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Abstract

We propose a new hybrid method for 3D human body

pose estimation based on RGBD data. We treat this as an

optimization problem that is solved using a stochastic opti-

mization technique. The solution to the optimization prob-

lem is the pose parameters of a human model that register it

to the available observations. Our method can make use of

any skinned, articulated human body model. However, we

focus on personalized models that can be acquired easily

and automatically based on existing human scanning and

mesh rigging techniques. Observations consist of the 3D

structure of the human (measured by the RGBD camera)

and the body joints locations (computed based on a dis-

criminative, CNN-based component). A series of quantita-

tive and qualitative experiments demonstrate the accuracy

and the benefits of the proposed approach. In particular,

we show that the proposed approach achieves state of the

art results compared to competitive methods and that the

use of personalized body models improve significantly the

accuracy in 3D human pose estimation.

1. Introduction

Due to its theoretical importance and practical signifi-

cance, vision-based human motion capture has attracted a

lot of research and development efforts. Most commercial

solutions make use of special markers. Evidently, marker-

less motion capture techniques are much preferable because

of their unobtrusiveness and their lower cost and complex-

ity. Despite the great progress in the field, accurate, robust

and efficient 3D human motion capture from markerless vi-

sual input in unconstrained settings is not yet possible.

Markerless human motion capture techniques may be

classified into three broad classes, the bottom-up discrim-

inative methods, the top-down generative methods and the

hybrid ones. Generative methods can be very accurate, pro-

vide physically plausible solutions and do not require train-

ing. However, typically, they are computationally demand-

ing, require initialization and can suffer from drift and track

loss. Discriminative methods perform single frame pose

estimation, do not require initialization and are computa-

tionally efficient. On the other hand, they rely on big col-

lections of annotated training data and their solution is not

always physically plausible. Hybrid methods integrate el-

ements from discriminative and generative methods in an

effort to combine the merits of both worlds.

In this paper, we propose a new hybrid approach. 3D

human pose estimation is the result of the optimization of

an objective function consisting of two terms. The first

term quantifies the discrepancy between the 3D structure

of a rendered human body model and the actual, observed

one. The second term quantifies the displacement of the hu-

man body joints as estimated by a CNN-based discrimina-

tive component [3, 46] and the corresponding joints of the

hypothesized 3D model. Several existing hybrid methods

have loosely coupled generative and discriminative com-

ponents. Typically, in each frame, the discriminative part

provides an estimation of 3D human pose which is then re-

fined by the generative component. On the contrary, in this

paper we propose tight integration, in the sense that infor-

mation resulting from the discriminative component is di-

rectly used in the optimization loop of the generative one.

As it is shown experimentally, this tight integration and the

proper balancing of the two terms achieves significantly bet-

ter results than any of the terms alone. The joints local-

ization term facilitates automatic initialization and recovery

from drifts. The depth term safeguards from inaccuracies

or missing information of the discriminative component.

Moreover, it enforces pose solutions that are consistent with

a body whose shape parameters do not vary in time.

Our method can employ any skinned, articulated human

body model. However, we focus on personalized models

that can be constructed automatically, in a couple of min-

utes, based on a registration procedure [36] coupled with a

state of the art human avatar rigging method [10]. We show

experimentally that by using such models the accuracy in

tracking can be improved over using generic human body

models.

All findings are supported by quantitative and qualitative
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experimental results on datasets annotated with ground truth

and in comparison with competitive methods.

In summary, the contributions of this work are:

• We propose a novel, hybrid method that performs sin-

gle frame 3D human body pose estimation by integrat-

ing tightly a generative and a discriminative compo-

nent. The method provides physically plausible solu-

tions, does not require training, does not require ini-

tialization, outperforms competitive methods in pose

estimation accuracy and operates at 9 Hz.

• We show that by employing easy-to-acquire body

models, pose estimation accuracy is considerably in-

creased compared to using generic body models and

compared to existing methods.

• We make available a new dataset that contains ground

truth on several human body models and 3D motions.

