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a b s t r a c t 

We present a novel solution to the problem of detecting common actions in time series of motion capture 

data and videos. Given two action sequences, our method discovers all pairs of common subsequences, 

i.e. subsequences that represent the same or similar action. This is achieved in a completely unsupervised 

manner, i.e., without any prior knowledge of the type of actions, their number and their duration. These 

common subsequences (commonalities) may be located anywhere in the original sequences, may differ 

in duration and may be performed under different conditions e.g., by a different actor. The proposed 

method performs a very efficient graph-based search on the matrix of pairwise distances of frames of 

the two sequences. This search is supported by an objective function that captures the trade off between 

the similarity of the common subsequences and their lengths. The proposed method has been evaluated 

quantitatively on challenging datasets and in comparison to state of the art approaches. The obtained 

results demonstrate that the proposed method outperforms the state of the art methods both in the 

quality of the obtained solutions and in computational performance. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

The unsupervised discovery of similar temporal patterns (e.g.

imilar actions) in time series is considered as an important prob-

em in pattern recognition and computer vision. In this research,

e are interested in the detection of common subsequences (com-

onalities) in two sequences of motion capture data or videos

f continuous actions, without any prior knowledge on the type

f actions, their number, or their duration. The problem was in-

roduced by Chu et al. [1] as Temporal Commonalities Discovery

TCD), applied to pairs of image sequences containing facial ex-

ressions or motion capture data. It has also been tackled in [2] as

o-action discovery in multiple image sequences, in [3] as video

o-segmentation for action extraction and more recently in [4] as

emporal action co-segmentation in pairs of videos. A similar

roblem appearing in the knowledge discovery and data mining

ommunity considers the discovery of multiple common patterns

ithin the same signal [5,6] , time series [7,8] , or string [9] . In

his setting, the discovered commonalities are called motifs [7,8] .

his work is also motivated by the task of unsupervised discovery
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f common human actions in this type of input [10] . Other rel-

vant problems include image co-segmentation [11] , image/video

o-localization [12] and video co-summarization [13] . 

The discovery of commonalities in time series is a challenging

roblem with applications in several domains, including but not

imited to data mining and content retrieval, audio and natural lan-

uage processing, image/video analysis, bio-informatics, economics, 

hysics and more. Both the supervised and the unsupervised ver-

ions of the problem are of great importance and interest [14] . For

xample, the detection of the longest common subsequence has

een successfully used for dynamic hand gesture classification [15] .

he problem of periodicity detection [16,17] can also be seen as

n instance of the problem of finding commonalities/common sub-

equences between two different videos. In addition, the detected

ommonalities between video pairs can be used in video retrieval

18,19] which is the task of finding the most similar video based

n a query video. Action co-segmentation can also be used to de-

ect recurring combinations of actions without knowledge of what

he common events are, how many there are, or when they be-

in and end. When the action labels of one of the two sequences

re given, the detection of commonalities can be used for hu-

an action recognition [20–27] , which constitutes a central prob-

em in computer vision and pattern recognition with a huge range

f potential applications [21,26,27] , including the fields of surveil-
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Fig. 1. Two detected commonalities (white curves) projected on the corresponding distance matrix, which was computed based on the pair-wise Euclidean distances between 

the frames of the image sequences A and B . 
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f  
lance, advanced human computer interaction, content-based video

retrieval, abnormal or suspicious activities detection, health moni-

toring and athletic performance analysis. 

In this work, we consider commonalities between two multi-

dimensional time series A and B , representing video or motion cap-

ture data. In such a setting, a candidate commonality is a pair of

subsequences of A and B which can also be viewed as a path on

the distance matrix D of all pairwise distances between the ele-

ments (frames) of A and B . Fig. 1 visualizes such a matrix in the

form of a heat map, where two commonalities (white curves) are

projected. Warm (cold) colors represent large (small) pairwise dis-

tances, respectively. The total cost of a path reflects how dissimilar

the subsequences of a candidate commonality are. Low (high) cost

paths correspond to similar (dissimilar) sub-sequences. A path of

small length will tend to have low cost. However, it corresponds

to a commonality of short subsequences and is probably not that

interesting. As paths increase in length, their cost also increases.

Thus, the trade-off between the length of the path (the duration of

the commonality) and its cost should be balanced. Detecting mul-

tiple commonalities amounts to finding all paths in D that corre-

spond to really common actions in A and B . The lack of supervision

in this process has a twofold meaning: (a) no prior model or infor-

mation on the actions is assumed to be known and (b) the number

of commonalities is not assumed to be known a priori. 
c  
Given the potential commonality of two subsequences s A and

 B of two sequences A and B , the corresponding commonality path

nd its associated cost can be estimated by employing Dynamic

ime Warping (DTW) [28] . DTW is a widely-used algorithm for the

ptimal, non-linear temporal alignment of two sequences and has

een extensively used for the alignment of time series [29] like

uman motion sequences [30] and speech/audio signals [31] . Re-

ently, DTW has been successfully combined with canonical corre-

ation analysis for temporal alignment of multi-modal data, such

s acoustic and visual information [32] . The DTW cost is linear

o the product of the lengths of the compared sequences, that is,

 (| s A || s B |). Thus, the naive approach to solve the multiple common-

lities discovery problem would be to enumerate all possible paths,

valuate them and keep the best ones. Since the number of com-

arisons to be performed is O (| A | 2 | B | 2 ), it turns out that this ex-

austive scheme has a complexity of O (| A | 3 | B | 3 ). This is prohibitive

ven for input sequences with a handful of frames. To deal with

his problem, the proposed algorithm takes advantage of the prop-

rties of the distance matrix D and achieves state of the art per-

ormance with a computational complexity of O (| A || B |). This makes

ossible the discovery of multiple commonalities even for input se-

uences of many thousands of frames. 

