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We present a novel solution to the problem of detecting common actions in time series of motion capture
data and videos. Given two action sequences, our method discovers all pairs of common subsequences,
i.e. subsequences that represent the same or similar action. This is achieved in a completely unsupervised
manner, i.e., without any prior knowledge of the type of actions, their number and their duration. These
common subsequences (commonalities) may be located anywhere in the original sequences, may differ
in duration and may be performed under different conditions e.g., by a different actor. The proposed
method performs a very efficient graph-based search on the matrix of pairwise distances of frames of
the two sequences. This search is supported by an objective function that captures the trade off between
the similarity of the common subsequences and their lengths. The proposed method has been evaluated
quantitatively on challenging datasets and in comparison to state of the art approaches. The obtained
results demonstrate that the proposed method outperforms the state of the art methods both in the
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quality of the obtained solutions and in computational performance.
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1. Introduction

The unsupervised discovery of similar temporal patterns (e.g.
similar actions) in time series is considered as an important prob-
lem in pattern recognition and computer vision. In this research,
we are interested in the detection of common subsequences (com-
monalities) in two sequences of motion capture data or videos
of continuous actions, without any prior knowledge on the type
of actions, their number, or their duration. The problem was in-
troduced by Chu et al. [1] as Temporal Commonalities Discovery
(TCD), applied to pairs of image sequences containing facial ex-
pressions or motion capture data. It has also been tackled in [2] as
co-action discovery in multiple image sequences, in [3] as video
co-segmentation for action extraction and more recently in [4] as
temporal action co-segmentation in pairs of videos. A similar
problem appearing in the knowledge discovery and data mining
community considers the discovery of multiple common patterns
within the same signal [5,6], time series [7,8], or string [9]. In
this setting, the discovered commonalities are called motifs [7,8].
This work is also motivated by the task of unsupervised discovery
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of common human actions in this type of input [10]. Other rel-
evant problems include image co-segmentation [11], image/video
co-localization [12] and video co-summarization [13].

The discovery of commonalities in time series is a challenging
problem with applications in several domains, including but not
limited to data mining and content retrieval, audio and natural lan-
guage processing, image/video analysis, bio-informatics, economics,
physics and more. Both the supervised and the unsupervised ver-
sions of the problem are of great importance and interest [14]. For
example, the detection of the longest common subsequence has
been successfully used for dynamic hand gesture classification [15].
The problem of periodicity detection [16,17] can also be seen as
an instance of the problem of finding commonalities/common sub-
sequences between two different videos. In addition, the detected
commonalities between video pairs can be used in video retrieval
[18,19] which is the task of finding the most similar video based
on a query video. Action co-segmentation can also be used to de-
tect recurring combinations of actions without knowledge of what
the common events are, how many there are, or when they be-
gin and end. When the action labels of one of the two sequences
are given, the detection of commonalities can be used for hu-
man action recognition [20-27], which constitutes a central prob-
lem in computer vision and pattern recognition with a huge range
of potential applications [21,26,27], including the fields of surveil-
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Fig. 1. Two detected commonalities (white curves) projected on the corresponding distance matrix, which was computed based on the pair-wise Euclidean distances between

the frames of the image sequences A and B.

lance, advanced human computer interaction, content-based video
retrieval, abnormal or suspicious activities detection, health moni-
toring and athletic performance analysis.

In this work, we consider commonalities between two multi-
dimensional time series A and B, representing video or motion cap-
ture data. In such a setting, a candidate commonality is a pair of
subsequences of A and B which can also be viewed as a path on
the distance matrix D of all pairwise distances between the ele-
ments (frames) of A and B. Fig. 1 visualizes such a matrix in the
form of a heat map, where two commonalities (white curves) are
projected. Warm (cold) colors represent large (small) pairwise dis-
tances, respectively. The total cost of a path reflects how dissimilar
the subsequences of a candidate commonality are. Low (high) cost
paths correspond to similar (dissimilar) sub-sequences. A path of
small length will tend to have low cost. However, it corresponds
to a commonality of short subsequences and is probably not that
interesting. As paths increase in length, their cost also increases.
Thus, the trade-off between the length of the path (the duration of
the commonality) and its cost should be balanced. Detecting mul-
tiple commonalities amounts to finding all paths in D that corre-
spond to really common actions in A and B. The lack of supervision
in this process has a twofold meaning: (a) no prior model or infor-
mation on the actions is assumed to be known and (b) the number
of commonalities is not assumed to be known a priori.

Given the potential commonality of two subsequences s, and
sg of two sequences A and B, the corresponding commonality path
and its associated cost can be estimated by employing Dynamic
Time Warping (DTW) [28]. DTW is a widely-used algorithm for the
optimal, non-linear temporal alignment of two sequences and has
been extensively used for the alignment of time series [29] like
human motion sequences [30] and speech/audio signals [31]. Re-
cently, DTW has been successfully combined with canonical corre-
lation analysis for temporal alignment of multi-modal data, such
as acoustic and visual information [32]. The DTW cost is linear
to the product of the lengths of the compared sequences, that is,
O(|sallsgl). Thus, the naive approach to solve the multiple common-
alities discovery problem would be to enumerate all possible paths,
evaluate them and keep the best ones. Since the number of com-
parisons to be performed is O(JA|?|B|?), it turns out that this ex-
haustive scheme has a complexity of O(|A|3|B|3). This is prohibitive
even for input sequences with a handful of frames. To deal with
this problem, the proposed algorithm takes advantage of the prop-
erties of the distance matrix D and achieves state of the art per-
formance with a computational complexity of O(|A||B|). This makes
possible the discovery of multiple commonalities even for input se-
quences of many thousands of frames.