1.1. Related work

Works such as [25, 32] and [5] provide early surveys

for conventional and depth cameras, respectively. As re-

ported in [23], discriminative human pose estimation meth-

ods [39, 2, 37, 31, 38, 41] map a set of extracted image

features to the human pose space. This is achieved through

training over a large database of known poses. A variety

of methods is defined based on the employed features, the

mapping method and the actual training poses database.

Recent approaches based on CNNs have produced very

promising results [34, 48, 19, 20, 35, 3, 46]. A very recent

work is VNect [20] which uses a convolutional neural net-

work to acquire a 2D pose from an RGB frame and then per-

forms regression using a kinematic skeleton to estimate 3D

joints from the data. Although performance is real-time and

output quality is very good, the lack of detailed knowledge

about the tracked model and the absence of depth informa-

tion have a negative impact on accuracy. The LCR-net [35]

is another detection plus regression framework which con-

verts 2D proposals from RGB images to 3D joints but lacks

the high quality model and 3D rendering capabilities that

are permitted when an RGBD sensor is used. Discrimina-

tive methods perform single frame pose estimation, so they

don’t rely on temporal continuity. Thus, they do not require

initialization and they don’t suffer from drift. Their offline

training is computationally demanding, while their online

runtime is rather good.

Generative approaches [11, 8, 9, 33, 13, 12, 44, 7, 21, 50]

use a model of the human body and estimate its position,

orientation and joint angles that bring the appearance of this

model in accordance to the visual input. The model is usu-

ally made of a skeleton and an attached surface, which in

some cases [13] is allowed to deform. Instead of estimating

the full body model in a single step, a variety of methods

first identify body parts. Then, they either report them as

the final solution or they further assemble them into a full

model [37, 38]. Generative methods rely on an objective

function that quantifies the discrepancy between a model

pose hypothesis and the actual visual input. The minimiza-

tion of the objective function over the possible poses, de-

termines the one that best explains the available observa-

tions. This amounts to the exploration of the high dimen-

sional space of human poses. The size of the search space

can be reduced by employing kinematic constrains based on

biomechanical data that exclude non realistic poses. Further

reductions can be achieved by constraining also the dynam-

ics, i.e., by employing Kalman filters [24]. However, this re-

quires learning of the dynamics of specific human motions

and thus reduces the generality of the approach. Another

way to deal with the high dimensionality of the search space

is to perform local searches in the vicinity of the solution of

the previous frame. This works fine under the assumption

of human motion with temporal continuity. However, the

violation of this assumption may cause drift and track loss.

Local search also means that tracking needs to be initialized

for the first frame. Due to their generative nature, the com-

putational cost of the online process is typically high. On

the other hand, the employed model can be changed eas-

ily, and the whole search space can be explored without the

requirement for offline training.

Hybrid methods that integrate discriminative and gener-

ative components have been proposed [16, 1, 14, 30, 47, 49,

22] to combine the benefits of both worlds. Hybrid methods

achieve the accuracy of the generative ones without need for

initialization and with robustness to tracking failures. The

method proposed in this work falls in this category of hu-

man pose estimation methods.

2. Pose estimation of personalized body models

The proposed method is summarized in Fig. 1. An

RGBD frame is denoted as o = (co, do), where co and do

stand for the RGB and depth frames, respectively. The pro-

posed method capitalizes on a parametric skinned model of

the human body (Section 2.1). Human pose estimation in

a frame amounts to estimating the parameters of the model

that is most compatible with visual observations. The dis-

crepancy between the model and the observations is quan-

tified by an objective function (Section 2.3) that has two

terms. The first (Section 2.3.1), compares the 3D structure

of the observed human with the 3D structure of the rendered

model. The second (Section 2.3.2) compares the locations

of the joints as they were estimated by a neural network

(Section 2.2) to the locations of the joints of the model hy-

pothesis. The optimization of the defined objective func-

tion is performed effectively and efficiently using Particle

Swarm Optimization [6] (Section 2.4).