In summary, the main contributions of this paper is (a) the

ormulation of the problem of unsupervised discovery of multiple

ommonalities in two time series as a search problem on a graph
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efined on the matrix of their pairwise frame distances and (b) the

se of an efficient graph-based search algorithm for solving the

roblem. The proposed, deterministic solution requires no a pri-

ri knowledge on the number of commonalities, the durations of

he matching subsequences or the types of actions. Moreover, the

ethod is accurate and efficient. Specifically, in a series of experi-

ents it is shown that, compared to the state of the art, the over-

ap of the unsupervised solutions to the ground truth increases by

% on average and the required computational time is reduced by

t least 50%. 

. Related work 

In this section, we review relevant problems and solutions as

hey have been approached in different research communities. 

Discovering motifs in time-series: Several methods in the data

ining and knowledge discovery community deal with the prob-

em of finding one or multiple common temporal patterns (motifs)

ithin a single sequence [5] . A solution to this problem is useful in

everal domains ranging from biology and bio-informatics to com-

uter science and engineering. Mueen and Keogh [5] proposed a

ethod that discovers several motifs of different lengths. In [33] ,

otif discovery is formulated as an optimization problem that is

olved based on Particle Swarm Optimization. Moreover, Dynamic

ime Warping (DTW) is used to define the objective function of

he optimization problem, i.e., to quantify the similarity of differ-

nt segments. In [34] , Shou et al. introduce a multi-step processing

echnique for similarity search of query subsequences using DTW

n multivariate time series. Their method decomposes each data

equence into a number of segments using a dimensionality re-

uction technique, and then applies a version of DTW on the seg-

ented approximations of the data and query sequences to com-

ute tight lower bounds for their DTW distance. The SwiftMotif

ethod proposed in [8] segments a given time series with a data

tream segmentation method and performs clustering based on

egments similarity, where motifs may be defined. The fast time

eries segmentation and modeling techniques that are employed

llow for an on-line detection of previously defined motifs in new

ime series and make SwiftMotif suitable for real-time applications.

n [35] , Emonet et al. proposed a model for unsupervised mo-

if discovery that handles multivariate time series obtained from

 mixture of activities coming from multiple modalities (videos

rom static cameras and audio localization data). Their approach

s based on non parametric Bayesian methods to describe both

he motifs and their occurrences in documents. In [6] , Vahdatpour

t al. address the problem of unsupervised activity and event dis-

overy as multi-dimensional motif discovery in time series. First,

heir method extracts all single dimensional motifs. In the second

tage, all single dimensional motifs are used to build a coincidence

raph that is based on the temporal coincidence of those motifs

n different time series dimensions. A graph clustering approach is

hen proposed to construct activity primitives. The work of Min-

en et al. [36] also proposed an unsupervised approach for activ-

ty discovery in sensor data. It extended the work of Chiu et al.

37] on finding approximately repeated subsequences in single di-

ensional time series. It enables motif discovery in multidimen-

ional sensory data and the automatic estimation of the size of

ach motif neighborhood, that is a crucial user-specific parameter

or efficient detection of motif occurrences, highly dependent on

he domain and the distance metric used to measure subsequence

imilarity, improving overall accuracy and quality of motif discov-

ry. 

Discovering common patterns in speech, images, videos: The

ynamic programming algorithm presented in [38] is a segmental

ariant of Dynamic Time Warping. This method discovers and seg-

ents in an unsupervised manner all pairs of similar subsequences
ithin two sequences, by exploiting the structure of repeating pat-

erns within the speech signal. Subsequently, the method builds an

nventory of lexical speech units that constitute the most repre-

entative ones within the given sequences. In image analysis, the

erm co-segmentation was introduced in [39] to define the task of

ointly segmenting “something similar” given a set of images. This

ay refer to one or more objects of interest [40] , or to a promi-

ent image region [41] shared among some or all of the given im-

ges. The same method can be applied to a single image [42] to

iscover repeating spatial patterns. The same idea was extended

o video segmentation [43] or to perform fore-/background video

o-segmentation or single object co-segmentation in videos [44] .

hiu et al. [45] proposed a method to perform multi-class video

bject co-segmentation, in which the number of object classes and

he number of instances are unknown in each frame and video.

owever, strong assumptions regarding the presence of objects or

egions of interest in all frames from all videos are imposed. The

ork presented by Wang et al. [46] relaxes this assumption and

s able to apply multiple video-based object co-segmentation for

ultiple videos, in which the target object may not be present in

ll frames. 

