UNSUPERVISED DETECTION OF PERIODIC SEGMENTS IN VIDEOS

Costas Panagiotakis'?, Giorgos Karvounas'3 and Antonis Argyros'3

nstitute of Computer Science, FORTH, Greece
?Business Administration Department (Agios Nikolaos), TEI of Crete, Greece
3Computer Science Department, University of Crete, Greece
Email: {cpanag,gkarv,argyros}@ics.forth.gr

ABSTRACT

We present a solution to the problem of discovering all pe-
riodic segments of a video and of estimating their period in
a completely unsupervised manner. These segments may be
located anywhere in the video, may differ in duration, speed,
period and may represent unseen motion patterns of any type
of objects (e.g., humans, animals, machines, etc). The pro-
posed method capitalizes on earlier research on the problem
of detecting common actions in videos, also known as com-
monality detection or video co-segmentation. The proposed
method has been evaluated quantitatively and in compari-
son to a baseline, power-spectrum-based approach, on two
ground-truth-annotated datasets (MHAD202-v, PERTUBE).
From those, PERTUBE has been compiled specifically for
the purposes of this study and includes a collection of youtube
videos that have been shot in the wild, with several periodic
segments. The results of this evaluation demonstrate that
the propose method outperforms the baseline considerably,
especially in the more challenging PERTUBE dataset.

Index Terms— periodicity detection, commonalities dis-
covery, video co-segmentation, temporal video segmentation.

1. INTRODUCTION

Periodic motions are very common in natural and man-made
environments [ |, 2]. Perhaps the most prevalent periodic mo-
tions are the ambulatory motions of humans and animals in
their gaits [3]. Thus, the automatic detection of periodic mo-
tions in videos is considered as an important problem in com-
puter vision and pattern recognition with several applications.
Periodic motion can aid in low level tasks such as tracking or
in higher level tasks such as recognition (i.e., recognizing in-
dividuals based on the analysis of their periodic gait [3]). Pe-
riodic motions may involve multiple interleaving periods, par-
tial time span as well as spatiotemporal noise and outliers [1].
In this work, we are interested in the detection of video seg-
ments with periodic motions, without any prior knowledge on
the number of periods, their duration, or the semantics of the
observed scene. We also opt for a solution that handles mo-
tions with a period that is not constant over time.
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Fig. 1. Visualization of the matrix D of pairwise distances
of the video frames, in which two periodic motions (jumping,
waiving) appear after a non-periodic one (stand up).Periodic
segments are manifested as straight line segments in D (in
white) that are parallel to the main diagonal and are associ-
ated with low sum of D values. The projections (A’, B") of
the endpoints (A, B) of such segments on the main diagonal,
identify the start and the end of these periodic segments. Our
method detects them and estimates their period automatically,
without any prior information on the contents of the video.

The proposed method employs the 2D, square, symmet-
ric matrix D that contains the pairwise Euclidean distances
of all frames of the input video, as computed in in [4]. Fig-
ure | visualizes such a matrix D in the form of a heat map.
Warm (cold) colors represent large (small) pairwise distances,
respectively. The main diagonal of this matrix contains zeros,
because this is the distance of each frame to itself. Consider
now a straight segment AB that is parallel to the main di-
agonal, along which matrix D has very small entries. Let
also T' be the horizontal displacement between the main di-
agonal and AB. The existence of AB signifies a very strong
similarity between a part of a video, and another part of the
video that is temporally displaced by T'. The two parts of the
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video can be identified by horizontally and vertically project-
ing the endpoints A and B of AB onto the main diagonal of
D (points A’ and B’, respectively). The displacement T cor-
responds to the temporal offset between the two similar video
parts. Thus, a periodic segment with n periods each of length
T, will show up in D as n straight diagonal line segments,
equally displaced by 7. An example of such periodic seg-
ment with n = 4 is depicted in Fig. 1. Thus, the discovery
of periodic segments in a video, amounts to finding diagonal
straight line segments of minimum total cost that are located
off the main diagonal.

