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ABSTRACT
We present a comparative study of three matrix completion and
recovery techniques, applied to the problem of human pose estima-
tion. Human pose estimation algorithms may exhibit estimation
noise or may completely fail to provide estimates for some joints.
A post-process is often employed to recover the missing joints’
locations from the available ones, typically by enforcing kinematic
constraints or by using a prior learned from a database of natural
poses. Matrix completion and recovery techniques fall into the lat-
ter category and operate by filling-in missing entries of a matrix,
with the available/non-missing entries being potentially corrupted
by noise. We compare the performance of three such techniques
in terms of the estimation error of their output as well as their
runtime under varying parameters. We conclude by recommending
use cases for each of the compared techniques.
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1 INTRODUCTION
The estimation of human motion from visual input comprises a
central category of problems in the field of computer vision. Many
problems are defined within this category, including the estima-
tion and tracking of human body pose [24] and the estimation and
tracking of human hand pose [9]. Collectively, we refer to these
problems as human motion estimation. This area of research is
very active since at least the early 80s. It has received renewed
interest with the introduction of depth sensors [34], the success
of deep learning for computer vision tasks [17], as well as with
the recent increase of interest in Augmented and Virtual Reality
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(AR/VR) applications. Unobtrusive capturing and monitoring of
human motion is a core component of many applications including
natural user interfaces, AR/VR applications, medical assessment
and rehabilitation and more. Assistive environments can incorpo-
rate such a component, enabling natural interaction between the
assistive system and the assisted person. Consider as a concrete
and motivating example, the line of work on human pose estima-
tion by Michel et al. [22, 23]. This algorithm operates on visual
input provided by an RGBD camera and outputs 3D information
for the human body joints that exceed some minimum estimation
confidence. However, for building applications like vision-guided
personal fitness trainers [11] or for supporting clinical applications
of smart walkers [32], it is very important that reasonable estimates
of the positions of missing joints are available.

Both human body pose estimation and human hand pose esti-
mation exhibit several difficulties. These include sensor noise, the
high number of Degrees of Freedom (DOF) of the human hand and
body, the high versatility and large range of human motion and
the inevitable occlusions (self-occlusions or occlusions from the
environment). Because of occlusions, it is common to have poorly
observed or unobserved parts of the target, in turn leading to inac-
curate or totally missing estimations regarding these parts. There
are several ways to alleviate this problem. Many methods employ
a post-processing step to estimate or refine uncertain or missing
joints. They do so by enforcing constraints that can be derived
either from the kinematic chain of the observed body, or induced
from datasets that contain natural poses of the target.

A common category of techniques to accomplish this goal is
matrix completion [4, 39] and recovery [19]. Matrix completion is
the task of completing missing values of a matrix, usually under
the assumption that the rank of the resulting matrix is minimized,
essentially enforcing linear dependency of the entries. Matrix recov-
ery works similarly to this, under the additional assumption that the
known values are contaminated with noise. In this case, the whole
matrix is recomputed, or recovered, including both the missing and
the observed values. Applied to the problems of human motion es-
timation, these approaches provide a non-parametric way to model
the prior over natural poses. The only requirement is a dataset of
comparable poses, which, together with the current pose, serves as
the to-be-completed input matrix. At runtime, an estimated pose
with uncertain or missing entries can be post-processed using these
techniques to yield a pose that resembles the pre-acquired poses.

In this work we compare three different techniques for matrix
completion and recovery [4, 19, 39] for the task of recovering the
positions of missing joints given an estimate of a human body pose.
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We focus on these techniques among other alternatives for pose
completion because they are easy to implement and require only a
moderately sized pose dataset (a few thousand poses). An additional
advantage is that these approaches can be used to target a limited
pose space in a straightforward manner by appropriately limiting
the employed dataset.

The suitability of these techniques, e.g., for Human-Computer
Interaction (HCI), depends on the requirements of the target ap-
plication. Specific parameters include the error tolerance and the
execution time of the complete pipeline. Therefore, in order to
assess the suitability of the selected techniques for specific applica-
tions, we experiment with several parameters of our basic setup,
including dataset size, number of missing joints, and the effect of
observation noise.

In the next section we present a short overview of works on
human motion estimation, with the common denominator that the
problem of grossly corrupted estimations receives special treatment,
either in post-processing, or as a separate methodological element
that must be integrated in the method. In Section 3 we present a
brief overview of the three compared methods, as well as of the
methodological elements of the comparison. These include details
on the dataset we use in our experimental study as well as the
basic design of the experiments. In Section 4 we present several
experiments we conducted, discussing the results we obtained. We
conclude this work with a brief summary of the key points.

