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Abstract: A fundamental assumption in most contemporary person re-identification research, is that all query persons
that need to be re-identified belong to a closed gallery of known persons, i.e., they have been observed and a
representation of their appearance is available. For several real-world applications, this closed-world assump-
tion does not hold, as image queries may contain people that the re-identification system has never observed
before. In this work, we remove this constraining assumption. To do so, we introduce a novelty detection
mechanism that decides whether a person in a query image exists in the gallery. The re-identification of per-
sons existing in the gallery is easily achieved based on the persons representation employed by the novelty
detection mechanism. The proposed method operates on a hybrid person descriptor that consists of both super-
vised (learnt) and unsupervised (hand-crafted) components. A series of experiments on public, state of the art
datasets and in comparison with state of the art methods shows that the proposed approach is very accurate in
identifying persons that have not been observed before and that this has a positive impact on re-identification
accuracy.

1 INTRODUCTION

A key problem in vision-based person tracking is en-
countered when a person exits and then re-enters the
field(s) of view of the cameras observing it. On that
occasion, we wish to re-identify this person and as-
sociate it with its previous detection(s). Such a re-
identification can support person tracking in large en-
vironments that are covered by multiple cameras, or
improve single-view tracking against occlusions and
viewing limitations.

Typically, re-identification methods assume that a
gallery set contains person representations associated
with person IDs. These representations may comprise
of images as well as of global or local feature descrip-
tors. A query or probe image of a person is compared
against the gallery set, seeking a match with any of the
persons therein. In most cases, the gallery is assumed
to be a closed-set, i.e., it contains a representation for
every person whose identity is going to be queried. In
contrast, in open-world person re-identification, the
gallery is assumed to be an open-set. As it is possi-
ble that this person has never been observed before,
the query image may not match any of the persons in
the gallery. In this context, prior to re-identification,
it needs to be decided whether a person has been ob-

served before or not. From a technical point of view,
the open-world version of the problem is more chal-
lenging. At the same time, its solution can support a
much more diverse set of application domains.

In this work, we treat the problem of open-world
person re-identification. We do so by casting the
problem of deciding whether a person belongs or
not to the gallery as a novelty detection problem.
A recent review on person re-identification (Zheng
et al., 2016a) indicates novelty detection as an open
issue. Novelty detection and the subsequent person
re-identification operate on a newly proposed person
descriptor that consists of a supervised (learnt) and an
unsupervised (hand crafted) component.

Two major advantages of the proposed approach
over existing ones are the following. First, it can be
applied to a new setting (e.g., environment, set of ca-
meras, gallery of known persons) without any additio-
nal training, as required by other learning approaches
(Zheng et al., 2016b; Zhu et al., 2017). Second, it can
be naturally adapted to operate in an online fashion.
That is in contrast to methods as in (Wang et al.,
2016) which require that the entire probe set is avai-
lable, rather than gradually introduced. Therefore, we
regard that our method constitutes a very attractive
candidate for solving the person re-identification pro-



blem in open, real-world setups and scenarios. Such
a scenario is considered in the CONNEXIONs Hori-
zon 2020 project, which is funded by the European
Commission, and will develop and demonstrate next-
generation detection, prediction, prevention, and in-
vestigation services. In this context, the tracking and
re-identification of persons in multiple heterogeneous
cameras is of paramount importance.

2 RELATED WORK

Research topics that are relevant to person re-
identification methods include the investigation of
descriptors that can be used to represent persons
as well as methods for comparing them. Re-
identification methods themselves are categorized ba-
sed on whether they operate under the assumption of
an open or closed world. We focus in the second ca-
tegory, as this is the one treated in this paper by incor-
porating novelty detection mechanisms.
Features and Descriptors for Person Representa-
tion. Data-driven features have recently gained at-
tention due to the proliferation of Convolutional Neu-
ral Networks (CNNs) and the availability of large-
scale datasets for training. These factors gave rise
to learned features, which are robust to illumina-
tion, scale and pose variations (Hermans et al., 2017;
Chen et al., 2017; Zhou et al., 2017; Su et al., 2016;
Wang et al., 2017; Qian et al., 2017; Li et al., 2018a;
Song et al., 2018; Xu et al., 2018; Sarfraz et al.,
2018), but also specific to the training data. Hand-
crafted representations have also witnessed advan-
ces. Departing from conventional features such as
color histograms, SIFT and HoG features, more so-
phisticated descriptors have been proposed (Faren-
zena et al., 2010; Liao et al., 2015; Matsukawa et al.,
2016a; Gou et al., 2017). Context-specific know-
ledge has been also utilized, i.e., body-part segmen-
tation (Su et al., 2017; Qian et al., 2017; Zheng et al.,
2017a; Zhao et al., 2017) and attribute recognition
(Shi et al., 2015; Su et al., 2016; Matsukawa and Su-
zuki, 2016; Qian et al., 2017; Chang et al., 2018). In
greater relation to this work, learnt and hand-crafted
features have been combined to support person re-
identification (Wu et al., 2016).
Comparing Person Descriptors. Conventional mea-
sures such as Euclidean distance and cosine similarity
have been adopted for this purpose (Farenzena et al.,
2010; Wang et al., 2017). Learnt measures have been
also used with better results (Zheng et al., 2016a). In
such methods, discrepancies due to viewpoint and il-
lumination variation between views are learned for
specific view combinations (Yang et al., 2014; Liao

