RAAD2018, 091, v2 (final): *Vision based Horizon Detection for UAV Navigation’

Vision based Horizon Detection for UAV Navigation

Stavros Timotheatos'?, Stylianos Piperakis'-?, Antonis Argyros!2
and Panos Trahanias'>

! Institute of Computer Science, Foundation for Research and Technology
-Hellas (FORTH), Heraklion, Crete, Greece,
(stimotheat, spiperakis, argyros, trahania)@ics.forth.gr
2 Department of Computer Science, University of Crete, Heraklion, Crete, Greece

Abstract. In this paper, we present a novel framework for horizon line (HL) de-
tection that can be effectively used for Unmanned Air Vehicle (UAV) navigation.
Our scheme is based on a Canny edge and a Hough detector along with an op-
timization step performed by a Particle Swarm Optimization (PSO) algorithm.
The PSO’s objective function is based on a variation of the Bag of Words (BOW)
method to effectively consider multiple image descriptors and facilitate efficient
computation times. More specifically, the image descriptors employed are L*a b
color features, texture features, and SIFT features. We demonstrate the effective-
ness and robustness of the proposed novel horizon line detector in multiple image
sets captured under real world conditions. First, we experimentally compare the
proposed scheme with the Hough HL detector and a deep learning HL estima-
tor, a prominent example of line detection, and demonstrate a significant boost
in accuracy. Furthermore, since from the horizon line the UAV roll and pitch an-
gles can be derived, this scheme can be used for UAV navigation. To this end, to
further validate our approach, we compare the horizon computed roll and pitch
angles to the IMU ones obtained with a complementary filter.

Keywords: Horizon line detector, Unmanned Air Vehicle, Particle Swarm Opti-
mization, Bag of Words, Pitch and Roll angles derivation.

1 INTRODUCTION

To operate an UAV in a realistic environment, it is crucial to monitor and control param-
eters and environment features associated with the system state. Information provided
by vision-based sensors is of utmost importance for this task, as evidenced in a num-
ber of studies [1], [2]. More specifically, of particular interest is the detection of the
so-called Horizon Line (HL), that in turn gives rise to two critical parameters regarding
UAV’s angular orientation, namely roll angle ¢ron and pitch angle Bpigcn. The latter are
directly involved in tasks such as autonomous navigation [3], [4], [5], [6].

HL detection algorithms usually rely on plausible assumptions, such as that HL
forms a linear boundary, lies in the upper half of the image, sky and non-sky regions are
equally probable, and the higher brightness and prominent texture of the upper part of
the image (sky region) compared to the lower part (non-sky region). Methodologically,
machine learning approaches and particularly deep learning [7], have led to state-of-
the-art performance, at the cost of assigning significant computational resources during
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the training phase. Moreover, such methods do not scale smoothly in cases of images
that contain unlearned features and/or patterns. Workman et al. [8], employed Deep
Convolutional Neural Networks (CNN) to compute HL. Alternative probabilistic ap-
proaches that rely on real-time feature inferencing offer robustness in the presence of
irregular features, but significantly increase execution times. In [9], Oreifej et al. detect
HL based on maximum a posteriori estimation applied to multiple candidate horizon
lines. Moreover, they compute ¢,,;; and 6, based on the detected HL.

Regardless of the employed methodology, most HL detection approaches fall into
two main categories: (a) edge detection approaches and (b) segmentation into sky and
non-sky regions. The authors in [10], were among the first to formulate a robust edge
detection based scheme to identify HL. By employing the Hough transform, prominent
lines are extracted and the strongest one is declared as HL. Lie et al. [2], compute an
image edge map which is subsequently transformed to a multi-stage graph. Dynamic
Programming is then utilized to detect HL as the shortest path in the graph.

A number of approaches in the second category focus on extracting the boundary
between sky and non-sky image areas, based on various descriptors such as texture,
color, SIFT, and Histogram of Gradients. Ahamd et al. [11] proposed an edge-less ma-
chine learning approach based on dynamic programming for classifying each image
pixel based on the above descriptors.

