and MC start from the current observation and scan a
time window forward in time to find, within that window, the
end point of the segment that gives the best score and the best
confidence, respectively, using an SVM as well. A dynamic
programming algorithm is used to proceed to the following
segments. The cost for each window is ∼O(n × C), where
n is the size of the window. Additional postprocessing steps
are necessary to locate previously unseen actions, as we will
mention in the following section. The total cost is linear to
the number of frames.

MS and MC may use simpler segment representations,
e.g., average of pseudoprobabilities of observations with
respect to feature centers (after k-means). However, the gain
in efficiency is not significant and the overall cost is still linear
to the amount of observations.

The method [3] has a higher cost per window that is
∼O(n × C× (number of frames)). This is a consequence of
the used voting function, which requires voting per frame.
On the other hand, our method has to maintain a 3D voting
space instead of a 2D space used in [3] and we have to execute
an additional linear cost dynamic programming algorithm.

V. DISCUSSION

We have applied our method on synthetically generated,
as well as on natural visual action streams using four different
publicly available data sets (Berkeley MHAD, Weizmann,
TUM Kitchen, and UTKAD), to show the merit of the method
on different data modalities. The synthetic data set was the
simplest to classify with only two dimensions. In Weizmann,
we used the moments of the foreground regions, while the
Berkeley MHAD, TUM Kitchen and UTKAD used higher
dimensional skeletal joints with or without mapping using per-
joint clustering.
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TABLE I

OUR METHOD AND RESULTS COMPARED WITH PUBLISHED RESULTS ON
SYNTHETIC, MHAD, TUM, UTKAD, AND WEIZMANN DATA SETS,

ASSUMING TRAINING ON ALL ACTIONS. THE FEATURES USED

ARE THE SAME AS IN OUR METHOD UNLESS OTHERWISE

STATED. WE ALSO NOTE THE METHODS THAT
WE IMPLEMENTED OURSELVES

In general, the performance of our method was comparable
or better than the competing discriminative methods when a
closed world was assumed. Furthermore, when the actions
of interest were interrupted by previously unseen actions,
our method was still able to classify them and detect the
unknown ones in most of the cases. MS and MC gave
inferior performance mainly due to the fact that they enforce
continuity between actions. The inevitable threshold-based
postprocessing proved to be relatively ineffective. Despite
our exhaustive search for a threshold value that would give
consistent results, these methods were unable to accurately
recognize the instances of the novel classes.

To assess the overall performance of our algorithm given the
state-of-the-art approaches, we summarize the experimental
results for the synthetic, MHAD, Weizmann, TUM Kitchen,
and UTKAD in Table I for the given closed world assumption.
The results are not always comparable due to the different
employed features and due to the fact that many of these
works aim to label videos containing single actions, which is
much simpler. However, our method demonstrated a similar or
better performance for all the cases that the same experimental
protocol and the same features were used. We need to note
here that these results are with our method set to recognize
one additional class (unknown) and that we did not execute
any postprocessing step to assign the instances classified as
unknown to any of the known classes.

In comparison with [3], which uses probabilistic voting
functions, we use a parameter space of higher dimension
(three instead of two), but we alleviate that by avoiding
the optimization of the voting function. This strategy works
well in practice since several hypotheses (putative segments)
seem to be concentrated around the true positive segment
(see Fig. 3). The quantitative results seem to be advantageous
for our method in two different data sets (TUM and UTKAD);
however, the synergies between the two approaches could be
further investigated in the future.