Discovering common action patterns: Motivated by the suc-

ess of methods in the previous tasks, several methods have been

roposed for the discovery of common action-related patterns in

otion capture data and videos. The method in [3] performs com-

on action extraction in a pair of videos by segmenting the frames

f both videos that contain the common action. To achieve this,

he method relies on measuring the co-saliency of dense trajec-

ories of spatio-temporal features. The method proposed by Zhou

t al. [10] discovers facial units in video sequences of one or more

ersons in an unsupervised manner. The method relies on tempo-

al segmentation and clustering of sequences containing facial fea-

ures. In a more recent work, Zhang and Mahoor [47] proposed a

ethod for simultaneous detection of multiple facial action units

AUs) based on their co-occurrence relationships in human facial

ctivities (emotions). In this approach, the detection of each AU is

onsidered as a task. Discovering all AUs simultaneously is mod-

led as a multi-task multiple kernel learning (TD-MTMKL) prob-

em that optimizes a trade-off between capturing commonalities

nd adapting to variations in modeling of AU inter-relations. 

Another recently work by Yeo et al. [48] introduces an unsuper-

ised learning algorithm to detect a common activity (co-activity)

rom a set of videos, which is formulated using absorbing Markov

hain. The method detects a common activity (co-activity) of vari-

ble length in two or more videos or identifies multiple instances

f a co-activity in a single video. Chu et al. [13] propose a video co-

ummarization technique which can be applied to the co-activity

etection problem. They introduce the Maximal Biclique Finding

MBF) algorithm operating on complete bipartite subgraphs among

rames of two paired videos to determine sparsely co-occurring

patio-temporal patterns. Their method is also extended to mul-

iple videos by aggregating pairwise results. 

An interesting formulation for discovering common events in an

nsupervised manner is presented by Yuan et al. [49] and noted

s a task of recurring event mining. Recurrent events are defined

s short temporal patterns that consist of multiple instances in a

arget database. This task is translated into finding temporally con-

inuous paths in a matching trellis simulated by a “forest-growing”

rocedure, where each path indicates a repetition of an event. The

ethod was applied to video or motion capture human motion

ata and was robust under large temporal and content variations

f the repetitions of the common patterns. Given as input an on-

ine video stream capturing a scene in which the same action is

epeated multiple times in consecutive cycles, the method of Levy

t al. [50] is able to detect the start and end points of the se-

uence of repetitive actions, and counts the repetitions. The work
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of Shariat et al. [51] combines the discovery of common action pat-

terns and action classification, introducing an adaptive segmental

alignment model that is able to detect the boundaries of tempo-

ral segments representing common actions and efficiently match-

ing them. 

One of the most related methods to the one proposed in this

paper is the method by Chu et al. [1] that discovers multiple

common actions in a pair of videos or time-series. The problem

is noted as Temporal Commonality Discovery (TCD). It is treated

as an integer optimization problem by proposing the branch-and-

bound (B& B) algorithm [52] for efficient searching simultaneously

over all possible segments in each video sequence, modeled as his-

tograms that are compared using the χ2 distance. The method is

generic and can be applied to any histogram-based feature. Our

method is also generic, without requiring histogram-based fea-

tures. Additionally, our method is fully unsupervised since it is able

to automatically determine the number of commonalities, while

TCD requires the number of commonalities to be a priori known.

Another recently proposed method [4] treats the multiple com-

monality discovery problem as a stochastic optimization problem

solved by employing Particle Swarm Optimization with an objec-

tive function defined based on the non-linear DTW alignment cost

of two sub-sequences. Two variants were proposed, one that as-

sumes that the number of commonalities is known ( S-EVACO ) and

one that does not require that information ( U-EVACO ). In [4] it has

been shown that the EVACO variants clearly outperform the other

state of the art methods. In this paper, we show that the deter-

ministic methods we propose lead to better results in less compu-

tational time. 

The rest of the paper is organized as follows: Section 3 sets

the scene by presenting the various aspects of the problem, anal-

yses the properties of the problem and presents ideas that are

used to cope with the computational complexity of the problem.

Section 4 capitalizes on this formulation and findings to present

the proposed algorithmic solutions. The experimental results and

comparisons with existing methods are given in Section 5 . Finally,

conclusions and discussion are provided in Section 6 . 

3. Problem constraints and formulation 

We assume two input sequences A and B of lengths | A | and

| B |, respectively, and the | A | × | B | matrix D of the pair-wise dis-

tances of their frames (see Fig. 1 ). Depending on the nature of

the sequences, different frame representations and distance func-

tions can be employed. A commonality is represented as a con-

nected path of points ( x i , y i ) for which it holds that ∀ x i , y i , x i ≤
x i +1 , y i ≤ y i +1 . Besides this constraint, paths can start and end any-

where in D . In our formulation, a subsequence q A of sequence A

is represented as q A = [ s A , e A ] , e A ≥ s A , where s A , e A are the start

and end frames of the subsequence, respectively. A commonal-

ity c = 〈 q A , q B 〉 = 〈 [ s A , e A ] , [ s B , e B ] 〉 of A and B is a pair of subse-

quences q A (of A ) and q B (of B ) that represent the same action.

Fig. 1 gives an example of a particular distance matrix D obtained

after comparing the frames of two sequences. Two commonali-

ties, c 1 = 〈 [125 , 315] , [153 , 340] 〉 and c 2 = 〈 [315 , 451] , [1 , 153] 〉
are illustrated. A commonality c = 〈 q A , q B 〉 = 〈 [ s A , e A ] , [ s B , e B ] 〉 de-

fines the rectangle b c on D , with ( s A , s B ) being the top left and

( e A , e B ) the bottom right corner of the rectangle. The actual cor-

respondence between frames of the subsequences q A and q B of a

commonality are determined by the minimum cost path in D con-

necting ( s A , s B ) with ( e A , e B ). Essentially, b c is the bounding box of

this path. Table 1 summarizes the notation used throughout this

work. 