In this work, we propose a novel HL detector that employs Particle Swarm Op-
timization (PSO) [12], to assess candidate horizon lines. The latter are initialized via
Canny edge detection followed by the application of the Hough transform (HT) [13].
The main novelty of the current work lies in the optimization step where adequate im-
age descriptors are utilized to evaluate alternative HL solutions. This is accomplished
via the PSO’s objective function which is formulated on top of a variant of the Bag of
Words (BOW) encoding of the image content. The image descriptors used in the lat-
ter are color, texture, and SIFT features. Accordingly, rich image-based information is
considered, whereas the PSO scheme facilitates efficient computation times.

The proposed HL detector is evaluated with multiple image sets captured under real
world conditions. In the conducted experiments, we compare the proposed scheme with
the Hough HL and CNN HL detectors and demonstrate a significant boost in accuracy.
Furthermore, since from the HL the UAV roll and pitch angles can be derived, this
scheme can be used for UAV navigation. To this end, to further validate our approach,
we contrast the horizon computed roll and pitch angles to the IMU ones.

The paper is organized as follows. Section 2 establishes the proposed framework
for HL detection. Experimental and comparative results are presented in Section 3 and
the paper concludes with a brief discussion and future work suggestions in Section 4.

2 Novel Horizon Detection Framework

The proposed HL detection framework consists of two main modules: (a) computation
of candidate HLs and (b) HL derivation. The first module comprises edge detection
followed by HT, whereas the latter employs PSO to derive HL. A detailed technical
presentation is in order.
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2.1 Computation of Candidate HLs

A block diagram illustrating the processing steps in the current module is depicted in
Figure 1. Initially, the input image is converted to grayscale and, subsequently, a Canny
edge detector is applied. Edges are identified as local maxima of the intensity gradient,
where in our case the corresponding gradient is calculated using the derivative of a
Gaussian filter. The computed edge map image is used as input to a line detector based

Edge Image

RGB Image Grey-scale Image

LN
el

Histogram
Equalization

Canny Edge

Hough Peaks
CDF
Points
selection

Fig. 1. Computation of candidate HLs.

on the HT, where the image space (x,y) is transformed to the (p,0) parametric space.
Consequently, a line in the image space corresponds to a point in Hough space and vice
versa. Next, Hough accumulator cells are populated with one vote each time a non-
background point in the image is detected. The bin with the highest number of votes
represents a Hough peak, and a potential line in the input image.

Accordingly, we formulate the set of candidate lines, Sy, as prominent points in
the Hough parametric space. More specifically, two subsets of points are constructed,
Ssp and Sgp, with their union representing Sgy. Sgp denotes the most probable Hough
peak points Py, according to their cumulative distribution (CDF') and Sg consists of
randomly selected points from the remaining Hough space H — { Py }.

The rationale for formulating candidate HLs as the union of the above two subsets
Ssp and Sk, lies in the nature of the adopted optimization method, namely PSO. In par-
ticular, Sgp feeds as candidate HL solutions to the PSO lines with high image contrast
and hence high probability of being the sought HL. Given that in many cases the ac-
tual HL. might be a weak image line, Sg is used to provide randomly selected Hough
points to PSO and thus facilitate successful convergence to the correct solution, so that
the swarm can effectively explore the parameter space, without getting stuck to local
minima.

2.2 HL Derivation

A schematic representation of the second module is shown in Figure 2a which actually
comprises PSO. The latter is a stochastic evolutionary algorithm in generations, that
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features particle populations and a set of rules for evolution. The population is a set of
points in the parameter space of the objective function to be optimized. The particles
evolve in generations that lead in a solution that optimizes a defined objective func-
tion. Therefore, PSO particles, which correspond to a set of proposed solutions, move
around a specific solution-space, searching and evolving to converge to the solution that
optimizes the objective function.

Accordingly, the HL returned by PSO is optimized with respect to the image-based
criteria that are expressed by the objective function. All particles are initialized from
Sgr and the PSO variant developed by Oikonomidis et al. [14] is utilized, which is based
on the canonical PSO. The main assets of the PSO are: (a) a low number of objective
function evaluations are used for convergence, (b) the objective function derivatives are
not required, and (c) depends on only a few parameters.
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Fig. 2. (a) HL derivation; (b) BOW formulation.