Such a line (more generally, a path in D) and its asso-
ciated cost can be estimated by employing Dynamic Time
Warping (DTW) [5, 6, 7]. However, considering all possi-
ble paths, evaluating them and keeping the best one has a
prohibitively high computational complexity of O(N®) [4],
where N denotes the number of frames of the video. The
problem can also be seen as an instance of the problem of
finding commonalities/common subsequences between two
different videos. In our previous work [4] we proposed MU-
COS, an effective and efficient solution to this problem. In
this work, we capitalize on MUCOS to solve the periodicity
detection problem. Towards that direction, we show that if
MUCOS is applied to an appropriately preprocessed version
of matrix D, the detected commonalities correspond to the
periodic segments of the input video. Moreover, the period of
each periodic segment is efficiently computed by tracking the
paths of the detected commonalities.

To evaluate the proposed method we employed two
datasets, one with synthetically generated periodic segments
and one containing 50 videos with periodic segments acquired
in the wild and downloaded from youtube. The quantitative
analysis of the obtained results shows the effectiveness of
the proposed approach, also in comparison to a baseline,
power-spectrum-based method.

In summary, the main contributions of this paper are:

e An effective and efficient solution for detecting the pe-
riodic segments of a video, which is formulated as an
instance of the video co-segmentation problem'.

e The introduction of PERTUBE?, the first, ground-truth
annotated dataset containing 50 youtube videos with
periodic segments acquired in the wild.

2. RELATED WORK

Discovering periodic segments in time-series: In [6], the
problem of periodicity detection in time series is addressed
using a time warping algorithm named WARP. The main idea
of WARRP is that if the time series is shifted by a number of

'Implementation available online at: https://sites.google.
com/site/costaspanagiotakis/research/pd
2 Available onine at: http://www.ics.forth.gr/cvrl/pd
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elements equal to the period of the time series, then the orig-
inal time series and the shifted one will be very similar. Kar-
vounas et al. [8] formulate the detection of a periodic segment
as an optimization problem that is solved based on an evolu-
tionary optimization technique. Given a time series represent-
ing a periodic signal with a non-periodic prefix and tail, the
method estimates the start, the end and the period of the pe-
riodic part. The most important limitation of that method is
that it assumes a video containing a single periodic segment.
Periodicity in videos: Polana and Nelson [9] devise an ex-
tension of the Fourier formula to detect periodicity. Cutler
and Davis [3] address the problem of periodicity detection for
both the case of stationary and non-stationary periodic sig-
nals. For the case of stationary signals, this can be achieved
by a Fourier Transform followed by a Hanning filter. For
the non-stationary case, Short-Time Fourier Transform is em-
ployed to better handle the shifting spectrum. As in [9], the
objects are tracked and aligned before the periodicity analy-
sis. Such spectral domain methods have the limitation that
the action frequency should be almost constant and it would
emerge as a discernible peak at a time frequency graph. How-
ever, the amount of variation in appearance between repeti-
tions and the variation in action length means that in certain
cases, no such clear peak may be identifiable [10].

In [11], the analysis of multiple periodic motions over a
static background is motivated by the observation that repet-
itive patterns have distinct signatures in frequency space.
Wang et al. [12] proposed a method for retrieval of social
games that are characterized by repetitions, from unstruc-
tured videos. Each frame is mapped to the nearest keyframe,
yielding a sequence of keyframe indices that are used to mine
recurring patterns. In a more recent work, Levy and Wolf [10]
use a deep learning approach to count the number of repe-
titions of approximately the same action in an input video
sequence. The approach proposed in [13] combines ideas
from nonlinear time series analysis and computational topol-
ogy, by translating the problem of finding recurrent dynamics
in video data, into the problem of determining the circularity
of an associated geometric space.

All aforementioned approaches cannot handle the prob-
lem of periodicity detection under any video content (e.g., re-
gardless of the type of moving object and pattern) and with-
out some type of supervision (e.g., require some knowledge
regarding the number of periods, their duration or the loca-
tion of periodic segments in a given video). To the best of our
knowledge, the method presented in this paper is the first that
makes no such assumption and is fully unsupervised.

