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ABSTRACT

We present a region based method for segmenting and split-
ting images of cells in an automatic and unsupervised manner.
The detection of cell nuclei is based on the Bradley’s method.
False positives are automatically identified and rejected based
on shape and intensity features. Additionally, the proposed
method is able to automatically detect and split touching
cells. To do so, we employ a variant of a region based multi-
ellipse fitting method that makes use of constraints on the
area of the split cells. The quantitative assessment of the
proposed method has been based on two challenging public
datasets. This experimental study shows that the proposed
method outperforms clearly existing methods for segmenting
fluorescence microscopy images.

Index Terms— Nuclei Segmentation, Ellipses Fitting,
Shape Analysis, Bradleys method.

1. INTRODUCTION

The automatic image segmentation is a key step in many im-
age/video analysis tasks and multimedia applications [1, 2].
In this work, we study the problem of accurate image seg-
mentation of cells in fluorescence microscopy images, which
plays a key role in high-throughput applications such as quan-
tification of protein expression and the study of cell func-
tion [3]. Figure 1 depicts a fluorescence microscopy image
showing cells that are heterogeneous in shape and size. The
image exhibits considerable foreground and background in-
tensity variations. The ground truth centroid of each cell is
shown with a red plus. The boundaries detected by the pro-
posed method are plotted in green color and are in almost full
agreement with the ground truth, although there exists several
cases of touching cells.
Related work: Cell segmentation can be addressed by inter-
active segmentation techniques. However, interactive/manual
cell segmentation is a subjective, tedious, labor-intensive, and
time-consuming task, espectially for large datasets. There-
fore, automatic cell segmentation methods with the ability
to deal with different cell types and image artifacts are re-
quired [3, 4].

Fig. 1. A fluorescence microscopy image (left) and the out-
put of the proposed method (right). The boundaries of the
detected cells and of the ground truth cell centroids are plot-
ted with green curves and red pluses, respectively.

Several image segmentation methods have been proposed
to automatically detect and spit overlapping cells in fluores-
cence microscopy images. Most of the methods consist of two
main steps, (a) image segmentation for detecting cells and cell
constellations and (b) splitting of overlapping cells.

A method that is often used as an initialization step in cell
segmentation and detection is the Otsu’s method [5, 6, 7, 4, 8]
that performs fully automatic clustering-based image thresh-
olding. This method assumes that there exist two classes of
pixels, foreground (cell) pixels and background. It calcu-
lates the optimum threshold separating the two classes so that
their combined spread (intra-class variance) is minimal. The
Otsu’s method does not perform sufficiently well when the as-
sumption for two classes is violated, as it happens when there
is considerable intensity inhomogeneity in the image fore-
ground and/or background (e.g., see Fig. 1). This problem
is also common to other segmentation methods that compute
global thresholds for detecting cells [9].

Deformable models, which are able to capture a wide
spectrum of different shapes, can also be considered as an-
other category of cell segmentation techniques [3]. There are
two main types of deformable models: parametric models,
which use an explicit representation of objects and implicit
models like level sets. Level sets methods [10, 11, 4] have
been used to extract contours and to evaluate whether a cell is
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blurry. Such methods show promising results, but they usu-
ally require initialization e.g., by Otsu’s method as proposed
in [4].

The splitting of touching cells is often handled with
watershed-based segmentation [12, 13]. However, such meth-
ods suffer from over-segmentation when cells have different
sizes and shapes [6]. The over-segmentation is reduced
in [13] using marker-controlled watersheds, but the detection
of markers is still not accurate in cases of considerable over-
lap of the cells [4]. In [3], touching cells are first distinguished
from non-touching ones based on predefined rules applied to
the convex hull of the segmented cell regions. Then splitting
is achieved by identifying splitting point-pairs. In [9], the
splitting is done by minimizing the maximum eccentricity of
the resulting sub-regions under the constraint of equal cells
area. This results in equally sized cells of almost circular
shape.