2 LITERATURE OVERVIEW
The problem of human body motion estimation from visual input
is long-standing and well studied [1, 5, 24, 37]. Similar progress
has been achieved in the related problem of human hand motion
estimation [9, 27, 41, 44]. The term “visual input” refers to any pas-
sive or minimally intrusive observation modality. Specifically, this
includes regular RGB images acquired using monocular, stereo, or
multi-camera configurations. This also includes depth sensors that
can either operate passively, for example using stereo reconstruc-
tion, or actively, emitting infrared light in the scene to estimate
depth [34]. This definition does not include observation modalities
that require specialized markers [30, 46] or other ways of rigging
the observed scene [47].

Both problems exhibit difficulties such as the number of DOFs of
the target, the versatility and large range of motion, sensor noise,
and occlusions that may occur either because of other objects in
the environment or due to the tracked object itself (self-occlusions).
Despite these shared difficulties, most of the methods in the related
literature tackle tracking human bodies and human hands sepa-
rately, mostly due to the scale difference of the targets. Nevertheless,
lately there has been some effort for unified body and hand pose
estimation from a single system [15, 36].

The problem of recovering a plausible pose given a noisy esti-
mation with potentially missing entries is central to all methods
that perform human motion estimation. Matrix completion and
recovery techniques can be used to tackle this problem. Alterna-
tive approaches are also explored in the related literature, includ-
ing imposing assumptions regarding the motion in consecutive
frames [42] and modeling the space of natural poses. This last
approach can be adopted either implicitly, especially in learning

frameworks [28], or explicitly [6] as a post-processing step to refine
the estimated pose.

Completing and correcting estimated poses is a major challenge
for all techniques that perform human motion estimation. Vari-
ous approaches are adopted towards this goal. Indicatively, several
methods [16, 21, 45] employ physics simulation to enforce physical
plausibility in the estimated hand poses. Another approach is to
use inverse kinematics [10, 44], essentially enforcing kinematics
constraints on the estimated poses. In a different approach, meth-
ods [40, 41] hierarchically regress the pose of parts of the hand
without globally enforcing pose constraints, potentially leading
to implausible poses. A learned pose prior is implicitly enforced
by Douvantzis et al. [7] in the form of a standard dimensional-
ity reduction technique. A similar approach is also adopted by
Oberweger et al. in their line of work [27, 28], by incorporating
a low-dimension layer (called a ‘bottleneck’) in the last layer of
the learned network. A post-processing step is employed by Ciotti
et al. [6] that refines the estimated hand pose using the occlusion
cue as a measure of uncertainty. Roditakis et al. [35] estimates
hand pose during hand-object interaction by considering spatial
constraints induced by the observed hand-object contact points.
Deep-learning based methods [3, 13, 14, 18, 33, 38] for human pose
estimation use large datasets to learn the space of natural human
poses. On top of this, Brau et al. [3] enforces constraints on body
part lengths. Furthermore, a few works [26, 42] use large training
sets and architectures similar to that of Oberweger et al. [28], in-
corporating bottleneck layers. Baak et al. [2] propose performing
a lookup for the most fitting pose in a large database of candidate
poses. Several works [8, 20, 25, 49] use human kinematics and phys-
ically plausible joint limits to recover natural human poses. Tekin et
al. [43] exploit spatio-temporal information on large training sets.
Yu et al. [48] jointly estimate shape and pose, essentially imposing
observed shape constraints.

Matrix completion and recovery [4, 19, 39] can provide a viable
option for such approaches, implicitly modeling the space of natural
poses requiring only a dataset of natural poses of the target, and
adding a potentially lightweight post-processing step to the com-
putational pipeline. The present work serves as a comprehensive
study of strengths and weaknesses of each compared approach. Our
hope is that this work can prove useful in improving the results of
methods that naturally yield uncertain and/or grossly corrupted
estimations.

3 DESIGN OF COMPARATIVE STUDY
In Section 3.1 we provide a brief overview of the three compared
methods for matrix completion and recovery. All approaches aim
to minimize the rank of the computed matrix, but since this is
an NP-hard problem, the methods adopt approximations of it. In
Section 3.2 we describe the general methodology we followed to
obtain the experimental results presented in Section 4.