(a) (b) (c) (d)
Figure 1. Overview of our approach for 3D human pose estimation. (a) The input is a sequence of RGBD frames. (b) We leverage on

personalized, parametric, skinned human body models that can be acquired easily [10]. (c) We also employ state of the art estimation of

2D human body joints [4]. We define a hybrid approach for fitting the model (b) in the observations (a) given the hints on the 2D joints

(c). The result of this process is visualized in (d). The green skeleton is the ground truth, the gray is the neural network suggestion and the

yellow is the result of the proposed approach. Although the neural network estimation is far from the ground truth, the proposed method

manages to estimate accurately the 3D human pose because of the high quality model and the utilization of depth information.

2.1. Human body model

The proposed method can operate with a human body

model that consists of a set of appropriately assembled geo-

metric primitives as in [22], or with a skinned model. In

this work, we are particularly interested in personalized,

automatically acquired human body models. The acquisi-

tion of such a model H is performed in two steps (a) hu-

man body scanning and (b) model rigging. Body scanning

is performed as described in [36]. Model acquisition re-

quires only that the human subject stands with the T-pose

in front of an RGBD camera, in 4 different orientations.

These views are then registered automatically1 to form a re-

construction of the human body. Articulating the scanned

model through model rigging is performed automatically2

as described in [10]. From a practical point of view, given

the mentioned automated tools, the acquisition of a body

model H can be performed in less than 2 min.

A body model H acquired this way has a total of 94
bones which also account for parts of the face, hand fin-

gers etc. For the large-scale body tracking scenario we are

interested in, we restrict ourselves to a subset of those body

parts and the respective joints as listed in Table 1.

The 3D position of H is represented with three parame-

ters. Four more parameters encode a quaternion-based rep-

resentation of its global orientation. Joints are represented

with roll/pitch/yaw angles. Thus, a pose of H is represented

as a 3 + 4 + 29 = 36D parameter vector h. The limits of

29 of these parameters are shown in Table 1. Setting these

limits excludes several physically implausible poses. How-

ever, certain combinations of valid (i.e., within limits) joint

angles still result in impossible body configurations.

Given an instantiation h of the model H and camera cal-

1Human body reconstruction software: https://goo.gl/jFFj6a
2Human body model rigging software: https://goo.gl/AEtX96

Joint roll
min

roll
max

pitch
min

pitch
max

yaw
min

yaw
max

Neck -0.4 0.4 -0.3 0.3 - -

Spine -0.5 0.5 -0.2 0.5 -1.5 1.5

LC -0.1 0.1 - - -0.15 0.1

RC -0.1 0.1 - - -0.1 0.15

LS -4 4 -1.8 1.57 -2 1.4

RS -4 4 -1.8 1.57 -1.4 2

LE - - - - -2.5 0

RE - - - - 0 2.5

LH -1.57 1.57 -0.78 2 -1.2 0.5

RH -1.57 1.57 -0.78 2 -0.5 1.2

LK - - -2.8 0.1 - -

RK - - -2.8 0.1 - -

LA - - -0.6 -0.6 -0.7 0.7

RA - - -0.6 -0.6 -0.7 0.7

Table 1. Limits (in radians) of joint angles of the human body

model H. Besides Neck and Spine, the joints are coded with two

letters. The first (L, R) stands for Left/Right and the second (C, S,

E, H, K, A) for Collar, Shoulder, Elbow, Hip, Knee and Ankle.

ibration parameters, we can render H to the view of the

camera, obtaining color and depth maps r = (ch, dh) that

are comparable to the observations.

2.2. Localizing body joints

Given a color frame co, we employ the OpenPose neural

network [3, 46] which computes the 2D locations je of hu-

man body joints. Any source of 2D/3D joint locations can

be used, however OpenPose has been used because of its

accuracy and robustness. We expect the 2D estimations of

the joints not to be perfectly accurate but we also expect the

detected joints to have some consistency in the temporal do-

https://goo.gl/jFFj6a
https://goo.gl/AEtX96


main and in relation to each other. Given je, we can sample

the depth information do to get a coarse estimate of the 3D

locations Je of the joints. Inaccuracies come from the fact

that these 3D points lie on the surface of the body, while

joints do not. Such problems are even more pronounced for

occluded joints, i.e., for the back shoulder in a side view of a

body or in cases of crossed arms or legs. Despite such inac-

curacies, a coarse estimation of the 3D locations Je proves

useful during optimization.