3. P-MUCOS: DETECTING PERIODICITY BY
DETECTING COMMONALITIES

We assume a video sequence of N frames, and the N x N
symmetric matrix D of the pair-wise distances of these frames
(see Fig. 1). Depending on the nature of the sequence, differ-
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Fig. 2. (a) The filter F" used to enhance D of Fig. 1, and (b)
the resulting the D — D} which is fed into P-MUCOS. The
set S of candidate commonality points is defined between the
two dashed lines.

ent frame representations and distance functions can be em-
ployed [4, 7]. A candidate periodic segment can be repre-
sented as a connected path of points (x;,y;) on D for which
it holds that (a) Vx;, y;, *; < ;41 and y; < y;41 and (b) the
sum of the values at the points of the path is very small. The
1%¢ condition guarantees that matched frames are ordered in
time, and the 2"¢ that the similarity between corresponding
frames is high. Besides these constraints, paths can start and
end anywhere above® the diagonal of D meaning that y; > ;.
Then, the period T; of frame x; is given by:

T, =y; — ;. (D

Thus, the start and the end times of the periodic video seg-
ment is given by the minimum z-coordinate and the maxi-
mum y-coordinate of the path, respectively. Figure 1 gives an
example of a distance matrix D for a video showing one non-
periodic action (stand up) and two periodic ones (jumping in
place, waving one hand). The two identified paths shown in
white correspond to the two periodic segments. By detecting
such segments, we can segment the periodic parts of a video
and estimate the period of each of them. In order to do this,
we employ MUCOS [4], a method that has been designed to
co-segment commonalities in two videos.

The MUCOS algorithm: To discover all commonalities of
two videos V7, Vo MUCOS operates as follows: (1) Com-
pare pairwise all frames of V;, V5, and estimate their distance
matrix D, (2) compute the sets of potential commonality end
points and midpoints, (3) define a graph G whose nodes are
the end points and midpoints, (4) compute all shortest paths
in G, (5) associate shortest paths with commonalities and dis-
card those that don’t meet certain criteria, and (6) employ an
objective function to evaluate and accept/reject the remaining
commonalities. More details on MUCOS can be found in [4].
From MUCOS to P-MUCOS: The application of MUCOS on
the matrix D of pairwise distances of all frames of a certain
video will result in the detection of the diagonal as the major

3The matrix D is symmetric, therefore all computations can be focused
on the upper right triangle of D.
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commonality. This is because the main diagonal represents
the longest possible path with the minimum cost. However,
in the context of our problem, we should exclude this trivial
solution from consideration and only identify commonalities
that are different than the main diagonal.

The set S of candidate commonality points are the ones
in the upper right triangle of D above its main diagonal. S is
also restricted by the minimum (7},,) and the maximum (77;)
duration of a period. In our implementation, we set 7,,, = 6
and Thy = |N/3]| frames, so as to ensure that there exist at
least three periods of the periodic part of the video. Thus,

SC{(z,y): 1 << N-TpuANe+T, <y<ax+Ty}

2

Next, we design a filter H, applied to S, to emphasize the

commonalities that are close to the diagonal of the distance
matrix D. The symmetric filter H;; is defined as:

H;;j(u,v) = —a- cos (M) (T =d), 3)

T

where d = |[v—u|, T = j — i, and a is given by the constraint:
> |Hij(u,v)| = 1.
u,v

The filter size (7 x 7) is dynamically adapted based on the co-
ordinates of the point it is applied to. Additionally, the filter’s
response is maximized for commonalities passing through the
point (z, ) the filter is applied to. In [14], a similar filter-
ing technique is used for partial curvilinear structure enhance-
ment, based on a family of Gabor-like, location invariant fil-
ters. In this work, the defined filter is location variant. In
order to reduce the computational cost, the response of this
filter to point (4, j) can be estimated recursively based on its
response at point (¢ — 1,j — 1), since both filters are equally
sized and are applied with the same coefficients to the same
matrix subregion of size (7 — 2) X (7 — 2). Thus recursive
computation requires 47 operations which is much less than
the 72 operations that are required without recursion.