Given that each PSO particle represents an image line, it segments the image into
two regions. For each of the two regions, three feature-histograms are formed based
on SIFT, color, and texture features. To facilitate computational efficiency, feature-
histograms are not computed for each possible image region but are readily derived
from corresponding histograms precomputed for the entire image. The latter are com-
puted only once and give rise to histograms for specific image regions by means of the
Bag of Words (BOW) scheme, outlined in the next subsection for the sake of clarity of
presentation. The above computed histograms for each image region are used to formu-
late the objective function Fy of the PSO. For that, the corresponding histograms across
the two regions are compared in terms of the y-square distance (y?). Fp is calculated
as the product of the three x? distances:

3
Fo=T]01—x) (1)

i=1
where the three x,% distances refer to each descriptor used (SIFT, color, and texture). Fop
is calculated on each PSO iteration for every particle and represents a score. Essentially,
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each particle (p, 8) corresponds to a line that separates the image into two regions. x
measures the distance between the BOW representations of the two regions. Thus, the
1 — x? measures the similarity of these regions. Given the above, the objective func-
tion Fp measures the similarity of the two regions with respect to all three descriptors.
Overall, the PSO-based minimization of the Fy function results in an optimized Hough
point (p*, 6%) that separates the image into two maximally dissimilar regions.

2.3 Bag of Words-BOW

BOW is a method for image content representation that has been used extensively for
image recognition and classification. In our framework BOW is employed for obtaining
feature-histograms for any image region from the corresponding histogram of the en-
tire image and is additionally used for computational efficiency. As mentioned above,
three such histograms are used in our framework based on appropriate local descrip-
tors, namely SIFT features, L * a x b color features, and texture features. The latter are
extracted via the Leung-Malik [15] filter bank.

Subsequently, the vocabulary of visual words for each different image feature de-
scriptor is constructed, a process often mentioned as BOW encoding. In our case, the
visual vocabulary is computed from a number of words (K-means centers) by running
the K-means algorithm on features. Finally, BOW quantizes features using the vocab-
ulary for finding the nearest K-means centers, based on the Euclidean distance metric
for each descriptor, thus forming the visual words. The described process for BOW
formulation is presented in Figure 2b.

2.4 Derivation of Roll and Pitch Angles

Having computed HL, the UAV’s roll and pitch angles are readily available from a
sequence of images acquired from the UAV camera as in [9]. The roll angle ¢,,;; can be
directly determined from the HL since it corresponds to the angle formed by the slope
of the HL.. Since it is orthogonal to the camera’s rotation axis, the HL rotates the same
as the roll angle of the UAV camera and is invariant to all other motions, such as UAV
translation, pitch and yaw rotations. This is true because under these motions no image
motion is induced for the points at infinity and the HL slope remains constant [1].
Accordingly, in this work we first compute the horizon ¢,,; angle. Similarly, pitch
angle 0, computation is based on the assumption that HL is captured from the UAV
camera in infinite distance. Hence, 6,;, is calculated using the current and the initial
HL positions as in [9], where f is the camera focal length:
* * *
(Proll = tanil (_i?;((g*;)’ epitch = tanil ((S,'Ziei* - ”Zioea)/f) (2)

3 Results

In this section both qualitative and quantitative experimental results are presented in or-
der to demonstrate the effectiveness of the proposed HL detection framework. A dataset
of 300 RGB images has been employed for conducting experimentation with the pro-
posed framework. Moreover, an implementation on an actual UAV facilitated further
evaluation under real world conditions.
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3.1 Qualitative Results

A dataset consisting of 300 RGB images has been compiled to facilitate in-depth exper-
imentation. It contains images from three different sources: (a) a set of images from the
recently published Horizon Lines in the Wild dataset [8] and (b) a set of images cap-
tured with a mobile camera mounted on a moving UAYV, termed as VHS. The content
and quality of the images in the dataset are analogous to images commonly acquired
by UAV-cameras during flight. Accordingly, brightness, blur, contrast, resolution, and
horizon orientation vary considerably across the images as it is the usual case in UAV
captured data.