As stated in Section 1 , the computational cost of the exhaustive

method for finding a single commonality is O (| A | 3 | B | 3 ). This is too

costly even for input sequences of only a few decades of frames.
e capitalize on the properties and the structure of the problem

o propose an algorithm that discovers all commonalities of two

equences consisting of thousands of frames. 

.1. Commonality endpoints 

Let c = 〈 q A , q B 〉 = 〈 [ s A , e A ] , [ s B , e B ] 〉 be a candidate commonality.

t is reasonable to assume that a commonality is not expected to

tart (or end) at a pair of frames that are quite dissimilar. This

eans that both D ( s A , s B ) and D ( e A , e B ) should be lower than a

hreshold T L . To exploit this, we first define the set L of points p

hat constitute local minima of the distance matrix D . Then, we

efine the subset E of L as 

 = { p ∈ L : D (p) < T L } . (1)

he set E contains the local minima of matrix D whose value is

ower than a threshold T L . T L is automatically determined by an

nsupervised statistical analysis method based on the properties

f the distribution of the values of the local minima of a distance

atrix D , that is, the D values of points p ∈ L . More specifically,

et f L (p) be the cumulative distribution of this function. Then, T L 
s the value with f L equal to 0.5. 

The two endpoints of a commonality are restricted to belong to

. 

.2. Commonality midpoints 

We restrict commonality paths to be polygonal lines that pass

rom suitably identified points in D . Similarly to commonality end-

oints, we expect the midpoints of a commonality to be local min-

ma of D . Thus, we restrict the set M of commonality midpoints to

e a subset of L . In notation, 

 = { p ∈ L : D (p) < T H } , (2)

here T H is a high threshold ( T H > T L ) that is automatically deter-

ined similarly to T L . T H is the value with f L equal to 0.9. T H and

 L have been set experimentally and were kept constant for all ex-

eriments and datasets. Thus, the setting of the T L and T H thresh-

lds individually per dataset is avoided. Given that T H > T L , it turns

ut that E ⊆ M . 

Additional points p are iteratively included in M in order to im-

rove the accuracy of the polygonal line approximation of a com-

onality path. To achieve this, we keep including to M points p

ith the lowest possible value in D , under the constraints that (a)

 ( p ) < T H and (b) there is no point in M whose Euclidean dis-

ance from any point in M is shorter than T D = 15 points. Fig. 2

hows the sets E and M superimposed on the corresponding dis-

ance matrix of Fig. 1 . In this example, E and M sets consist of 495

nd 1070 points (including 219 extra points), respectively. 

.3. Subsequences length and commonalities scale 

We consider that sequences that are shorter than a minimum,

ataset-dependent length do not constitute meaningful actions, so

e enforce this size constraint also to potential commonalities.

oreover, in several situations, it is quite unnatural to match two

ubsequences of quite different lengths. We define the scale σ c of

 commonality c = 〈 [ s A , e A ] , [ s B , e B ] 〉 to be 

c = 

max (e A − s A , e B − s B ) 

min (e A − s A , e B − s B ) 
. (3)

ll commonalities c with σc > σmax = 5 are rejected. This con-

traint is used to filter unlikely commonalities and, thus, speeds up

he method. In scenarios where commonalities differ considerably

n length, the constraint can be relaxed by setting σ c to a higher

alue. 
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Table 1 

Summary of the notation used throughout this work. 

Symbols Definitions 

A, B Two given sequences of lengths | A |, | B | 

D Distance matrix of the pair-wise distances for all frames of A, B 

q A = [ s A , e A ] A subsequence of A , where s A , e A are the start and end frames 

c = 〈 q A , q B 〉 A commonality is a pair of subsequences q A and q B 
A ( c ) The area of the commonality rectangle 

P ( c ) The cost of the commonality c (e.g. DTW cost) 

ω( c ) Objective function for the single commonality selection problem 

�( C ) Objective function for the multiple commonality selection problem 

Fig. 2. (a) A sample distance matrix and the associated sets of commonality end- 

and mid-points. The “+” symbol marks points that belong to E . The “ × ” symbol 

marks points that belong to M but not to E . Finally, the “o” symbol marks the extra 

commonality midpoints added to M . (b) The nodes (red “+”) and the edges (blue 

lines) of the subgraph G ′ (see text for details). (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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.4. Graph modeling 

We construct a directed graph G = (V, E) . The set V of nodes

f this graph are the points of the set M . Assume two nodes

 = (s i , s j ) and v = (e i , e j ) , e i > s i , e j > s j , u, v ∈ V . These nodes are

onnected with a directed edge e = (u, v ) if and only if: 

1. | v − u | ∞ 

≤ 2 · T D . This means that v is inside a square of size

equal to 2 · T D whose top-left corner is located on u . 

2. For all points p of the matrix D that are under the straight line

connecting u and v it holds that D ( p ) < T H . 