In summary, the main contributions of this paper is (a) the
formulation of the problem of unsupervised discovery of multiple
commonalities in two time series as a search problem on a graph
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defined on the matrix of their pairwise frame distances and (b) the
use of an efficient graph-based search algorithm for solving the
problem. The proposed, deterministic solution requires no a pri-
ori knowledge on the number of commonalities, the durations of
the matching subsequences or the types of actions. Moreover, the
method is accurate and efficient. Specifically, in a series of experi-
ments it is shown that, compared to the state of the art, the over-
lap of the unsupervised solutions to the ground truth increases by
6% on average and the required computational time is reduced by
at least 50%.

2. Related work

In this section, we review relevant problems and solutions as
they have been approached in different research communities.

Discovering motifs in time-series: Several methods in the data
mining and knowledge discovery community deal with the prob-
lem of finding one or multiple common temporal patterns (motifs)
within a single sequence [5]. A solution to this problem is useful in
several domains ranging from biology and bio-informatics to com-
puter science and engineering. Mueen and Keogh [5] proposed a
method that discovers several motifs of different lengths. In [33],
motif discovery is formulated as an optimization problem that is
solved based on Particle Swarm Optimization. Moreover, Dynamic
Time Warping (DTW) is used to define the objective function of
the optimization problem, i.e., to quantify the similarity of differ-
ent segments. In [34], Shou et al. introduce a multi-step processing
technique for similarity search of query subsequences using DTW
in multivariate time series. Their method decomposes each data
sequence into a number of segments using a dimensionality re-
duction technique, and then applies a version of DTW on the seg-
mented approximations of the data and query sequences to com-
pute tight lower bounds for their DTW distance. The SwiftMotif
method proposed in [8] segments a given time series with a data
stream segmentation method and performs clustering based on
segments similarity, where motifs may be defined. The fast time
series segmentation and modeling techniques that are employed
allow for an on-line detection of previously defined motifs in new
time series and make SwiftMotif suitable for real-time applications.
In [35], Emonet et al. proposed a model for unsupervised mo-
tif discovery that handles multivariate time series obtained from
a mixture of activities coming from multiple modalities (videos
from static cameras and audio localization data). Their approach
is based on non parametric Bayesian methods to describe both
the motifs and their occurrences in documents. In [6], Vahdatpour
et al. address the problem of unsupervised activity and event dis-
covery as multi-dimensional motif discovery in time series. First,
their method extracts all single dimensional motifs. In the second
stage, all single dimensional motifs are used to build a coincidence
graph that is based on the temporal coincidence of those motifs
in different time series dimensions. A graph clustering approach is
then proposed to construct activity primitives. The work of Min-
nen et al. [36] also proposed an unsupervised approach for activ-
ity discovery in sensor data. It extended the work of Chiu et al.
[37] on finding approximately repeated subsequences in single di-
mensional time series. It enables motif discovery in multidimen-
sional sensory data and the automatic estimation of the size of
each motif neighborhood, that is a crucial user-specific parameter
for efficient detection of motif occurrences, highly dependent on
the domain and the distance metric used to measure subsequence
similarity, improving overall accuracy and quality of motif discov-
ery.

Discovering common patterns in speech, images, videos: The
dynamic programming algorithm presented in [38] is a segmental
variant of Dynamic Time Warping. This method discovers and seg-
ments in an unsupervised manner all pairs of similar subsequences

within two sequences, by exploiting the structure of repeating pat-
terns within the speech signal. Subsequently, the method builds an
inventory of lexical speech units that constitute the most repre-
sentative ones within the given sequences. In image analysis, the
term co-segmentation was introduced in [39] to define the task of
jointly segmenting “something similar” given a set of images. This
may refer to one or more objects of interest [40], or to a promi-
nent image region [41] shared among some or all of the given im-
ages. The same method can be applied to a single image [42] to
discover repeating spatial patterns. The same idea was extended
to video segmentation [43] or to perform fore-/background video
co-segmentation or single object co-segmentation in videos [44].
Chiu et al. [45] proposed a method to perform multi-class video
object co-segmentation, in which the number of object classes and
the number of instances are unknown in each frame and video.
However, strong assumptions regarding the presence of objects or
regions of interest in all frames from all videos are imposed. The
work presented by Wang et al. [46] relaxes this assumption and
is able to apply multiple video-based object co-segmentation for
multiple videos, in which the target object may not be present in
all frames.