2.3. Objective function

An objective function E(h, o) has been designed to

quantify the discrepancy between a model hypothesis h and

the actual observations o. Estimating the human pose at a

certan frame amounts to finding the model parameters h∗ of

H that minimize E(h, o). In notation,

h∗
∆
= argmin

h

E (h, o) . (1)

E(h, o) consists of two terms, ED and EJ . Specifically,

E (h, o) = wDED (h, do) + wJEJ (h, o) . (2)

The first term measures the discrepancy between the ob-

served depth map and the depth map resulting from the ren-

dering of H according to h. The second term measures

the displacement between the locations (both 2D and 3D)

of the human body joints. The first term is weighted by a

constant wD whose value is determined experimentally in

Section 3.3. The weight wJ is set to 1.

2.3.1 The depth term ED

For a given hypothesis h, we render H to obtain a color

image ch and a depth map dh. dh is comparable to the ac-

tual, observed depth map do and their similarity is a strong

indication for a correct hypothesis h. This motivates the

following definition of the error term ED:

ED (h, do) =
1

NP

∑

p∈B

C
(

|dhp − dop|, T
)

. (3)

In Eq.(3), ED sums the absolute depth differences |dhp −d
o
p|

for all points p that belong to a bounding box B containing

the human figure. The clamping function C(x, T ) returns x
if x ≤ T and T otherwise. This is used to robustify the error

term and prevent spurious points/outliers from affecting it

too much. In our implementation we set T = 30cm.

In RGBD camera depth readings, a value of 0 represents

lack of measurement due to e.g., reflective materials or in-

frared interference. Such points are ignored in Eq.(3).

The normalization term Np requires special attention.

Setting Np equal to the number of rendered model points is

a bad choice, because this promotes hypotheses that project

to only a few pixels in the image, instead of hypotheses that

explain all the available observations. To avoid this, Np is

set equal to the number of points inside B that are close to

the depth profile of the previous solution. This way, all hy-

potheses for a certain frame share the same normalization.

2.3.2 The joints location term EJ

As discussed in Section 2.2, OpenPose provides estimations

je of the 2D locations of human joints, which can then be

lifted to 3D estimations Je by exploiting the depth informa-

tion do. Additionally, given a hypothesis h of H, we can

estimate the 3D joint locations noted as Jh and also render

them in the camera view to obtain jh. Thus, we define an

error term EJ2D that penalizes discrepancies between the

hypothesized (jh) and estimated (je) 2D locations of joints:

EJ2D (h, co) =
1

W

nJ
∑

i=1

wi||j
h
i − jei ||2. (4)

Similarly, we define a term EJ3D that penalizes discrepan-

cies between the hypothesized (Jh) and estimated (Je) 3D

locations of joints:

EJ3D (h, o) =
1

W

nJ
∑

i=1

wi||J
h
i − Je

i ||2. (5)

Some types of joints are localized by OpenPose more accu-

rately than others. As an example, the head and the knees

are more accurately localized compared to hips. In order to

compensate for this behavior of the detector, we employ a

weighting scheme in both the 2D (Eq.(4)) and 3D (Eq.(5))

terms of the objective function that prioritizes more accurate

joints. We use wi = 0.2 for hips and wi = 1.8 for ankles

and wrists. In Eqs.(4) and (5), W =
∑nj

i=1
wi, where nJ is

the number of all considered joints.

The aggregated joints location term EJ is defined as

EJ (h, o) = αEJ2D (h, co) + (1− α)EJ3D (h, o) , (6)

where α = 0.97 is a constant that balances the contributions

of the 2D and 3D error terms and which was set experimen-

tally (Section 3.3). It appears that this value of α gives a

dominant role to EJ2D. However, this is not the case, as α
needs to compensate also for the different arithmetic scales

in which EJ2D and EJ3D are measured.