Let Dy be D after being filtered by H. Another en-
hancement of paths that are close to the diagonal of D can
be achieved by using the expected low values (probably local
minima) of Dy that appear in the middle between two (prob-
ably) local maxima, the point (4, j) and its projection to main
diagonal (%, %), according to the following equation:
1+

5

“)
Points (¢, j) that belong to paths close to the diagonal are en-
hanced because Dy (i,5) > Dy(m — L, m + ). Finally,
we subtract from D}- its maximum value, so that —D}- be-
comes a non-negative matrix. The application of MUCOS to
D— D} (see Fig. 2) yields commonality paths that correspond
to periodic actions (white curves in Fig. 1). Additionally, the
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Fig. 3. Indicative snapshots from videos of PERTUBE.

period of each frame of a periodic segment can be estimated
by Eq.(1), supporting variable periodicity over the time.
Baseline method: We implemented a baseline method that
is used for comparisons with P-MUCOS. This can be seen
as a natural extension of the power spectrum method [3], ac-
cording to which, a given signal is periodic if the peak of its
spectrum is greater than p + 30, where p and o denote the
mean and the standard deviation of the signal spectral power.
In this work, three sizes of time windows are used, since the
period value as well as the start and end frame of the peri-
odic segments are not known. So, for each frame ¢ of the
video, we consider three signals d;(i),j € {1,2,3}, each
centered at ¢ and having 51, 101 and 151 frames, respectively.
If at least one of these signals successfully passes the spec-
trum test, then frame 7 is added to a set of frames that can
be clustered to sets of candidate periodic segments. We ig-
nore segments with insufficient/marginal number of support-
ing frames, i.e., segments containing less than two periods.
The period of each detected periodic segment is given by the
period corresponding to the peak of its spectrum.

4. EXPERIMENTAL EVALUATION

The experimental evaluation of the proposed method was con-
ducted using two datasets:

o MHAD202-v dataset: Contains the 202 videos of
the 101 video pairs of MHAD101-v dataset presented
in [7]. Each video consists of 3-7 periodic actions
(e.g., jumping in place, jumping jacks, bending hands,
waving one hand, waving two hands) or non periodic
actions (throwing a ball, sit down, stand up).

o PERTUBE dataset: This is a new dataset that we com-
piled for assessing solutions to the periodicity detec-
tion problem. PERTUBE contains 50 videos (a total
of 40307 frames) showing human, animal and machine
motions in lab settings or in the wild. Each video con-
sists of 143 to 2307 frames. Videos form 200 segments,
75 of which are periodic. Each video has from 1 to
4 periodic segments and each segment consists of 30
to 1037 frames. All sequences were collected from

926

Table 1. Evaluation results on the MHAD202-v dataset.

[Methods [ R%) [ P%) | F®%) | 0% |
P-MUCOS | 88.2(82.2) | 95.2(98.5) | 90.9 (89.2) | 84.2 (81.3)
BASELINE 93.2 86.2 88.9 81.6

Table 2. Evaluation results on the PERTUBE dataset.

[Methods [ R%) [ P&%) | F®%) | 0% |
P-MUCOS | 84.1(80.4) | 75.7 (75.4) | 77.0 (76.0) | 67.7 (67.2)
BASELINE 79.3 61.1 66.8 57.3

youtube and were annotated with ground truth, man-
ually. Indicative snapshots can be seen in Fig. 3.

In both datasets, we represented frames based on Improved
Dense Trajectories features, as in [7]. To assess the perfor-
mance of the evaluated methods, we employed the metrics of
precision, recall, F} score and overlap as in [7, 4].

Tables 1 and 2 summarize the results obtained on the
MHAD202-v and PERTUBE datasets, respectively. The
scores are presented as average percentage scores computed
over all individual scores per video of a dataset. We report
the performance of P-MUCOS and BASELINE on all afore-
mentioned metrics. In parenthesis, we provide the scores of
P-MUCOS without the filtering and enhancement steps, to
show that these steps increase the P-MUCOS performance.
Missdetections are mainly due to the failure of the used de-
scriptors (e.g. on fast camera motions) to yield distance
matrices with repetitive patterns. P-MUCOS clearly outper-
forms the baseline method in both datasets. The difference in
performance is more striking in the more challenging, real-
world PERTUBE dataset (10% improvement in overlap and
F scores compared to the baseline method). Additionally,
P-MUCOS gives significantly better estimates of the periods.

5. CONCLUSIONS

We proposed a method for discovering periodic segments in
videos. To achieve this, we extended an existing solution to
the problem of discovering commonalities in two videos [4].
To the best of our knowledge, this is the first method for de-
tecting periodic segments in a video that is totally unsuper-
vised, i.e., it is completely agnostic to the semantic content of
the videos, the number of periodic segments, their start and
end in the video, as well as the duration and the number of pe-
riods. The experimental results on challenging video datasets
showed the effectiveness of the proposed method.
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