Discovering common action patterns: Motivated by the suc-
cess of methods in the previous tasks, several methods have been
proposed for the discovery of common action-related patterns in
motion capture data and videos. The method in [3] performs com-
mon action extraction in a pair of videos by segmenting the frames
of both videos that contain the common action. To achieve this,
the method relies on measuring the co-saliency of dense trajec-
tories of spatio-temporal features. The method proposed by Zhou
et al. [10] discovers facial units in video sequences of one or more
persons in an unsupervised manner. The method relies on tempo-
ral segmentation and clustering of sequences containing facial fea-
tures. In a more recent work, Zhang and Mahoor [47] proposed a
method for simultaneous detection of multiple facial action units
(AUs) based on their co-occurrence relationships in human facial
activities (emotions). In this approach, the detection of each AU is
considered as a task. Discovering all AUs simultaneously is mod-
eled as a multi-task multiple kernel learning (TD-MTMKL) prob-
lem that optimizes a trade-off between capturing commonalities
and adapting to variations in modeling of AU inter-relations.

Another recently work by Yeo et al. [48] introduces an unsuper-
vised learning algorithm to detect a common activity (co-activity)
from a set of videos, which is formulated using absorbing Markov
chain. The method detects a common activity (co-activity) of vari-
able length in two or more videos or identifies multiple instances
of a co-activity in a single video. Chu et al. [13] propose a video co-
summarization technique which can be applied to the co-activity
detection problem. They introduce the Maximal Biclique Finding
(MBF) algorithm operating on complete bipartite subgraphs among
frames of two paired videos to determine sparsely co-occurring
spatio-temporal patterns. Their method is also extended to mul-
tiple videos by aggregating pairwise results.

An interesting formulation for discovering common events in an
unsupervised manner is presented by Yuan et al. [49] and noted
as a task of recurring event mining. Recurrent events are defined
as short temporal patterns that consist of multiple instances in a
target database. This task is translated into finding temporally con-
tinuous paths in a matching trellis simulated by a “forest-growing”
procedure, where each path indicates a repetition of an event. The
method was applied to video or motion capture human motion
data and was robust under large temporal and content variations
of the repetitions of the common patterns. Given as input an on-
line video stream capturing a scene in which the same action is
repeated multiple times in consecutive cycles, the method of Levy
et al. [50] is able to detect the start and end points of the se-
quence of repetitive actions, and counts the repetitions. The work
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of Shariat et al. [51] combines the discovery of common action pat-
terns and action classification, introducing an adaptive segmental
alignment model that is able to detect the boundaries of tempo-
ral segments representing common actions and efficiently match-
ing them.

One of the most related methods to the one proposed in this
paper is the method by Chu et al. [1] that discovers multiple
common actions in a pair of videos or time-series. The problem
is noted as Temporal Commonality Discovery (TCD). It is treated
as an integer optimization problem by proposing the branch-and-
bound (B& B) algorithm [52] for efficient searching simultaneously
over all possible segments in each video sequence, modeled as his-
tograms that are compared using the x?2 distance. The method is
generic and can be applied to any histogram-based feature. Our
method is also generic, without requiring histogram-based fea-
tures. Additionally, our method is fully unsupervised since it is able
to automatically determine the number of commonalities, while
TCD requires the number of commonalities to be a priori known.
Another recently proposed method [4] treats the multiple com-
monality discovery problem as a stochastic optimization problem
solved by employing Particle Swarm Optimization with an objec-
tive function defined based on the non-linear DTW alignment cost
of two sub-sequences. Two variants were proposed, one that as-
sumes that the number of commonalities is known (S-EVACO) and
one that does not require that information (U-EVACO). In [4] it has
been shown that the EVACO variants clearly outperform the other
state of the art methods. In this paper, we show that the deter-
ministic methods we propose lead to better results in less compu-
tational time.

The rest of the paper is organized as follows: Section 3 sets
the scene by presenting the various aspects of the problem, anal-
yses the properties of the problem and presents ideas that are
used to cope with the computational complexity of the problem.
Section 4 capitalizes on this formulation and findings to present
the proposed algorithmic solutions. The experimental results and
comparisons with existing methods are given in Section 5. Finally,
conclusions and discussion are provided in Section 6.

3. Problem constraints and formulation

We assume two input sequences A and B of lengths |A| and
|B|, respectively, and the |A| x |[B] matrix D of the pair-wise dis-
tances of their frames (see Fig. 1). Depending on the nature of
the sequences, different frame representations and distance func-
tions can be employed. A commonality is represented as a con-
nected path of points (x;, y;) for which it holds that Vx;,y;, x; <
Xiy1. ¥i <Yi.1. Besides this constraint, paths can start and end any-
where in D. In our formulation, a subsequence g4 of sequence A
is represented as ga = [Sa,ea], ea >S4, Where s,, e4 are the start
and end frames of the subsequence, respectively. A commonal-
ity ¢ ={qa.qp) = {[Sa.eal. [sp.eg]) of A and B is a pair of subse-
quences q4 (of A) and g (of B) that represent the same action.
Fig. 1 gives an example of a particular distance matrix D obtained
after comparing the frames of two sequences. Two commonali-
ties, c; = ([125,315],[153, 340]) and ¢, = ([315,451],[1, 153])
are illustrated. A commonality ¢ = (qa. qg) = ([Sa. eal. [Sp. €g]) de-
fines the rectangle b, on D, with (s4, sg) being the top left and
(ea, eg) the bottom right corner of the rectangle. The actual cor-
respondence between frames of the subsequences g4 and gg of a
commonality are determined by the minimum cost path in D con-
necting (sa, sg) with (ey, eg). Essentially, b, is the bounding box of
this path. Table 1 summarizes the notation used throughout this
work.