Intuitively, the above two constraints guarantee that the

traight line connecting u and v can be a valid segment of a com-

onality, i.e., the subsequence [ s i , e i ] is similar to the subsequence

 s j , e j ]. 
Each edge e = (u, v ) ∈ E is associated with a weight 

(u, v ) = 

(
2 − 1 

σc 

) ∑ 

p∈| u v | 
D (p) . (4)

he cost d ( u, v ) represents the sum of the values of the distance

atrix D under the straight line connecting u and v , weighted

y a factor depending on the scale σ c of the commonality

 = 〈 [ s i , e i ] , [ s j , e j ] 〉 corresponding to the bounding box b c of ( u, v ).

ntuitively, this weighting scheme gives a smaller cost to common-

lity segments of σc = 1 , that is, common subsequences of equal

ength. 

.5. Finding all shortest paths 

After its construction, the graph G = (V, E) is simplified to its

ubgraph G 

′ = (V ′ , E ′ ) . Specifically, the set V = M is reduced to

he set V ′ = E by removing from V the nodes M − E . At the same

ime, the removal of these nodes results in the removal of edges

n E . When midpoints are removed from G , the weights of the re-

aining edges are updated properly so that graph connectivity and

hortest path costs of G are maintained in G . This is done in a way

hat guarantees that for every pair of nodes u, v ∈ V ′ = E, if those

ere connected with a path of minimum cost λ in G , they will stay

onnected in G 

′ with a minimum cost path of λ, too. Thus, the so-

utions provided by our method on G are guaranteed to be exactly

he same with those on G . 

We apply Johnson’s algorithm [53] to find the shortest paths

etween all pairs of vertices in the edge weighted graph G 

′ =
(V ′ , E ′ ) . Johnson’s algorithm has a time complexity of O (| V ′ | ·
og (| V ′ | ) + | V ′ | · | E ′ | ) , where | V 

′ | and | E ′ | are the number of nodes

nd edges of the graph, respectively. Removing M − E only aims for

omputational efficiency and means that Johnsons algorithm oper-

tes only on candidate endpoints, avoiding midpoints. 

.6. Evaluating a single commonality 

Solving the single commonality discovery problem amounts to

nding the commonality c ∗ that maximizes an appropriately de-

ned objective function ω. In notation, 

 

∗ = argmax c ω(c) . (5) 

wo subsequences q A = [ s A , e A ] , and q B = [ s B , e B ] define the candi-

ate commonality c = 〈 q A , q B 〉 . In order to assess this commonal-

ty, we propose an objective function ω that consists of two terms:

• The cost P ( c ) of the commonality c , defined as the cost of

the minimum path from node u = (s A , s B ) to node v = (e A , e B ) .

This is estimated by the invocation of the Johnson’s algorithm

( Section 3.5 ) on G 

′ . The cost P ( c ) is equal to the sum of d ( i, j )

along the identified minimum path for c . Intuitively, the larger

this cost is, the less preferable the commonality c . 
• The product A (c) = | q A || q B | = (e A − s A ) · (e B − s B ) of the lengths

of the two sub-sequences. Intuitively, the objective function ω 

should favor the matching of larger sub-sequences. The term
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1 https://sites.google.com/site/costaspanagiotakis/research/mucos . 
2 
A ( c ) is equal to the area of the bounding rectangle b c of the

corresponding commonality path in D . 

There is a trade-off between the terms A ( c ) and P ( c ). Common-

alities c with large A ( c ) are preferable. At the same time, as A ( c )

increases, P ( c ) also increases. This trade-off is captured by defining

the objective function ω( c ) as 

ω(c) = 

A (c) 

P (c) + ε
. (6)

Theoretically, P ( c ) might be equal to zero. Thus, ε is a small con-

stant preventing division by zero. In our work, ε was set equal to

the 1% of the global minimum non-zero entry of the distance ma-

trix D . 

3.7. Evaluating multiple commonalities 

We are interested in discovering multiple commonalities be-

tween two sequences without a priori knowledge of their number.

The solution to the multiple commonalities discovery problem is a

set of commonalities C = { c 1 , c 2 , . . . , c | C| } that maximize a suitable

objective function �( ·), i.e., 

 

∗ = argmax C �(C) . (7)

The proposed objective function �( C ) is defined as: 

�(C) = 

A (C) 
∑ | C| 

i =1 
P (c i ) + ε

. (8)

In Eq. (8) , the enumerator A ( C ) is a generalization (for all common-

alities in C ) of the term A ( c ) defined for a single commonality. Let

X be the subset of all frames of A that are members of some com-

monality c i ∈ C . Similarly, let Y be the subset of all frames of B that

are members of some commonality c i ∈ C . Then, A (C) = | X| · | Y | . In-

tuitively, this definition considers the single, “super-commonality”

involving all frames of the two sequences A and B and estimates

its area (as in the case of Eq. (6) ). A nice property of this defini-

tion is that it is conceptually compatible to the one defined for the

case of a single commonality. More specifically, assume that we

view a single commonality c as two consecutive, non overlapping

commonalities c 1 and c 2 . Then, the evaluation of c 1 and c 2 in Eq.

(8) gives the same score as the evaluation of c in Eq. (6) . 

4. The MUCOS and SMUCOS algorithms 

Based on the problem formulation and constraints presented in

Section 3 , we now present the proposed algorithms for solving the

problem of discovering multiple commonalities in two sequences. 

The MUCOS algorithm: MUCOS solves the MUltiple COmmonal-

itieS discovery problem. To discover all commonalities of two se-

quences A, B, MUCOS operates as follows: 

1. Compare pairwise all frames of the two sequences A, B to come

up with their distance matrix D . 