TABLE II

SUMMARIZATION OF EXPERIMENTS ON THE SYNTHETIC, MHAD,
TUM, UTKAD, AND WEIZMANN DATA SETS ASSUMING

THAT SOME ACTIONS ARE UNKNOWN

TABLE III

OVERALL CLASSIFICATION ACCURACY OF OUR METHOD FOR THE

MHAD, TUM, UTKAD, AND WEIZMANN DATA SETS. WE

COMPARE THE RESULTS OF THE GA-BASED PRIMITIVE
DEFINITION AS DEFINED IN SECTION III-C WITH THOSE

OF THE STANDARD k-MEANS-BASED DEFINITION

A key aspect of our method was the appropriate selection
of action primitives, which have to be defined in such a way
that will be able to differentiate between different classes.
The objective function proposed in (15) was employed in a
genetic framework and gave discriminative action primitives.
That improved accuracy compared with a typical k-means
algorithm, which uses random initialization. In Table III,
we present the results using the primitives obtained using
this method in comparison with some random k-means ini-
tialization to show the improvement. A baseline GA was used
with mutation function that replaced only one solution element
with probability 0.9 and a crossover function that combined
two solution vectors using a random split with probability
0.1 (other discrete optimization methods could also have been
employed). Degenerate cases of very simple actions consisting
of single action primitives needed special treatment, as the
solution is obvious and it makes not much sense to use the
proposed voting framework for recognizing and segmenting
them. In our experiments, we faced this issue when we used
relatively small values for M; however, the complexity of the
activities justified the use of higher values for M . At this point,
we should note that the results obtained in Table III using the
k-means method are not strictly comparable to other methods
in Table I using the k-means as well, such as those in [3], due
to the fact that the features are different.

Probably, the most important aspect of the proposed method
is our choice to train binary SVMs in the Hough parameter
space for learning each available action. Such a treatment
allows for the separation between instances of known and
unknown classes. The same instance can be concurrently
negative for all known classes, thus indicating an observation
belonging to a novel class. An alternative treatment would
employ a multiclass discriminative classifier in combination
with a generative model. This is how we used the segments
returned by MS and MC, which resulted from a multiclass
maximum margin optimization; subsequently, and due to the
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TABLE IV

CLASSIFICATION ACCURACY ON GESTURE CLIPS
(TAKEN FROM THE CHALEARN DATA SET [44])

fact that the typical Viterbi algorithm is not applicable in
the presence of unknown actions, we input those segments
into an HMM-based generative model to identify known-
unknown actions using a threshold. As presented in Table II,
which summarizes our experiments with unknown classes, our
method consistently outperformed MS and MC by a quite large
margin, no matter what the threshold value was.

Our method could also be beneficial in the context of
classification of whole clips, especially when these clips
contain irrelevant actions. This could be done by identifying
the relevant actions as putative segments and by excluding the
rest. We did a preliminary experiment to verify this insight
using a small part of the Chalearn Gesture data set [44], using
as feature the Euclidean distances between the skeletal joints.
We used 15 clips of the gestures vieniqui, cheduepalle, and
combinato to train an HMM classifier and ten different sample
clips per gesture for testing. The test clips were containing
parts of other gestures as well as the idle state, which had
been excluded from the training set. By finding the timeline
covered by the putative segments, we were able to segment
out a lot of the irrelevant unknown actions. The classification
results before and after the rejection of these unknown actions
are given in Table IV. Segmenting out the unknown parts
improved the results, which shows that our method could be
potentially useful in the context of whole clip classification.
That is a direction that we wish to pursue further in the
future.

VI. CONCLUSION

We presented a framework for online simultaneous seg-
mentation and classification of sequential data interrupted by
unknown actions. The method uses action primitives, which
are associated with actions. Each motion primitive votes in a
3D Hough space for begin–end and type of action, and then
the votes in the 3D space are evaluated per possible action
using a binary SVM. The final results are obtained using a
dynamic programming framework.

The proposed framework gave an accuracy that was similar
or better compared with those of other discriminative methods
for online segmentation and classification in the case that
all actions are known. Furthermore, it was able to recognize
actions belonging to previously modeled classes in the context
of other unknown activities. To our knowledge, this is the first
discriminative method for online simultaneous segmentation
and classification that has been demonstrated to have this
property.

In the future, we plan to test our method on big data, includ-
ing segmented clips, which involve learning representations
for large numbers of classes and to employ more elaborate
features, e.g., from deep learning or derived from improved

dense trajectories. Alternative learning methods like random
forests could be also evaluated in the future and compared in
terms of speed and accuracy with our current discriminative
model.
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