As stated in Section 1, the computational cost of the exhaustive
method for finding a single commonality is O(|A|3|B|?). This is too
costly even for input sequences of only a few decades of frames.

We capitalize on the properties and the structure of the problem
to propose an algorithm that discovers all commonalities of two
sequences consisting of thousands of frames.

3.1. Commonality endpoints

Let ¢ = (qa, qg) = ([sa, eal. [Sp, eg]) be a candidate commonality.
It is reasonable to assume that a commonality is not expected to
start (or end) at a pair of frames that are quite dissimilar. This
means that both D(s,, sg) and D(ea, eg) should be lower than a
threshold T;. To exploit this, we first define the set £ of points p
that constitute local minima of the distance matrix D. Then, we
define the subset £ of £ as

E={peL:D(p) <T}. (1)

The set £ contains the local minima of matrix D whose value is
lower than a threshold T;. T; is automatically determined by an
unsupervised statistical analysis method based on the properties
of the distribution of the values of the local minima of a distance
matrix D, that is, the D values of points p € £. More specifically,
let fz(p) be the cumulative distribution of this function. Then, T;
is the value with f, equal to 0.5.

The two endpoints of a commonality are restricted to belong to
E.

3.2. Commonality midpoints

We restrict commonality paths to be polygonal lines that pass
from suitably identified points in D. Similarly to commonality end-
points, we expect the midpoints of a commonality to be local min-
ima of D. Thus, we restrict the set M of commonality midpoints to
be a subset of £. In notation,

M={peL:D(p) <Ty}, (2)

where Ty is a high threshold (Ty > T;) that is automatically deter-
mined similarly to T;. Ty is the value with f; equal to 0.9. Ty and
T, have been set experimentally and were kept constant for all ex-
periments and datasets. Thus, the setting of the T; and Ty thresh-
olds individually per dataset is avoided. Given that Ty > T;, it turns
out that £ € M.

Additional points p are iteratively included in M in order to im-
prove the accuracy of the polygonal line approximation of a com-
monality path. To achieve this, we keep including to M points p
with the lowest possible value in D, under the constraints that (a)
D(p) < Ty and (b) there is no point in M whose Euclidean dis-
tance from any point in M is shorter than Tp = 15 points. Fig. 2
shows the sets £ and M superimposed on the corresponding dis-
tance matrix of Fig. 1. In this example, £ and M sets consist of 495
and 1070 points (including 219 extra points), respectively.

3.3. Subsequences length and commonalities scale

We consider that sequences that are shorter than a minimum,
dataset-dependent length do not constitute meaningful actions, so
we enforce this size constraint also to potential commonalities.
Moreover, in several situations, it is quite unnatural to match two
subsequences of quite different lengths. We define the scale o of
a commonality ¢ = {([s4,eal, [Sg. eg]) to be

__ max(ea — Sa, eg — Sp)
©~ min(es — s, €5 — Sp)

(3)

All commonalities ¢ with o > omgx =5 are rejected. This con-
straint is used to filter unlikely commonalities and, thus, speeds up
the method. In scenarios where commonalities differ considerably
in length, the constraint can be relaxed by setting o to a higher
value.




|
z

"00
Ae
e
T
i

opoooo 2

1,10l
©fo o o000

)

e)

o

oo i ogi io

i
o0 -

.

cf

fe}

L)
*
’0

¥
£

»
. e o o
*
0€0.0

«
\

o

L

C. Panagiotakis et al./Pattern Recognition 79 (2018) 1-11 5

Distance matrix of the pair-wise distances for all frames of A, B
A subsequence of A, where sy, e4 are the start and end frames

Objective function for the single commonality selection problem

Table 1
Summary of the notation used throughout this work.
Symbols Definitions
A B Two given sequences of lengths |A|, |B|
D
qa = [sa, eal
¢ =(qa, qs) A commonality is a pair of subsequences q4 and qg
A(c) The area of the commonality rectangle
P(c) The cost of the commonality c (e.g. DTW cost)
w(c)
Q(C)

Objective function for the multiple commonality selection problem
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Fig. 2. (a) A sample distance matrix and the associated sets of commonality end-
and mid-points. The “+” symbol marks points that belong to £. The “ x” symbol
marks points that belong to M but not to £. Finally, the “o” symbol marks the extra
commonality midpoints added to M. (b) The nodes (red “+”) and the edges (blue
lines) of the subgraph G’ (see text for details). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

3.4. Graph modeling

We construct a directed graph G = (V,E). The set V of nodes
of this graph are the points of the set M. Assume two nodes
u=(s;,s;) and v = (g e;), e >s; e>s; u, veV. These nodes are
connected with a directed edge e = (u, v) if and only if:

1. |[v—u|w <2-Tp. This means that v is inside a square of size
equal to 2-Tp whose top-left corner is located on u.