2. Compute the sets L , E ( Section 3.1 ) and M ( Section 3.2 ). 

3. Define the graph G = (V, E) and its sub-graph G 

′ = (V ′ , E ′ )
( Section 3.4 ). 

4. Compute all shortest paths in G 

′ ( Section 3.5 ). 

5. Each shortest path resulting from the previous step is associ-

ated with a commonality. Discard commonalities that do not

meet the criteria for the length of the subsequences and the

scale of the commonality ( Section 3.3 ). Let the remaining can-

didate commonalities be the set S = { c 1 , c 2 , . . . , c | S| } . 
6. Start with an empty solution set C = ∅ of commonalities and

its score �(C) = 0 . Check which commonality c ∈ S maximizes

�( C ) as defined in Eq. (8) . If there is such a commonality, in-
troduce it in C and remove it from S . Otherwise, terminate. 
An important property of graph G 

′ is that, typically, consists of

eakly connected components, each associated with a single com-

onality. Therefore, the execution of the Johnson’s algorithm and

he optimization of the objective function can be performed inde-

endently in each connected component, achieving the decompo-

ition of the whole problem into several, simpler ones. 

The SMUCOS algorithm: In the case that the number of com-

onalities to be detected is known/given, we can modify the step

6) of MUCOS to terminate the algorithm when the number of the

elected commonalities is equal to the given number. We denote

his variant of the algorithm as SMUCOS which stands for Super-

ised MUltiple CommonalitieS discovery . 

.1. Scalability 

The proposed method requires the computation of the pairwise

istances between the frames of the two input sequences. Thus,

ts direct use for discovering commonalities in very large input se-

uences (e.g., sequences of tens of million frames as in [54] ) is

roblematic. However, with a straightforward decomposition of the

roblem, it is still possible to handle sequences with length in the

rder of millions. 

More specifically, this can be achieved by splitting the largest

f the two input sequences into a number of non overlapping seg-

ents of equal length. Then, a set of distance matrices is computed

etween each segment of the largest sequence and the smallest se-

uence. The proposed method can be executed for each of the re-

ulting distance matrices. As a final step, the detected commonal-

ties are merged. Consider, for example, two input sequences with

M and 2M frames, respectively. We split the largest one (2M) into

0 0 0 sequences of 1K, resulting in 20 0 0 distance matrices of di-

ensions 1M × 1K. Each of them has the manageable size of 4GB

hen the matrix values are stored as float numbers. 

. Experimental evaluation 

We assess experimentally several aspects of the performance of

UCOS and SMUCOS by comparing with the following state of the

rt methods: S-EVACO and U-EVACO [4] , TCD [1] , the method pro-

osed by Guo et al. [3] for video co-segmentation and the Seg-

ental DTW ( SDTW ) [38] . The code implementing the proposed

ethod together with experimental results are publicly available

nline. 1 

.1. Datasets and performance metrics 

The experimental evaluation was conducted using the four

atasets 2 presented in [4] , consisting of 373 pairs of sequences,

355 action sub-sequences and 1286 pairs of common actions.

ore specifically: 

• MHAD101-s dataset : 101 pairs of action sequences of skele-

tal data. Each sequence consists of 3–7 actions and each pair

has 1–4 common actions. Sequences were defined based on the

Berkeley Multimodal Human Action Database (MHAD) [55] that

contains human motion capture data as well as conventional

RGB video and depth data. The human pose is represented as

a 30 + 30 + 4 = 64 D vector. The first 30 dimensions encode an-

gles of selected body parts with respect to a body-centered co-

ordinate system. The next 30 dimensions encode the same an-

gles but in a camera-centered coordinate system. Finally, this

representation is augmented with the four angles between the

3D vectors of the fore- and the back-arms as well as the angles

between the upper- and lower legs [4] . 
Available at http://www.ics.forth.gr/cvrl/evaco/ . 

https://sites.google.com/site/costaspanagiotakis/research/mucos
http://www.ics.forth.gr/cvrl/evaco/
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Table 2 

Evaluation results on the MHAD101-s dataset. 

Methods R (%) P(%) F 1 (%) O(%) 

U-SDTW [38] 65.8 45.5 47.7 35.1 

U-EVACO [4] 71.3 63.9 63.3 50.3 

MUCOS 86.0 69.4 74.9 64.6 

TCD [1] 16.7 18.1 13.8 8.5 

S-SDTW [38] 61.6 47.1 48.5 35.9 

S-EVACO [4] 77.9 67.6 71.3 59.4 

SMUCOS 82.4 77.4 78.7 69.9 

Table 3 

Evaluation results on the CMU86-91 dataset. 

Methods R (%) P(%) F 1 (%) O(%) 

U-SDTW [38] 44.9 20.9 27.6 16.1 

U-EVACO [4] 71.3 67.4 65.2 51.0 

MUCOS 63.4 59.8 57.9 43.0 

TCD [1] 30.9 51.3 38.0 24.1 

S-SDTW [38] 44.9 20.9 27.6 16.1 

S-EVACO [4] 67.6 77.1 71.6 57.5 

SMUCOS 66.2 69.9 67.1 53.0 
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Table 4 

Evaluation results on the MHAD101-v dataset. 