Many recent methods [4, 6, 8, 14] operate by fitting el-
lipses to the boundaries of segmented cells, or to specific
proper boundary split points. These methods give promising
results when the segmentation method identifies accurately
the boundaries of the cell regions. However, they are sensi-
tive to errors on boundary detection and they rely on heuristi-
cally determined thresholds to identify the splitting points of
the touching cells. Curvature estimation can be also used for
cell splitting [6, 8, 15], but such methods share the aforemen-
tioned robustness issues that are common to the rest of the
boundary-based methods.
Our contribution: This work proposes a region-based
method that makes several contributions to the problem of
accurate cell segmentation. First, we have modified the
Bradleys segmentation method [16], which is a real-time
adaptive thresholding method that exploits the mean intensity
is a local window. The Bradleys method is selected because it
is local and adaptive and performs well in challenging images
with intensity inhomogeneity. In addition, to split the touch-
ing cells with high accuracy, we applied an extension of the
Decremental Ellipse Fitting Algorithm (DEFA) [17] which
performs region-based ellipse fitting. DEFA has several ad-
vantages over other existing methods:

• It is a parameter free method.

• It is a region-based method. As such, it is consider-
ably more robust and tolerant to noise and boundary
segmentation errors than boundary-based methods.

• There is no need for an explicit, extra step to detect the
touching cells, because DEFA automatically identifies
them.

• DEFA identifies automatically the number of cells by
considering different models (i.e., solutions involv-
ing different numbers of ellipses) and evaluating them
based on the Akaike Information Criterion (AIC).

In summary, the main contributions of this paper are:

• The improvement of Bradleys segmentation method,
taking into account shape and intensity features and the
use of Voronoi diagram to compute local background
intensity features.

• The use of DEFA, an efficient, region based, parameter-
free ellipse fitting method [17] to automatically detect
and split touching cells. The proposed splitting method
is able to accommodate shape-based constraints to au-
tomatically reject spurious splitting solutions.

• The experimental, quantitative evaluation of the pro-
pose method based on standard datasets which shows
that it outperforms existing, state of the art methods.

2. THE SEG-SELF METHOD

We present the proposed method for cell segmentation and
splitting based on ellipse fitting, called SEG-SELF.

2.1. Image Segmentation

We assume a gray-scale image (see Fig. 1) containing a num-
ber of cells that may vary with respect to size and shape and
which may be touching each other. The cells may vary in
brightness. This may also be true for the cell’s background.
Each cell is free of holes and can be discriminated from its
local background because of its higher brightness and its
elliptic-like shape.

The first step in our approach is to apply the Bradley’s seg-
mentation method [16] and a hole filling step. The Bradley’s
method calculates a locally adaptive image threshold that
is chosen based on local, first-order image statistics around
each pixel. This method is robust to illumination changes
and clearly outperforms global thresholding techniques like
Otsu’s method [5] in images that exhibit high illumination
variations. A drawback of Bradley’s method is that, seg-
ments of the background with locally higher brightness, are
erroneously identified as cells (see Figure 2(b)). To reduce
these false positives, we have introduced two shape- and one
appearance-based constraints.
Area constraint (shape): The expected area of each cell
should exceed a minimum threshold, Tα. So, segments that
are particularly small, are rejected from further consideration.
To avoid the rejection of cells that are partially visible (i.e.,
appear at/intersect with image boundaries), Tα is not applied
to the measured object area, but rather to an approximation of
their expected area. This is computed as the area of the cir-
cle that can be fitted best to the eight extrema points of their
boundary [18].
Roundness constraint (shape): Cells are circular/elliptic-
like objects, so we have used the roundness measure to re-
ject objects with complex shapes that deviate considerably
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(a) (b) (c) (d)

Fig. 2. (a) A fluorescence microscopy image. (b) The boundaries of the detected cells according to the Bradleys segmentation
method [16] projected on the given image. The cell centroids according to the ground truth data are plotted with red “+”. (c)
The local backgrounds of the detected cells according to the Voronoi diagram of their centroids. The detected cells are plotted
in black. (d) Final result of the SEG-SELF method.