2. For all points p of the matrix D that are under the straight line
connecting u and v it holds that D(p) < Ty.

Intuitively, the above two constraints guarantee that the
straight line connecting u and v can be a valid segment of a com-
monality, i.e., the subsequence [s;, ¢;] is similar to the subsequence

[Sj, CJ]

Each edge e = (u,v) € E is associated with a weight

d(u, v) = (2 - Gl) 3 D(p). (4)
¢ peluv|

The cost d(u, v) represents the sum of the values of the distance
matrix D under the straight line connecting u and v, weighted
by a factor depending on the scale o. of the commonality
c = ([si. €], [s}. e;]) corresponding to the bounding box b of (u, v).
Intuitively, this weighting scheme gives a smaller cost to common-
ality segments of o, =1, that is, common subsequences of equal
length.

3.5. Finding all shortest paths

After its construction, the graph G = (V,E) is simplified to its
subgraph G’ = (V’,E’). Specifically, the set V = M is reduced to
the set V/ = £ by removing from V the nodes M — &. At the same
time, the removal of these nodes results in the removal of edges
in E. When midpoints are removed from G, the weights of the re-
maining edges are updated properly so that graph connectivity and
shortest path costs of G are maintained in G. This is done in a way
that guarantees that for every pair of nodes u,v eV’ = &, if those
were connected with a path of minimum cost A in G, they will stay
connected in G’ with a minimum cost path of A, too. Thus, the so-
lutions provided by our method on G are guaranteed to be exactly
the same with those on G.

We apply Johnson’s algorithm [53] to find the shortest paths
between all pairs of vertices in the edge weighted graph G’ =
(V' E"). Johnson’s algorithm has a time complexity of O(|V’|-
log(|V'|) +|V’| - |E’]), where |V'| and |E’| are the number of nodes
and edges of the graph, respectively. Removing M — E only aims for
computational efficiency and means that Johnsons algorithm oper-
ates only on candidate endpoints, avoiding midpoints.

3.6. Evaluating a single commonality

Solving the single commonality discovery problem amounts to
finding the commonality c* that maximizes an appropriately de-
fined objective function w. In notation,

¢t = argmax. w(c). (5)

Two subsequences g4 = [Sa.e4], and qg = [sp, eg] define the candi-
date commonality ¢ = (qa, gg). In order to assess this commonal-
ity, we propose an objective function w that consists of two terms:

e The cost P(c) of the commonality c, defined as the cost of
the minimum path from node u = (s4, Sg) to node v = (ea, ep).
This is estimated by the invocation of the Johnson’s algorithm
(Section 3.5) on G'. The cost P(c) is equal to the sum of d(i, j)
along the identified minimum path for c. Intuitively, the larger
this cost is, the less preferable the commonality c.

o The product A(c) = |qallqp| = (es — s4) - (eg — sp) of the lengths
of the two sub-sequences. Intuitively, the objective function w
should favor the matching of larger sub-sequences. The term
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A(c) is equal to the area of the bounding rectangle b. of the
corresponding commonality path in D.

There is a trade-off between the terms A(c) and P(c). Common-
alities ¢ with large A(c) are preferable. At the same time, as A(c)
increases, P(c) also increases. This trade-off is captured by defining
the objective function w(c) as

A(0)
P(c) + €’
Theoretically, P(c) might be equal to zero. Thus, € is a small con-
stant preventing division by zero. In our work, € was set equal to

the 1% of the global minimum non-zero entry of the distance ma-
trix D.

w(c) =

(6)

3.7. Evaluating multiple commonalities

We are interested in discovering multiple commonalities be-
tween two sequences without a priori knowledge of their number.
The solution to the multiple commonalities discovery problem is a

set of commonalities C = {cy, ¢y, ..., Cicj} that maximize a suitable
objective function (), i.e.,
C* = argmaxc 2(C). (7)
The proposed objective function ©2(C) is defined as:
A(C
Q) = =D (8)
Y Plc) +e€

In Eq. (8), the enumerator A(C) is a generalization (for all common-
alities in C) of the term A(c) defined for a single commonality. Let
X be the subset of all frames of A that are members of some com-
monality ¢; e C. Similarly, let Y be the subset of all frames of B that
are members of some commonality c; € C. Then, A(C) = |X] - |Y|. In-
tuitively, this definition considers the single, “super-commonality”
involving all frames of the two sequences A and B and estimates
its area (as in the case of Eq. (6)). A nice property of this defini-
tion is that it is conceptually compatible to the one defined for the
case of a single commonality. More specifically, assume that we
view a single commonality ¢ as two consecutive, non overlapping
commonalities ¢; and c,. Then, the evaluation of ¢; and c; in Eq.
(8) gives the same score as the evaluation of c in Eq. (6).

4. The MUCOS and SMUCOS algorithms

Based on the problem formulation and constraints presented in
Section 3, we now present the proposed algorithms for solving the
problem of discovering multiple commonalities in two sequences.