3.1 Matrix Completion and Recovery
Inversion-basedMatrixCompletion (IBMC):The first approach
is termed IBMC after the core arithmetic operation that is used to
complete the missing values, that is, a multiplication by a pseudo-
inverse matrix. The input to the method is a matrix that has a
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missing block. Following the description provided in the works by
Sinha et al. [39] and Owen et al. [31], this approach starts by having
the missing values rearranged to the bottom-right of the matrix X ,
in a block-matrix p2:

X =

[
D1 p1
d2 p2

]
. (1)

Under the assumption that both matrices X and D1 have the same
rank k , it is possible to show that the missing values p2 can be
expressed as

p2 = d2 · (D1)+ · p1. (2)
In practice, this assumption implies that the matrix X has linearly
dependent entries that can therefore be exactly recovered.

Gradient DescentMatrix Completion (GDMC): The second ap-
proach, called GDMC, is an implementation of the method proposed
by Candès et al. [4]. The main goal is to complete the missing values
so that the rank of the resulting matrix is minimized. Following
the notation in that work [4], we denote the matrix including the
missing values asM , with X denoting only the observed ones. The
minimization problem can then be formulated as

minimize rank(X )
subject to Xi, j = Mi, j (i, j) ∈ Ω,

(3)

where rank(X ) is defined to be equal to the rank of the matrix
X and Ω indexes the observed values. After observing that this
optimization problem is NP-hard, and that all known algorithms
that solve it have doubly-exponential complexity, the authors pro-
ceed to approximate it. They select the sum of singular values as
an approximation to the rank of a matrix, and formulate the re-
sulting minimization problem. Following the same notation and
defining the nuclear norm as ∥X ∥∗ =

∑n
k=1 σk (X ), where σk (X )

denotes the k-th largest eigenvalue, this optimization problem can
be formulated as:

minimize ∥X ∥∗
subject to Xi, j = Mi, j (i, j) ∈ Ω.

(4)

This minimization problem can be solved efficiently using gradient
descent, since the resulting objective function is convex.

MatrixRecoverywith LagrangeMultipliers (MRLM):Thework
by Lin et al. [19] tackles the similar problem of matrix recovery. Ad-
ditionally to completing missing values of the input matrix, matrix
recovery also re-estimates the provided values. This is done under
the assumption that the observed values are contaminated with
noise. Therefore, the low-rank assumption that is used to complete
the missing values can also help in the task of removing the noise
in the observed ones. Lin et al. start by formulating Principal Com-
ponent Analysis (PCA) as the problem of computing a low-rank
matrix that has entries close to the input matrix:

minimize ∥E∥F
subject to rank(A) ≤ r ,M = A + E,

(5)

where again, M is the input matrix, ∥·∥F denotes the Frobenius
norm, and r is the target matrix rank. This problem can be efficiently
solved using the Singular Value Decomposition (SVD) ofM , and by
keeping only the r largest singular values. Then the more general
problem is treated, in which the input matrixM , apart from noisy

values is also assumed to have grossly corrupted or missing values.
This leads to the following problem formulation

minimize ∥A∥∗ + λ∥E∥1
subject to M = A + E,

(6)

where ∥·∥∗ denotes the nuclear norm of a matrix, i.e. the sum of
its singular values, and ∥·∥1 denotes the sum of absolute values of
matrix entries. Using this formulation, it is shown that by apply-
ing the method of Augmented Lagrange multipliers, an iterative
approximation scheme converges to the exact solution in a few
iterations.

The rationale behind both GDMC and MRLM is that the most
plausible completion of a matrix is one that minimizes its rank. Note,
however that both algorithms do not solve this problem, but rather
an approximation of it. Even if they did solve the original problem,
the solution would not necessarily coincide with the correct pose
in the context of human motion estimation. GDMC completes a
matrix without modifying it while MRLM returns a similar matrix
with completed entries and approximately minimized rank. This
additional relaxation allows it to be more robust against noise.
IBMC, on the other hand, provides a closed form solution which
requires the data to have a special structure, one that allows to
group all missing entries of a matrix in a rectangular region.

3.2 Conducting the Experiments
We apply matrix completion to human motion estimation by ap-
pending a pose vector with missing joint locations to a database
(a matrix) of known, representative poses. This “pose matrix” is
then completed by one of the compared approaches, thus yielding
estimates for the locations of missing joints.

Our experiments are based on the MHAD dataset [29]. MHAD
captures 12 subjects performing 11 actions for 5 repetitions (thus
yielding 660 distinct sequences) using multiple sensor modalities.
We use the skeletal data captured using optical motion capture.
First, we transform MHAD’s relative rotations representation into
an absolute (3D) locations representation, which we then normalize
by removing global translation and rotation from the root joint. In
a practical tracking scenario, where global transformation infor-
mation is not provided, this normalization can be achieved by first
aligning all poses in the database with the one to be completed (for
example using [12]), adding only negligible overhead to the entire
process. We chose an absolute locations representation because it
enables inferring dependencies between joints. In a relative rota-
tions representation on the other hand, knowing the orientation
of N − 1 joints does not convey any information about the N − th
joint as for example in the case of a person sitting on a chair and
waving their hand. The resulting skeleton consists of 24 joints.