In the following, we present HL detection results on sample images from the above
dataset. For comparison purposes the results obtained via the application of the pro-
posed framework, termed PSO — HL, are contrasted to the ones obtained with the
Hough— HL [10]. Figure 3a presents indicative results for various environment scenes.
In all cases, we used a value o = 0.1 for the Gaussian filter in the Canny operator, a
step size of p = 0.1 and 6 = 0.1 for the HT parameters, and the initial PSO particles
and number of evolutions were both set to 50.

Figure 3b presents results on images acquired VHS set. The presented images depict
HL detection in difficult landscape scenes. Mountains, sky, sea, and trees along with
blurring effects, low brightness, and different orientations formulate challenging images
for HL detectors. Still, in all cases the proposed PSO — HL succeeded in accurately
detecting HL and considerably outperformed Hough — HL.

@

Fig. 3. HL detection in challenging images. (a) Moving camera, left column: Hough — HL (cyan);
right column: PSO — HL (green). (b) Left column: Wide angle; right column: 90 deg orientation,
Hough— HL (red), and PSO — HL (green).

3.2 Quantitative Results

Two sets of experiments were conducted to quantitatively assess the proposed frame-
work. In the first case, the above mentioned dataset of 300 RGB images has been
utilized. The detection results of PSO — HL, Hough — HL [10], and Deep Learning
(CNN — HL) [8], were acquired and visually verified by a trained human-operator. In
all cases, the results were deemed as correct or erroneous depending on whether the
obtained HL visually agreed with the one suggested by the operator. PSO — HL signifi-
cantly outperformed Hough — HL and CNN — HL with a detection accuracy of 77.66 %
contrasted to the very low figure of 39% and 62.66%.
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Finally, an experiment using an Asctec Firefly UAV in a realistic environment was
performed to assess correct estimation of ¢,,;; and 6,;;.,. Images were captured with the
on-board RGB-camera at 20 FPS, 640x480 resolution, 74° field of view, and a focal
length f of 3.67mm. HL detection and computation of ¢,,;; and 8, are performed
on a remote PC exchanging data with the Firefly over WIFI. Given that the mentioned
experiments were conducted outdoors, no ground-truth information is available. To this
end, we utilized a complementary filter to provide accurate ¢,,; and 6, estimates
from the on-board IMU data. The latter estimates, are employed as valid substitutes for
the missing ground-truth data.
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Fig. 4. UAV angles estimation. Left column: UAV’s pitch angle; right column: UAV’s roll angle,
IMU data (blue line), PSO — HL (red line), and Hough — HL (green line).

Figure 4 illustrates the ¢,,;; and 6, estimation results. In both cases, angles esti-
mation results are presented for IMU data, PSO — HL, and Hough — HL. The ¢,,;; root
mean square error for PSO — HL over IMU data is 1.55 deg, compared to 8.02 deg for
Hough — HL. The 6,;;.;, root mean square error for PSO — HL over IMU data is 1.04
deg, compared to 2.90 deg for Hough — HL. Evidently, the estimation of both angles
was carried out with improved accuracy by the proposed optimization methodology.

4 CONCLUSIONS

In this work a novel HL detection framework was presented and experimentally as-
sessed. The framework is based on the Edge-Hough line detector, with a further opti-
mization by a PSO algorithm. The latter utilizes an objective function that effectively
fuses three different features, namely color, texture, and SIFT. BOW is employed to
readily calculate the objective function for candidate HLs and provide a compact way
for representing image content and fusing the comparison of different cues. In addition,
the detected HL was utilized for computing two important UAV navigation quantities,
namely roll and pitch angles.

Extensive experimentation with images acquired from a flying UAV revealed the
accuracy and robustness of the proposed approach compared to the Hough — HL and
CNN — HL detectors. Finally, the derived roll and pitch angles were contrasted to the

7



8

RAAD2018, 091, v2 (final): *Vision based Horizon Detection for UAV Navigation’

8 Stavros Timotheatos et al.

ones provides by the UAV’s on-board IMU validating our approach. In future work, we
aim at further improving HL detection via the inclusion of image vanishing points, con-
tinuously track the horizon, and additionally utilize it in real UAV navigation scenarios.
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