from this pattern. The Roundness R measures how closely
the shape of an object resembles that of a perfect circle and is
defined by the following ratio:

R =
4πα

p2
, (1)

where α and p denote the area and the perimeter of the object,
respectively. The roundness R takes a maximum value of 1
for the perfect circle. According to our experiments, for a
region to actually represent a cell it is required that R > 0.2.
Intensity constraint (appearance): The aforementioned
shape constraints suffice to reject several false positives as
for example the one in the image center and the two in the
top-right of Fig. 2(b). We introduce another, intensity-based
constraint, that is uncorrelated to the shape-based constraints,
to reject more false positives such as the circular object on
the top right of Fig. 2(b). The intuition behind this con-
straint is that the intensity distribution within a cell should
be more similar to the intensity distribution within the rest
of the cells, rather than to the intensity distribution of the
local background. To quantify this, we first extract the lo-
cal background of each detected object by computing the
Voronoi diagram of the objects’ centroids and by removing
from this the detected objects (see Fig. 2(c)). To measure the
distance between two intensity distributions, we employ the
popular Bhattacharyya distance [19, 20] under the assump-
tion of normal distributions. More specifically, assuming two
distributions q1 and q2, their means µi and their variances σ2

i ,
i ∈ {1, 2}, the Bhattacharyya distance D(q1, q2) of q1 and q2
is defined as [21]:
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(2)
Figure 2(b) shows the boundaries of the detected cells as
those were identified by the original Bradley’s segmentation
method [16] superimposed to the input image and the ground
truth as in Fig. 1. The four false positives are rejected by
employing the proposed constraints (see Figure 2(d)).

2.2. Region Splitting

The aforementioned image segmentation step discriminates
the foreground cells from their background. However, it can-
not discriminate between touching cells. To do so, we apply
a modified version of our previous work on region-based el-
lipse fitting (DEFA) [17] in each detected region of the pre-
vious step. The DEFA method approximates an arbitrary 2D
shape with a number of ellipses. The number and the param-
eters of the ellipses are determined automatically under the
constraint that the total area covered by the ellipses is equal
to the area of the original shape. DEFA makes no assumption
and requires no prior knowledge regarding the input shape.

DEFA operates as follows. First, the skeleton of the 2D
shape is computed, which provides important information
on the parameters of the ellipses that could approximate the
original shape. DEFA starts with an automatically defined,
large number of such ellipses (complex model) and pro-
gressively eliminates some of them (model simplification).
Different models (i.e., solutions involving different numbers
of ellipses) are evaluated based on the Akaike Information
Criterion (AIC). This considers an entropy-based shape com-
plexity measure that balances the model complexity and the
model approximation error. DEFA may integrate constraints
on the shape of the identified regions. In our problem, we
setup DEFA to automatically reject regions whose area is less
than Tα or the ratio between the largest splitted sub-region
and the smallest one exceeds the value of 10. According
to our experiments, this step reduces the over-segmentation
by about 30%. Finally, the object’s pixels are clustered into
groups according to the detected ellipses, also keeping the
detected boundaries of Bradley’s segmentation method.

In principle, DEFA can be applied to all segments iden-
tified by the segmentation step described in Section 2.1. In
practice, it suffices to apply DEFA in all regions whose area
is greater than the median area of all detected regions. This re-
sults in a computational performance speed up of about 50%
without sacrificing the quality of the obtained results.