MHAD’s 660 sequences yield in excess of one million numeri-
cally distinct poses, but much closer to ~50.000 anatomically distinct
poses, roughly corresponding to the first ~500 frames of each se-
quence without repetitions. We restrict our experiments to this set
of 50.000 poses. More specifically, the first 500 frames of the first
repetition of each sequence form our test set, while the first 500
frames of the second repetition of each sequence form our pose
database. Splitting the dataset along repetitions like this ensures
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Figure 1: Error as a function of the posematrix size.We vary
the size N of the pose matrix (which consists of the N clos-
est poses selected from the pose database) and measure the
resulting average error per joint, per completed pose. While
GDMC andMRLM continue to improve with more evidence,
IBMC exhibits a basin and becomes unstable after ~50 poses.

that the pose we are trying to complete is not itself contained in
the database.

For each experiment we complete 2.000 poses from the test set
uniformly and at random and report the average error per pose per
joint. For each pose, a “missing” joint is randomly selected and its
location estimated with each of the three algorithms compared in
this study.We do not use the entire pose database as the pose matrix,
but only the N closest poses (under Euclidean distance) to the one
we are trying to complete. This parameter affects the accuracy of
the recovered pose. As we will see, all algorithms converge for N
larger than about a hundred poses. This also significantly speeds up
computations. As our error metric we use the Euclidean distance
(in centimeters) between the estimated and the true location of a
joint, averaged across all completed poses. The same error metric
is used to select the N closest poses from the pose database for
the pose matrix. Unless noted otherwise, we only estimate a single
joint per pose. For each experiment, all the remaining parameters
are set to values known to produce the best results as determined
by other experiments.

4 EXPERIMENTAL RESULTS
We conducted several experiments, comparing the three matrix
completion and recovery techniques with respect to their pose
estimation error and their runtime. In all error plots we report the
average distance in cm (in 3D space) per missing joint per frame.
Thus, an error of 10cm implies that on average each estimated joint
was 10cm off its true, ground truth 3D location.

4.1 Human Pose Estimation Error
Estimation error as a function of the pose matrix size: We
vary the size N of the pose matrix (which consists of the N closest
poses selected from the pose database) and observe the resulting
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Figure 2: Same as Figure 1 for N = 100 to 1000. GDMC and
MRLM level off at 500–600 poses.
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Figure 3: Error as a function of noise. We leave the pose
database (and matrix) intact, but contaminate the to-be-
completed pose vector with Gaussian noise, simulating un-
certainty of real world sensors, and measure the resulting
error. The x-axis shows noise standard deviation in centime-
ters on a logarithmic scale. Extreme noise values have been
considered to showcase the performance of the algorithms
in the broadest possible spectrum of noise contaminations.

error. Figure 1 illustrates the obtained results. Both GDMC and
MRLM continue to improvewithmore evidence up to 500–600 poses
at which point they level off (Figure 2). IBMC on the other hand
exhibits a basin centered at ~35 poses and becomes numerically
unstable after 50 poses. This happens to coincide with the estimated
rank of the pose matrix in this experiment, meaning that the pseudo-
inverse of a non-invertible matrix succeeds but does not produce
numerically sensible/reliable results.
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Figure 4: Error as a function of the number ofmissing joints.

Estimation error as a function of noise: We maintain the pose
database (as well as the pose matrix) intact, but contaminate the
to-be-completed pose vector with Gaussian noise, and observe the
resulting error. Figure 3 illustrates the obtained results. IBMC’s
error grows linearly, which is expected (note that the x-axis has log-
arithmic scale). This is because the noisy pose vector is multiplied
with the pseudo-inverse of the pose matrix, thus contaminating the
final result as well. The error of both GDMC and MRLM initially
grows but then levels off as we approach the extreme case of a
basically random pose vector. In the absence of information, both
techniques degenerate to computing some pose that is in line with
the rest of the pose matrix, and which therefore can only be so far
away from any naturally occurring human pose.