Methods R (%) P(%) F 1 (%) O(%) 

U-SDTW [38] 69.4 45.7 48.0 35.5 

U-EVACO [4] 63.3 63.3 58.8 45.9 

MUCOS 83.0 50.4 54.3 41.2 

TCD [1] 20.6 14.0 15.4 19.3 

S-SDTW [38] 65.2 49.1 50.5 37.7 

S-EVACO [4] 76.6 66.8 69.8 56.2 

SMUCOS 78.6 72.1 72.1 59.7 

Table 5 

Evaluation results on the 80-Pair dataset. 

Methods R (%) P(%) F 1 (%) O(%) 

U-SDTW [38] 34.6 60.6 37.3 25.6 

Guo [3] 55.6 78.1 60.9 51.6 

U-EVACO [4] 61.0 69.7 62.0 54.2 

MUCOS 87.2 72.7 73.9 64.0 

TCD [1] 22.9 65.4 31.2 21.5 

S-SDTW [38] 27.8 52.2 31.4 21.6 

S-EVACO [4] 75.8 77.2 73.9 64.5 

SMUCOS 78.8 78.0 74.3 63.3 
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• CMU86-91 dataset : Contains 91 pairs of action sequences of

skeletal data. Pairs include combinations of 14 long action se-

quences of the set Subject 86 of the CMU-Mocap database. Each

action sequence consists of up to 10 actions executed in a con-

tinuous manner. The feature representation of human motion

data is based on the position and orientation of the skeletal

root and relative joint angles that results in a 30-D feature vec-

tor per frame [4] . 
• MHAD101-v dataset : The MHAD101-v dataset is identical to

MHAD101-s in terms of action composition and ground truth,

but uses the RGB video stream instead of the motion capture

data. The representation is based on the Improved Dense Tra-

jectories (IDT) features [4] . Four types of descriptors, namely

trajectory shape, HOG, HOF, and MBH are encoded by a Bag-of-

Features representation, separately for each type of descriptor

and for each pair of videos in the dataset [4] . 
• 80-Pair dataset : The 80 pairs of the dataset consists of 50 seg-

mented clips of human actions from the UCF50 dataset [56] and

30 pairs selected from BBC animal documentaries depicting an-

imal actions [3] . Each frame is represented by a 25D feature

vector that is the histogram of frequencies of the codewords

for the trajectories ending up in that frame. The 25 codeword

are defined the application of the k-means method on a Bag-

of-Features representation based on the MBH descriptors of all

frames for a pair of videos [4] . 

These datasets involve time series of skeletal data (MHAD101-s,

MU86-91 datasets) as well as real RGB videos (MHAD101-v, 80-

air datasets). The datasets provide access to the raw data but also

o the features representing each frame permitting the comparison

f frames. For the fairness of the comparison to existing methods,

e used exactly the same frame representations and comparisons

roposed in [4] . 

In order to assess the performance of the evaluated methods,

e employed the established metrics of precision, recall, F 1 score

nd overlap (intersection-over-union), as reported in [4] . Precision

uantifies how many of the frames of the co-segmented sequences

elong to the set of commonalities in both sequences. Recall quan-

ifies how many of the actual commonalities (common frames) are

ndeed discovered/segmented by the method. 
.2. Comparisons with state of the art methods 

Tables 2–5 show the results obtained on the MHAD101-s,

MU86-91, MHAD101-v and 80-Pair, respectively. The scores are

resented as % average scores computed over all individual scores

er sample (pairs of sequences) of a dataset. We report the per-

ormance of all evaluated methods on all aforementioned metrics.

he results for the existing methods are those reported in [4] and

re copied here for convenience. Each table is split in two parts,

he top rows that report results of unsupervised methods ( U-SDTW,

-EVACO, Guo [3] and MUCOS ), i.e., the ones where the number

f commonalities is not known a priori. The rest of the rows re-

ort results of supervised methods ( TCD, S-SDTW, S-EVACO, SMU-

OS ), that is, methods that require knowledge of the number of

ommonalities. 

MUCOS outperforms all the corresponding unsupervised state

f the art methods on two out of four datasets (MHAD101-s,

nd 80-Pair dataset) and has the second highest performance

n the CMU86-91 and MHAD101-v datasets. SMUCOS outperform

ll the corresponding supervised state of the art methods on

hree out of four datasets (MHAD101-s, MHAD101-v and 80-Pair

ataset) and has the second highest performance on the CMU86-

1 dataset. The EVACO variants outperform all the correspond-

ng unsupervised and supervised state-of-the-arts methods on

MU86-91 dataset. Segmental DTW outperforms TCD on three out

f four datasets (MHAD101-s, MHAD101-v and 80-Pair dataset).

uo method [3] yields the third highest performance on 80-Pair

ataset. 

The best performance of the proposed variants is reported on

HAD101-s, where the average overlap of MUCOS and SMUCOS is

8% and 18% higher than the average overlap of U-EVACO and S-

VACO , respectively. The worst performance of MUCOS and SMU-

OS is reported on CMU86-91, where the overlap of U-EVACO and

-EVACO is 18% and 9% higher than the overlap of MUCOS and SMU-

OS , respectively. 