2.4. Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) [6] is a stochastic

method that performs optimization by iteratively improving

a candidate solution with respect to an error term charac-

terizing its quality (objective function). PSO has been ap-

plied successfully to a number of vision problems such as

object detection [40], head pose estimation [29], 3D hand



tracking [26, 27], 3D tracking of hands in interaction with

objects [18] as well as 3D human pose tracking [44, 22].

The popularity of PSO as an optimization strategy for artic-

ulated motion tracking comes from its ability to handle large

search spaces and noisy, multi-modal, non-differentiateable

objective functions. Moreover, as shown in Section 3.4,

PSO is ideal for parallel implementation on modern GPU

architectures, permitting interactive framerates and a 100×
speedup compared to the serial implementation.

PSO maintains a population of candidate solutions,

called particles, that have a position p and a velocity V in

the search space. The movement of each particle pi is influ-

enced by the best position Pi this particle has ever visited

up to the current iteration/generation, and simultaneously

guided towards the globally best known position G in the

search space (i.e., the best of all Pis). Both these positions

are updated as better ones are found by other particles. The

update to the k-th generation is described by:

Vi,k = r1c1 (Pi − pi,k−1) + r2c2 (G− pi,k−1) + ωVi,k−1

(7)

pi,k = pi,k−1 + Vi,k, (8)

where pi,k and Vi,k, respectively, denote the position and

velocity of the particle pi at the k-th generation, ri are sam-

ples of the uniform distribution U(0, 1), and c1, c2 and ω
are parameters controlling the convergence speed of PSO.

The particles are allowed to move within predefined ranges

along each dimension of the search space (in our problem,

these ranges are shown in Table 1). To enforce this con-

straint whenever it is violated, the respective velocity Vi,k
is reduced up to the point that the constraint is again satis-

fied. These steps are followed iteratively, until a fixed upper

bound of generations is reached. Parameters c1, c2 and w,

are set as proposed in [6], that is, c1 = 2.8, c2 = 1.3 and

ω = 2/
∣

∣

∣
2− ψ −

√

ψ2 − 4ψ
∣

∣

∣
, where ψ = c1 + c2.

For our 3D human pose estimation problem, PSO is used

to minimize the objective function of Eq.(2) over candidate

solutions h. For each incoming frame, particles are initial-

ized around the solution for the previous frame. The space

around that solution is made large enough to include the Je

estimation for the current frame. This, together with the EJ

term in the objective function, are the elements that permit

to the method to perform without initialization and to re-

cover from potential tracking drifts. Perturbations [26] are

used for particles during the optimization procedure in or-

der to help them escape local minima towards the global

best solution. We also keep a history of detections and the

last 5 estimated poses are also considered as particles in ev-

ery new frame to help us recover faster from low quality

OpenPose estimations that may cause a momentary drift. In

order to evaluate fairly the solution proposed in this paper,

no motion prediction model is used to initialize PSO parti-

cles and no smoothing is being performed in the sequence of

Figure 2. Snapshots of sample models used in the experiments.

Top row: The primitives-based model P that was designed by hand

and the four personalized models that were acquired automatically

based on [36]. Bottom row: sample RGB frames from the render-

ing of M1 and F1 in the MHAD [43] dataset background, based

on the CMU [42] mocap data.

results. However, such techniques, are expected to improve

pose estimation accuracy when employed.

3. Quantitative and qualitative assessment

The proposed method has been evaluated quantitatively

on a synthetic data set (Section 3.1) annotated with ground

truth. A first set of experiments investigated the effect of

various parameters and design choices in the accuracy of

the proposed method. In another set of experiments we

compared the obtained performance to that of two baseline

methods [22, 28]. The experimental evaluation is concluded

with indicative qualitative results in RGBD sequences.