The MUCOS algorithm: MUCOS solves the MUltiple COmmonal-
itieS discovery problem. To discover all commonalities of two se-
quences A, B, MUCOS operates as follows:

1. Compare pairwise all frames of the two sequences A, B to come
up with their distance matrix D.

2. Compute the sets £, £ (Section 3.1) and M (Section 3.2).

3. Define the graph G= (V,E) and its sub-graph ¢’ = (V',E’)
(Section 3.4).

4, Compute all shortest paths in G’ (Section 3.5).

5. Each shortest path resulting from the previous step is associ-
ated with a commonality. Discard commonalities that do not
meet the criteria for the length of the subsequences and the
scale of the commonality (Section 3.3). Let the remaining can-
didate commonalities be the set S = {c;, ¢y, ..., Cisi}-

6. Start with an empty solution set C = ¢ of commonalities and
its score (C) =0. Check which commonality ce€S maximizes
2(C) as defined in Eq. (8). If there is such a commonality, in-
troduce it in C and remove it from S. Otherwise, terminate.

An important property of graph G’ is that, typically, consists of
weakly connected components, each associated with a single com-
monality. Therefore, the execution of the Johnson’s algorithm and
the optimization of the objective function can be performed inde-
pendently in each connected component, achieving the decompo-
sition of the whole problem into several, simpler ones.

The SMUCOS algorithm: In the case that the number of com-
monalities to be detected is known/given, we can modify the step
(6) of MUCOS to terminate the algorithm when the number of the
selected commonalities is equal to the given number. We denote
this variant of the algorithm as SMUCOS which stands for Super-
vised MUItiple CommonalitieS discovery.

4.1. Scalability

The proposed method requires the computation of the pairwise
distances between the frames of the two input sequences. Thus,
its direct use for discovering commonalities in very large input se-
quences (e.g., sequences of tens of million frames as in [54]) is
problematic. However, with a straightforward decomposition of the
problem, it is still possible to handle sequences with length in the
order of millions.

More specifically, this can be achieved by splitting the largest
of the two input sequences into a number of non overlapping seg-
ments of equal length. Then, a set of distance matrices is computed
between each segment of the largest sequence and the smallest se-
quence. The proposed method can be executed for each of the re-
sulting distance matrices. As a final step, the detected commonal-
ities are merged. Consider, for example, two input sequences with
1M and 2M frames, respectively. We split the largest one (2M) into
2000 sequences of 1K, resulting in 2000 distance matrices of di-
mensions 1M x 1K. Each of them has the manageable size of 4GB
when the matrix values are stored as float numbers.

5. Experimental evaluation

We assess experimentally several aspects of the performance of
MUCOS and SMUCOS by comparing with the following state of the
art methods: S-EVACO and U-EVACO [4], TCD [1], the method pro-
posed by Guo et al. [3] for video co-segmentation and the Seg-
mental DTW (SDTW) [38]. The code implementing the proposed
method together with experimental results are publicly available
online.!

5.1. Datasets and performance metrics

The experimental evaluation was conducted using the four
datasets® presented in [4], consisting of 373 pairs of sequences,
2355 action sub-sequences and 1286 pairs of common actions.
More specifically:

e MHAD101-s dataset: 101 pairs of action sequences of skele-
tal data. Each sequence consists of 3-7 actions and each pair
has 1-4 common actions. Sequences were defined based on the
Berkeley Multimodal Human Action Database (MHAD) [55] that
contains human motion capture data as well as conventional
RGB video and depth data. The human pose is represented as
a 30 + 30 + 4 = 64D vector. The first 30 dimensions encode an-
gles of selected body parts with respect to a body-centered co-
ordinate system. The next 30 dimensions encode the same an-
gles but in a camera-centered coordinate system. Finally, this
representation is augmented with the four angles between the
3D vectors of the fore- and the back-arms as well as the angles
between the upper- and lower legs [4].

T https://sites.google.com/site/costaspanagiotakis/research/mucos.
2 Available at http://www.ics.forth.gr/cvrl/evaco/.
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Table 2
Evaluation results on the MHAD101-s dataset.

Methods R P& F&) 0%

U-SDTW [38] 658 455 477 351
U-EVACO [4] 713 639 633 503
MUCoS 860 694 749 646
CD [1] 167 181 138 85

S-SDTW [38] 616 471 485 359
S-EVACO [4] 779 676 713 594
SMUCOS 824 774 787 699

Table 3
Evaluation results on the CMU86-91 dataset.

Methods R®% P®%  E®% 0%

U-SDTW [38] 449 209 276 161
U-EVACO [4] 713 674 652 510
MUCOS 634 598 579 430
TCD [1] 309 513 380 241
S-SDTW [38] 449 209 27.6 16.1
S-EVACO [4] 676 771 716 575
SMUCOS 662 699 671 530

o CMU86-91 dataset: Contains 91 pairs of action sequences of
skeletal data. Pairs include combinations of 14 long action se-
quences of the set Subject 86 of the CMU-Mocap database. Each
action sequence consists of up to 10 actions executed in a con-
tinuous manner. The feature representation of human motion
data is based on the position and orientation of the skeletal
root and relative joint angles that results in a 30-D feature vec-
tor per frame [4].