Error as a function of the number of missing joints: Figure 4
shows the estimation error as a function of the number of missing
joints. For up to seven missing joints IBMC performs well as the
known values are characteristic enough to recover the pose. How-
ever, it becomes unstable as the size of the pose matrix surpasses
its rank. We can alleviate this numerical instability by limiting the
size of the pose matrix (rather than using a fixed size of 35), which
produces the dashed plot in Figure 4. The qualitative characteris-
tics of the behavior of GDMC and MRLM are similar to those of
the experiment with noise. In a sense, a large number of missing
joints and the presence of considerable amounts of noise can be
considered as two different forms of very high uncertainty.

Estimation error as a function of time: Figure 5 shows the max-
imum error per pose over a sequence of 100 temporally continuous
frames for each of the three techniques. We observe a very un-
even distribution of the error in the time domain: long periods (~5
frames) of very low error are interrupted by abrupt error spikes.
This illustrates that no technique is able to guarantee upper er-
ror bounds, but only average performance. This is also manifested
as very noticeable visual “popping” when rendering completed
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Figure 5: Error over time. We visualize the maximum error
per pose produced by each of the three algorithms over a
sequence of 100 temporally continuous frames. We observe
a very uneven distribution of the error in the time domain,
resulting in jitter in rendered sequences.

sequences. One way to alleviate this problem would be to apply
temporal smoothing as a final post-processing step.

Estimation error per joint:We visualize (Figure 6) the estimation
error of each algorithm per joint. The errors are drawn from small to
large, front to back.We see that the error is distributed evenly across
all joints, except for IBMC, where joints higher up the kinematic
chain (for example hip or shoulder) seem to be harder to estimate
than end effectors (for example hands or feet).

4.2 Runtime
We vary the pose matrix size and observe the average time it takes
(in seconds) to complete a single pose (Figure 7). The time to construct
the pose matrix is not included. Our implementations are based
on Matlab and thus the reported runtimes cannot serve as lower
bounds for real-world applications. They do, however, allow us
to compare the algorithms with one another and to determine
their complexity. IBMC runs in realtime even in Matlab as its most
expensive operation is the calculation of a single pseudo-inverse of
a 35× 72 matrix (35 poses × 24 joints × 3 coordinates). For practical
purposes, GDMC is an order of magnitude slower than IBMC, and
MRLM is yet another order of magnitude slower than GDMC. For
completeness, and although this involves pose matrix sizes that are
not really encountered in our problem, in Figure 8 we show that
the execution time of GDMC grows quadratically, while for IBMC
and MRLM it grows linearly.

5 CONCLUSIONS
A comparative study of three matrix completion techniques applied
to the problem of human pose estimation was presented. Several
experiments exposed the differences between the approaches with
respect to estimation accuracy and runtime.



PETRA ’18, June 26–29, 2018, Corfu, Greece Dennis Bautembach, Iason Oikonomidis, and Antonis Argyros

Figure 6: Error per joint. For each joint we visualize a disk
whose radius depends on the average expected error in esti-
mating this joint by each of the three techniques. The skele-
ton belongs to a 180cm tall man. The error disks are drawn
up to this scale.
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Figure 7: Runtime as a function of the size of the pose ma-
trix. The y-axis shows the average time in seconds it takes
to complete a single pose. Time for constructing the pose
matrix is not included.

The parameters that affect the selection of appropriate tech-
niques are the runtime requirements, the amount of noise present
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Figure 8: Same as Figure 7 but for pose matrices of sizes in
the range 1.000 to 10.000, so as to illustrate the quadratic
complexity of GDMC.

in the available joints before completion and the desired level of
overall error/accuracy after completion. For most applications (low
number of missing joints, low amount of noise) IBMC seems to be
the best choice due to its low error, realtime performance, and ease
of implementation. It does suffer from numerical instability under
certain conditions though. GDMC andMRLM represent more stable
alternatives where MRLM is typically more robust against noise at
the cost of runtime. All algorithms produce errors of high variabil-
ity and of uneven distribution in the time domain. This imposes
the requirement of an extra post-processing step that smooths-out
the results for interactive applications.

The different characteristics of the motion completion/recovery
algorithms can guide the selection of the best choice, also in con-
nection to the requirements of specific application domains. As an
example, completion may be needed to feed online action recogni-
tion, which requires fast computation of coarse motion information.
In such a setting, IBMC appears to be the best choice. On the other
hand, one might think of motion recovery to support offline motion
retargeting. In this context, the target accuracy is high while the
runtime is not an issue and, therefore, the best choice is MRLM,
especially in the case of noisy input.

Ongoing research will consider the performance of the compared
algorithms as a means of completing/recovering the missing joints
of specific human pose estimation algorithms such as the line of
work of Michel et al. [22, 23].
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