3.1. Synthetic dataset

The quantitative evaluation of our method requires a

dataset containing RGBD frames of moving humans, to-

gether with ground truth regarding their 3D motion as well

as their personalized 3D skinned model. A challenge we

faced was that, to the best of our knowledge, there is no pub-

lic dataset that features a complete, personalized skinned

model of the actor, RGB+D information and 3D motion

ground truth. For example, the Berkeley Multi modal

Human Action Database (MHAD) [43] contains RGBD

data and ground truth motion information, but no detailed

skinned models of the actors. The CMU datasets [42] con-

tain more challenging motions than MHAD, but contains no

actual RGB information. Finally, the TNT15 dataset [45]

lacks depth information. Moreover, the models therein are

laser-scanned, therefore are much more accurate and noise-

free compared to the ones we employ.

Thus, we constructed our own, synthetic dataset as fol-

lows. We scanned four different subjects using [36], two

male (M1, M2) and two female (F1, F2). The four sub-

jects differ significantly with respect to their sizes (height,

weight, Body Mass Index). We also employed a primitives-



Figure 3. The error ∆ as a function of the number of particles and

generations in PSO optimization. See text for details.

based model (P) whose dimensions can be adapted to best

approximate a given human model. These models are illus-

trated in Fig. 2 (top). We then collected motion capture data

from the CMU datasets [42], including a variety of motions

like bending, jumping jacks, simultaneous twisting of torso

and limbs, etc. Finally, we rendered the Mi and Fi models

in the laboratory environment of the MHAD [43] datasets.

Dual quaternion blending [17] was used to realize the skin

deformations of the Mi and Fi models to avoid the “candy-

wrapping” artifacts produced by standard linear blending.

Thus, we obtained RGBD frames of known human mod-

els performing known, complex motions in a realistic envi-

ronment. The final result3 is four RGBD sequences of 720
frames each, of the same motions, performed by two male

and two female subjects. We refer to these sequences as

MSi and FSi, respectively (i ∈ {1, 2}).

3.2. Evaluation metrics

To quantify the error in body pose estimation, we adopt

the metric used in [15] which involves the Euclidean dis-

tances of skeleton joints in the ground truth and the corre-

sponding points in the estimated body model. The average

of all these distances over all the frames of the sequence

constitutes the resulting error estimate ∆.

Another metric reports the percentage A(t) of these dis-

tances that are within a distance t from their true location.

We will refer to this metric as pose estimation accuracy.

For example, an accuracy of A(80) = 70% for a sequence

means that in all frames of the sequence, 70% of the joints

were estimated within 80mm from the ground truth.

3.3. Quantitative results

Determining the PSO budget: PSO optimizes its objective

function by evolving p particles in g generations (see Sec-

tion 2.4). The proper selection of p and g is crucial because

it influences the accuracy and the computational require-

ments of the method. We set p, g based on the following

3The dataset is available through http://users.ics.forth.

gr/˜argyros/research.html

Figure 4. Tracking accuracy A(t) for different weights wD of the

depth term ED in the objective function.

experiment. We tracked theMS1 sequence for all combina-

tions of p ∈ [40, 120] with a step of 10 and g ∈ [30, 70] with

a step of 10. For each particles/generations combination,

we measured and averaged the error ∆ (see Section 3.2) in

5 runs. Figure 3 shows ∆ as a function of p and g. It can

be verified that a budget of 64 particles and 64 generations

balances the error/computational resources tradeoff. There-

fore, in all subsequent experiments we set p = g = 64.

Tuning the objective function: We performed experiments

to investigate the influence of the weights wD and wJ in the

objective function of Eq.(2) that control the relative contri-

bution of the depth and the joints terms. We investigated

different values of wD, maintaining wJ = 1. Figure 4

shows A(t) for values wD ∈ {0.5, 1.5, 3.0, 6.0, 18.0}. For

a very broad range of errors t, wD = 3.0 achieves, overall,

the best A(t). Around 10 cm, the plots exhibit a switch

point, i.e., lower weights become preferable. This is at-

tributed to the fact that for larger allowed errors, the sig-

nificance of the depth term is less pronounced. With similar

experiments, we determined experimentally the values of

α = 0.97 (Eq.(6)) as well as the values for the weights wi

(Eqs.(4) and (5)).