MHAD101-v dataset: The MHAD101-v dataset is identical to
MHAD101-s in terms of action composition and ground truth,
but uses the RGB video stream instead of the motion capture
data. The representation is based on the Improved Dense Tra-
jectories (IDT) features [4]. Four types of descriptors, namely
trajectory shape, HOG, HOF, and MBH are encoded by a Bag-of-
Features representation, separately for each type of descriptor
and for each pair of videos in the dataset [4].

80-Pair dataset: The 80 pairs of the dataset consists of 50 seg-
mented clips of human actions from the UCF50 dataset [56] and
30 pairs selected from BBC animal documentaries depicting an-
imal actions [3]. Each frame is represented by a 25D feature
vector that is the histogram of frequencies of the codewords
for the trajectories ending up in that frame. The 25 codeword
are defined the application of the k-means method on a Bag-
of-Features representation based on the MBH descriptors of all
frames for a pair of videos [4].

These datasets involve time series of skeletal data (MHAD101-s,
CMUS86-91 datasets) as well as real RGB videos (MHAD101-v, 80-
Pair datasets). The datasets provide access to the raw data but also
to the features representing each frame permitting the comparison
of frames. For the fairness of the comparison to existing methods,
we used exactly the same frame representations and comparisons
proposed in [4].

In order to assess the performance of the evaluated methods,
we employed the established metrics of precision, recall, F; score
and overlap (intersection-over-union), as reported in [4]. Precision
quantifies how many of the frames of the co-segmented sequences
belong to the set of commonalities in both sequences. Recall quan-
tifies how many of the actual commonalities (common frames) are
indeed discovered/segmented by the method.

Table 4
Evaluation results on the MHAD101-v dataset.

Methods R P& F®%) 0%

U-SDTW [38]  69.4 45.7 48.0 355
U-EVACO [4] 63.3 63.3 58.8 45.9
MUCOS 83.0 50.4 54.3 412
TCD [1] 20.6 14.0 15.4 193
S-SDTW [38] 65.2 49.1 50.5 37.7
S-EVACO [4] 76.6 66.8 69.8 56.2

SMUCOS 78.6 721 721 59.7

Table 5

Evaluation results on the 80-Pair dataset.
Methods R(&%) PG F(%)  0%)
U-SDTW [38]  34.6 60.6 373 25.6
Guo [3] 55.6 781 60.9 51.6
U-EVACO [4] 61.0 69.7 62.0 54.2
MUCOS 87.2 72.7 739 64.0
TCD [1] 22.9 65.4 31.2 215

S-SDTW [38] 278 522 314 216
S-EVACO [4] 758 772 739 645
SMUCOS 788 780 743 633

5.2. Comparisons with state of the art methods

Tables 2-5 show the results obtained on the MHAD101-s,
CMU86-91, MHAD101-v and 80-Pair, respectively. The scores are
presented as % average scores computed over all individual scores
per sample (pairs of sequences) of a dataset. We report the per-
formance of all evaluated methods on all aforementioned metrics.
The results for the existing methods are those reported in [4] and
are copied here for convenience. Each table is split in two parts,
the top rows that report results of unsupervised methods (U-SDTW,
U-EVACO, Guo [3] and MUCOS), i.e., the ones where the number
of commonalities is not known a priori. The rest of the rows re-
port results of supervised methods (TCD, S-SDTW, S-EVACO, SMU-
COS), that is, methods that require knowledge of the number of
commonalities.

MUCOS outperforms all the corresponding unsupervised state
of the art methods on two out of four datasets (MHAD101-s,
and 80-Pair dataset) and has the second highest performance
on the CMU86-91 and MHAD101-v datasets. SMUCOS outperform
all the corresponding supervised state of the art methods on
three out of four datasets (MHAD101-s, MHAD101-v and 80-Pair
dataset) and has the second highest performance on the CMU86-
91 dataset. The EVACO variants outperform all the correspond-
ing unsupervised and supervised state-of-the-arts methods on
CMU86-91 dataset. Segmental DTW outperforms TCD on three out
of four datasets (MHAD101-s, MHAD101-v and 80-Pair dataset).
Guo method [3] yields the third highest performance on 80-Pair
dataset.

The best performance of the proposed variants is reported on
MHAD101-s, where the average overlap of MUCOS and SMUCOS is
28% and 18% higher than the average overlap of U-EVACO and S-
EVACO, respectively. The worst performance of MUCOS and SMU-
COS is reported on CMU86-91, where the overlap of U-EVACO and
S-EVACO is 18% and 9% higher than the overlap of MUCOS and SMU-
COS, respectively.