2428



Table 1. Segmentation results on the U20S dataset.
Methods Jaccard MAD Hausdorff DiceFP DiceFN

Otsu 83.5 4.5 11.5 3.0 16.7
Three-step 88.4 4.7 13.4 5.3 5.2

LSBR 83.2 5.8 19.8 11.8 9.1
LLBWIP 91.6 3.5 12.7 4.7 3.9

SEG-SELF 89.3 3.0 8.3 4.7 6.8

Table 2. Segmentation results on the NIH3T3 dataset.
Methods Jaccard MAD Hausdorff DiceFP DiceFN

Otsu 56.9 6.2 12.9 24.2 35.4
Three-step 70.8 5.7 16.4 15.5 19.7

LSBR 64.2 7.2 19.8 21.2 20.4
LLBWIP 75.9 4.1 14.3 12.7 12.2

SEG-SELF 80.8 3.7 8.8 12.7 9.0

3. EXPERIMENTAL EVALUATION

The experimental evaluation of SEG-SELF involved its quan-
titative and qualitative assesment on standard datasets and in
comparison with state of the art approaches.
The employed datasets: The experimental evaluation of the
proposed method1 was conducted using two public datasets
that are annotated with ground truth, as presented in [22]:

• U20S dataset: A collection of 48 images (1349× 1030
pixels) that include 1831 U20S cells.

• The NIH3T3 dataset: A collection of 49 images (1344
× 1024 pixels) that include 2178 NIH3T3 cels.

The NIH3T3 dataset is more challenging, since it contains
cells/nuclei that vary greatly in brightness, and images often
contain visible debris [22]. Both datasets show cells that are
heterogeneous in shape and size.
Evaluation criteria: To assess the performance of segmenta-
tion, we employed both region-based and contour-based met-
rics, as in [3]. The region-based metrics include the Jaccard
coefficient, widely used to measure spatial overlap, as well
as Dice false positives (Dice FP) and Dice false negatives
(Dice FN). Dice FP assesses over-segmentation and Dice FN
under-segmentation. As contour-based metrics, we use the
Hausdorff distance and the Mean Absolute contour Distance
(MAD). To assess the performance of splitting, as in [3], we
employ the number of false positives (FP) that counts the
spuriously segmented cells and the number of false negatives
(FN) that counts the cells that have not been segmented.
Experimental results: The proposed method is compared
with top performing methods, namely, the Three-step [11],
the LSBR [10], the LLBWIP [3]) and the Otsu method with a

1The code implementing the proposed method together with experimental
results are publicly available in https://sites.google.com/site/
costaspanagiotakis/research/cs.

Table 3. Splitting results on the U20S and NIH3T3 datasets.

Methods U20S NIH3T3
FP FN FP FN

Three-step 0.5 3.9 1.7 11.3
LLBWIP 0.3 2.7 1.5 5.0

SEG-SELF 2.7 0.3 0.7 0.8

Fig. 3. Sample results of the SEG-SELF method on the
NIH3T3 (left) and U20S (right) datasets.

hole filling step as described in [6]. Tables 1 and 2 summa-
rize the results obtained on the U20S and NIH3T3 datasets,
respectively. Tables present average scores computed over in-
dividual scores per image of a dataset. On the U20S dataset,
SEG-SELF and LLBWIP yield similar results, outperform-
ing the rest of the methods. SEG-SELF clearly outperforms
all the methods under any metric in the more challenging
NIH3T3 dataset, due to the proposed adaptive image segmen-
tation method that give high performance results under varia-
tions on background and foreground brightness. Table 3 gives
the evaluation of splitting results on the U20S and NIH3T3
datasets, where the performances of the methods agree with
the segmentation performances.
Qualitative results: Figure 3 shows two sample, representa-
tive results of the proposed method. In both cases, the SEG-
SELF method successfully recognizes and correctly splits the
high majority of cells, even if there exist important variations
on cell size, shape and intensity.

4. SUMMARY

We proposed a method for accurate and automatic segmenta-
tion of cells that may touch each other. An initial segmenta-
tion of cell nuclei is performed with an extension of Bradleys
method [16]. The segmentation of the touching cells has been
achieved by employing an extension of an existing solution to
the problem of multi-ellipse fitting presented in [17]. The ex-
perimental results on challenging public datasets showed the
effectiveness of the proposed method as well as its superiority
in comparison to relevant state-of-the-art methods.
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