Proposed vs depth-only vs joints-only: In another ex-

periment, we compared the performance of the proposed

method (wD = 3.0, wJ = 1.0) with the case where

the joints localization term EJ is ignored (wJ = 0.0,

wD = 1.0) and the case where the depth term ED is ig-

nored (wJ = 1.0, wD = 0.0). Figure 5 illustrates the ac-

curacy A(t) obtained in the three cases for the MS1 (left)

and the FS1 (right) sequences. It can be verified that the

depth alone performs the worst. Optimization only with the

OpenPose proposals performs better than optimization only

with depth. However, fusing and balancing the two terms

achieves better performance than any of the terms alone.

Table 2 shows the error ∆ in these experiments. It can

be verified that ∆ is significantly lower when the two terms

in the objective function are properly balanced.

Two-phases optimization: Having a rather accurate esti-

mation of human pose, we performed another experiment

http://users.ics.forth.gr/~argyros/research.html
http://users.ics.forth.gr/~argyros/research.html


Figure 5. The accuracy A(t) of the proposed method for the cases

of balanced depth and joints localization terms (red curves), joints-

localization-only term (green curves) and depth-only term (blue

curves) for the MS1 (left) and the FS1 (right) sequences.

Sequence, wD = 1.0, wD = 0.0, wD = 3.0,

model wJ = 0.0 wJ = 1.0 wJ = 1.0

MS1, M 140.2 98.9 67.3

FS1, F 152.1 98.7 75.6

Table 2. Error ∆ (in mm) for experiments isolating different terms

of the objective function. Rows correspond to the sequences MS1,

FS1, each of which is tracked with the proper model (M1, F1,

respectively). Columns correspond to different weighting schemes

(depth only, joints only, balanced). Boldface indicates best results.

Method \ wD 0.5 1.5 3.0 6.0 18.0

Baseline PSO 82.8 67.5 84.1 93.7 108.3

Perturbed PSO 77.0 70.0 67.3 73.5 81.2

Table 3. Error ∆ for the canonical, baseline PSO versus perturbed

PSO for various values of the weighting factor wD .

to check whether, starting from this solution, we can further

reduce ∆ by employing a second, refinement phase that op-

timizes an objective function that consists only of the depth

term. This yielded a reduction of ∆ of less than 0.5 cm.

This is in strong support of the objective function of Eq.(2).

Baseline vs perturbed PSO: As described in Section 2.4,

we employ a variant of the PSO in which particles are per-

turbed during the optimization procedure in order to help

them escape local minima. In the experimental setting of

Section 3.3, we investigated the difference in performance

of this perturbed version of PSO relative to the baseline,

canonical version [6]. Table 3 summarizes the obtained re-

sults for different wDs. For all tested values, the perturbed

PSO provides more accurate pose estimates.

The impact of the personalized human model: We per-

formed experiments to showcase the impact of using a per-

sonalized human body model. In that direction, we mea-

sured the error ∆ when different models are used for track-

ing. We considered all possible combinations of sequences

(MS1, MS2, FS1, FS2) with models (M1, M2, F1, F2,

P). It should be stressed that all models have been adjusted

Sequence \ model M1 M2 F1 F2 P

MS1 67.3 103.7 85.4 87.5 95.1

MS2 83.3 76.9 84.3 94.7 112.2

FS1 90.2 96.9 75.6 99.4 100.2

FS2 84.7 103.2 92.8 79.7 108.1

Table 4. The error ∆ when the sequences MSi, FSi are tracked

with models Mi, Fi, P. Boldface font indicates best results.

Figure 6. The accuracy A(t) of the Dual RGBD method [22]

(green), the OpenNI method [28] (blue) and of the proposed one

when personalized (red) or primitive-based models (purple) are

used (results aggregated over all four sequences of the dataset).

to fit the dimensions of the actual person. Thus, differences

in performance should be attributed to the individual human

body shape differences and not to their absolute scale dif-

ference. Table 4 shows the error ∆ in these experiments.