In our effort to understand why MUCOS and SMUCOS do not
have top performance in the CMU86-91 data set as it happens with
the rest of the datasets, we investigated the skewness y; [57] of
the distributions of normalized values of the distance matrices D
in each dataset, defined as

E[(d — p)?
i = [ G3M ]

: (9)
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Fig. 3. Results of MUCOS on a pair of (a) MHAD101-s and (b) CMU86-91 dataset. The selected commonalities (white curves) and the ground truth (black dotted curves) are
projected on the corresponding distance matrix. (c¢) The PDFs of normalized values of distance matrices per dataset.

where p is the mean, o is the standard deviation and E is the
expectation operator. Fig. 3 plots these distributions for the four
datasets. The average skewness for CMU86-91 is 0.20 (positive),
while the average skewness for the MHAD101-s, MHAD101-v and
80-pair is —0.43, —0.37 and —0.11 (negative), respectively. The pos-
itive skewness of CMU86-91 means that the mass of the distribu-
tion is concentrated to the left, explaining the existence of indistin-
guishable local minima that are used by the proposed method to
identify and then evaluate candidate commonalities. As a concrete
example, Fig. 3 depicts the selected commonalities (white curves)
of MUCOS and the ground truth (black dotted curves) projected on
the corresponding distance matrix D of a pair of (a) MHAD101-
s and (b) CMU86-91 dataset. On the example from MHAD101-s,
MUCOS gives a solution with F; score = 92%, while on the ex-
ample from CMUS86-91 the solution has F; score equal to 74%. In
the example from the CMU86-91 dataset, the distance matrix is
smoother without strong local minima. This is in contrast to the
example from MHAD101-s.

Fig. 4 summarizes the findings in motion captured (top) and
video (bottom) datasets. It shows the mean F; score for all se-
quence pairs, after zeroing the F; score of pairs below an over-
lap threshold on motion captured (Fig. 4(a)) and video (Fig. 4(b))
datasets. The proposed methods MUCOS and SMUCOS correspond
to the black curves. The performance of supervised and unsuper-
vised methods is illustrated as dotted and continuous lines, respec-
tively. MUCOS outperforms U-EVACO on motion captured datasets
and for high overlap threshold values on video based datasets. U-
EVACO outperforms MUCOS for low overlap threshold values on
video datasets. SMUCOS outperforms S-EVACO under any type of
dataset and overlap threshold value. Overall, it can be observed
that MUCOS and SMUCOS outperform or are in par with the top
performing methods in all datasets.

By aggregating the obtained results over all datasets, it turns
out that the proposed supervised and unsupervised variants of the
method improve the overlap criterion by 4% and 6%, respectively,
in comparison to the corresponding top performing existing meth-
ods [4] (S-EVACO and U-EVACO).

5.3. Computational performance

MUCOS and SMUCOS have been implemented using MATLAB.
All experiments were executed on an Intel 17 CPU processor at
2.4 GHz. Typical processing times for the execution of MUCOS for
1k x 1k and 10 k x 10 k distance matrices are 4sec and 5 minutes,
respectively. The computational efficiency of our method is the re-
sult of:

o the approximation of commonality paths by polygonal lines
connecting endpoints and midpoints, see Section 3.1 and 3.2.
The fact that the graph of the problem consists of weakly con-
nected components and that the Johnsons algorithm can be ap-
plied to each of them, individually (see Section 4). This means
that if there is an upper bound on the lengths of common ac-
tions, the problem complexity increases linearly with the sizes
|A| and |B| of the input sequences. Indeed, this is illustrated in
the scatter plot of Fig. 5 where the execution times of MUCOS
are plotted as a function of the number of points of the corre-
sponding distance matrices.

Comparable computational costs are only achieved by Segmen-
tal DTW, which, nevertheless, provides solutions of much lower
quality (see Figs. 4(a) and (b)).

We also computed the time required by S-EVACO and SMUCOS
to process all datasets on a computer system with the same char-
acteristics. We chose to compare SMUCOS with S-EVACO since the
latter has been shown to be more efficient than the rest of the
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Fig. 5. The scatter plot of the execution times of MUCOS relative to the size of the
associated distance matrices.

evaluated methods [4]|. We investigate the supervised versions of
the algorithms searching for the known number of commonalities
in each pair. The comparison of the unsupervised versions would
be in favor of SMUCOS, as the U-EVACO algorithm searches for an
upper bound of commonalities and then selects the best out of
them. Overall (sum of execution times in all datasets) SMUCOS is
50% faster than S-EVACO. This is despite the fact that SMUCOS is
implemented in MATLAB, and S-EVACO is implemented in Python.

6. Summary

We proposed a method to solve efficiently the problem of dis-
covering multiple common actions in time series and videos. Our
approach discovers such commonalities without any prior knowl-
edge on their type, number or duration. Our method outperforms
the existing state of the art methods in all criteria and in most
of the employed datasets. The quality of the solutions is com-
bined with computational efficiency, as the proposed method is
the fastest among the competing ones. Another advantage of MU-

COS is its deterministic nature compared, e.g., to the up to now
top-performing methods (U-EVACO, S-EVACO [4]) that are stochastic
due to the Particle Swarm Optimization strategy they employ. Ex-
periments on the challenging datasets of motion capture and video
data proposed in [4] involve a variety of features and representa-
tions of time series and videos. This demonstrates that MUCOS and
SMUCOS can be applied to a wide range of representations and,
therefore, may constitute a useful tool in a broad range of applica-
tions.
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