In our effort to understand why MUCOS and SMUCOS do not

ave top performance in the CMU86-91 data set as it happens with

he rest of the datasets, we investigated the skewness γ 1 [57] of

he distributions of normalized values of the distance matrices D

n each dataset, defined as 

1 = 

E[(d − μ) 3 ] 
3 

, (9) 

σ
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Fig. 3. Results of MUCOS on a pair of (a) MHAD101-s and (b) CMU86-91 dataset. The selected commonalities (white curves) and the ground truth (black dotted curves) are 

projected on the corresponding distance matrix. (c) The PDFs of normalized values of distance matrices per dataset. 
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where μ is the mean, σ is the standard deviation and E is the

expectation operator. Fig. 3 plots these distributions for the four

datasets. The average skewness for CMU86-91 is 0.20 (positive),

while the average skewness for the MHAD101-s, MHAD101-v and

80-pair is −0 . 43 , −0.37 and −0.11 (negative), respectively. The pos-

itive skewness of CMU86-91 means that the mass of the distribu-

tion is concentrated to the left, explaining the existence of indistin-

guishable local minima that are used by the proposed method to

identify and then evaluate candidate commonalities. As a concrete

example, Fig. 3 depicts the selected commonalities (white curves)

of MUCOS and the ground truth (black dotted curves) projected on

the corresponding distance matrix D of a pair of (a) MHAD101-

s and (b) CMU86-91 dataset. On the example from MHAD101-s,

MUCOS gives a solution with F 1 score = 92%, while on the ex-

ample from CMU86-91 the solution has F 1 score equal to 74%. In

the example from the CMU86-91 dataset, the distance matrix is

smoother without strong local minima. This is in contrast to the

example from MHAD101-s. 

Fig. 4 summarizes the findings in motion captured (top) and

video (bottom) datasets. It shows the mean F 1 score for all se-

quence pairs, after zeroing the F 1 score of pairs below an over-

lap threshold on motion captured ( Fig. 4 (a)) and video ( Fig. 4 (b))

datasets. The proposed methods MUCOS and SMUCOS correspond

to the black curves. The performance of supervised and unsuper-

vised methods is illustrated as dotted and continuous lines, respec-

tively. MUCOS outperforms U-EVACO on motion captured datasets

and for high overlap threshold values on video based datasets. U-

EVACO outperforms MUCOS for low overlap threshold values on

video datasets. SMUCOS outperforms S-EVACO under any type of

dataset and overlap threshold value. Overall, it can be observed

that MUCOS and SMUCOS outperform or are in par with the top

performing methods in all datasets. 

a  

l  
By aggregating the obtained results over all datasets, it turns

ut that the proposed supervised and unsupervised variants of the

ethod improve the overlap criterion by 4% and 6%, respectively,

n comparison to the corresponding top performing existing meth-

ds [4] ( S-EVACO and U-EVACO ). 

.3. Computational performance 

MUCOS and SMUCOS have been implemented using MATLAB.

ll experiments were executed on an Intel I7 CPU processor at

.4 GHz. Typical processing times for the execution of MUCOS for

 k × 1 k and 10 k × 10 k distance matrices are 4 sec and 5 minutes,

espectively. The computational efficiency of our method is the re-

ult of: 

• the approximation of commonality paths by polygonal lines

connecting endpoints and midpoints, see Section 3.1 and 3.2 . 
• The fact that the graph of the problem consists of weakly con-

nected components and that the Johnsons algorithm can be ap-

plied to each of them, individually (see Section 4 ). This means

that if there is an upper bound on the lengths of common ac-

tions, the problem complexity increases linearly with the sizes

| A | and | B | of the input sequences. Indeed, this is illustrated in

the scatter plot of Fig. 5 where the execution times of MUCOS

are plotted as a function of the number of points of the corre-

sponding distance matrices. 

Comparable computational costs are only achieved by Segmen-

al DTW, which, nevertheless, provides solutions of much lower

uality (see Figs. 4 (a) and (b)). 

We also computed the time required by S-EVACO and SMUCOS

o process all datasets on a computer system with the same char-

cteristics. We chose to compare SMUCOS with S-EVACO since the

atter has been shown to be more efficient than the rest of the
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Fig. 4. Summary of the obtained results in all datasets. 

Fig. 5. The scatter plot of the execution times of MUCOS relative to the size of the 

associated distance matrices. 
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valuated methods [4] . We investigate the supervised versions of

he algorithms searching for the known number of commonalities

n each pair. The comparison of the unsupervised versions would

e in favor of SMUCOS , as the U-EVACO algorithm searches for an

pper bound of commonalities and then selects the best out of

hem. Overall (sum of execution times in all datasets) SMUCOS is

0% faster than S-EVACO . This is despite the fact that SMUCOS is

mplemented in MATLAB, and S-EVACO is implemented in Python. 

. Summary 

We proposed a method to solve efficiently the problem of dis-

overing multiple common actions in time series and videos. Our

pproach discovers such commonalities without any prior knowl-

dge on their type, number or duration. Our method outperforms

he existing state of the art methods in all criteria and in most

f the employed datasets. The quality of the solutions is com-

ined with computational efficiency, as the proposed method is

he fastest among the competing ones. Another advantage of MU-
OS is its deterministic nature compared, e.g., to the up to now

op-performing methods ( U-EVACO, S-EVACO [4] ) that are stochastic

ue to the Particle Swarm Optimization strategy they employ. Ex-

eriments on the challenging datasets of motion capture and video

ata proposed in [4] involve a variety of features and representa-

ions of time series and videos. This demonstrates that MUCOS and

MUCOS can be applied to a wide range of representations and,

herefore, may constitute a useful tool in a broad range of applica-

ions. 
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