The minimal values appearing on the diagonal shows that a

sequence is tracked more accurately when the proper (per-

sonalized) model is used. Moreover, the personalized model

always outperforms the on based on primitives (P).

Proposed vs [22] vs [28]: We compare the performance of

the proposed method with two existing methods. The first

one [22] is referred to as “Dual RGBD” because it employs

synchronized input from two, extrinsically calibrated, wide

baseline RGBD cameras. This was possible because of the

synthetic nature of the developed datasets that permit the

rendering of a scene from different views. The second is

the widely deployed OpenNI NiTE method [28]. Figure 6

summarizes the accuracy A(t) of the Dual RGBD (green),

the OpenNI (blue), the proposed with personalized models

(red) and the proposed with a primitives-based model (pur-

ple) methods, aggregated over all four sequences. Due to

the wealth of the used information, the Dual RGBD method

achieves higher accuracy than any of the single RGBD cam-

era methods. However, it requires more complex hardware

setup (two synchronized and extrinsically calibrated cam-

eras), is computationally more intensive and requires ini-

tialization. Figure 6 also shows that from the two methods

that use a single RGBD sensor, the one proposed in this

paper outperforms clearly the OpenNI method regardless of

the model used. Still, the personalized model improves pose

estimation accuracy considerably.



Figure 7. Sample qualitative tracking results on the synthetic sequences MS1 (top-left), MS2 (top-right), FS1 (bottom-left), FS2 (bottom-

right). Grey skeletons: OpenPose proposals, yellow skeletons: proposed method, green skeletons: ground truth.

Figure 8. Sample qualitative tracking results on real sequences. Grey skeletons: OpenPose proposals, yellow skeletons: proposed method.

3.4. Qualitative results

Figure 7 shows results on the sequences MSi and FSi

and Figure 8 results on real data4. The estimated skinned

models are rendered on the RGB frames. It can be ver-

ified that there is a good fit between the estimated body

models and the observed human figures. All experiments

were performed on an Intel i7-4790 16GB RAM, NVIDIA

Geforce GTX 970 GPGPU. The Open Pose 2D body joints

estimation runs as a separate thread at 10 fps. The proposed

method is very well suited for GPU parallelization since all

particles in a PSO generation can be computed in parallel.

The body models are only uploaded once and we query all

particles per generation in one step. Skinning is handled

via shaders and the resulting rendering output is a texture

that gets directly compared to the observation using CUDA

giving us scores without a slow copy to system memory. In-

dicatively, a simpler serial GPU rendering and CPU scoring

implementation performed at 0.19 fps. The current GPU

implementation operates at 9 fps.

4. Discussion

We proposed a new method for 3D human pose esti-

mation based on markerless observations provided by an

RGBD camera. The proposed method follows a hybrid ap-

proach that integrates tightly a discriminative and a gener-

4Detailed results at https://youtu.be/SCgpIIaRIuI

ative component. The method optimizes an objective func-

tion that consists of two terms, one that registers the 3D

structure of hypotheses and observations and a second that

registers joint locations that are proposed by OpenPose. The

combination of these two terms performs remarkably bet-

ter that any of the terms in isolation. The use of the joints

localization term enables automatic initialization and pre-

vents drift. At the same time, the impact of errors in the

localization of joints is minimized because of the contri-

bution of the depth term. We also show that personalized

skinned body models that can be easily and automatically

acquired with off-the-shelve components, can be incorpo-

rated to the body pose estimation pipeline, resulting in in-

creased accuracy compared to (a) adapted, generic models

(either primitives-based or skinned) and (b) to competitive

methods. These conclusions are supported by several exper-

iments on a synthetic dataset which is based on the MHAD

and the CMU public datasets and includes motion capture

data and detailed skinned human models for a variety of hu-

man motions. Future work will investigate objective func-

tion terms that exploit color information and to extend the

framework to track humans interacting with objects.
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