et al., 2015; Martinel et al., 2015; Chen et al., 2015;
Jose and Fleuret, 2016; Yu et al., 2017). CNNs have
been also employed in this task (Hermans et al., 2017;
Chen et al., 2017; Zhou et al., 2017; Wang et al.,
2018; Xu et al., 2018). Pertinent methods are dataset-
dependent, as they learn the change of person appea-
rance across specific views.

Closed-world Person Re-identification. Closed-set
re-identification methods mainly focus on a proper
definition of the above components, i.e., discrimina-
tive features and/or distance metrics. Subsequently,
most works perform pairwise comparison of query
images against gallery ones. Pairwise comparisons
result to a ranked list, on top of which lays the most
probable gallery person (nearest neighbor). To im-
prove results, some works exploit information about
top-ranked persons to perform re-ranking (Zheng
et al., 2015b; Lisanti et al., 2015; Zhong et al., 2017;
Sarfraz et al., 2018). Other works, especially those
that operate on videos, maintain images of a person
in a set. Thus, comparison among query and gallery
persons is formulated as set comparison (Wang et al.,
2014) or graph matching (Ye et al., 2017).

During the evaluation of learning-based re-
identification methods, datasets are split into training
and testing subsets to avoid learning bias. Persons in
these subsets are referred as non-target and target, re-
spectively. Learning based on non-target persons is
not practical in real-world applications, because it re-
quires manual annotation of a large number of ima-
ges.

Open-world Person Re-identification. Only a few
works deal with open-world person re-identification.
The decision on whether a person belongs to the gal-
lery set has been approached as a novelty detection
problem. Novelty detection was initially applied to
object classification. In (Bodesheim et al., 2013; Liu
et al., 2017) a discriminative null space is recommen-
ded, where images from the same, known, class are
mapped to a single point in the null space. The most
recent method (Liu et al., 2017) addresses the incre-
mental case, where the gallery set is progressively
expanded with new object representations. The no-
velty detection methods in (Bendale and Boult, 2016;
Günther et al., 2017) employ normalization in class
inclusion scores by applying Extreme Value Theory
(EVT). In (Kliger and Fleishman, 2018), novel ob-
jects are detected using the Generative Adversarial
Network (GAN) framework. Deep neural networks
have been utilized by three recent works (Ruff et al.,
2018; Masana et al., 2018; Perera and Patel, 2018)
in an effort towards end-to-end feature extraction and
novelty detection. The works in (Ruff et al., 2018;
Perera and Patel, 2018) target one-class classification,



thus, in contrast to (Bodesheim et al., 2013), they do
not expand naturally to multi-class novelty detection,
but depend on some aggregation similar to One-Class
SVMs (see Sec. 4). We also note that (Kliger and
Fleishman, 2018; Ruff et al., 2018; Masana et al.,
2018) are evaluated on datasets which are simpler
and/or contain fewer classes (MNIST, CIFAR-10 etc).
Moreover, if only few per class samples are available
for training, application of DNNs is limited. Thereaf-
ter, we consider previous works as options for multi-
class novelty detection.

A first example on how novelty detection is ap-
plied to open-world person re-identification appears
in (Brun et al., 2011), where the kernel PCA algo-
rithm is applied to graph representations of persons.
An input representation is considered as novel if its
squared distance from the first few of the principal
components is above a certain threshold. This met-
hod is subject to careful parameter selection (number
of principal components, kernel size), which is avoi-
ded in null space methods (Bodesheim et al., 2013).
Three recent works (Wang et al., 2016; Zheng et al.,
2016b; Zhu et al., 2017) deal with the open-world pro-
blem in very challenging settings. (Wang et al., 2016;
Zheng et al., 2016b) use only one training image per
person, while (Zhu et al., 2017) achieves computa-
tional efficiency in addition to accuracy. Although
(Wang et al., 2016) depends only on target persons
(unsupervised setting), its objective function requires
the entire query set as input and can be applied only
to a pair of views. This is particularly constraining
as, in real-world settings, the entire query set is not
available at once and more than two views are em-
ployed to achieve full coverage of the environment.
The work in (Zheng et al., 2016b) capitalizes on a
non-target dataset from all views, in order to project
person representations to a new feature space. Intuiti-
vely, in this space, intra-identity representations are
similar and inter-identity representations dissimilar.
The work in (Zhu et al., 2017) proposes to learn two
hashing functions, one for gallery and another one for
probe images (obtained from disjoint views). Then,
it compares hash codes using the Hamming distance.
Both methods (Zheng et al., 2016b; Zhu et al., 2017)
depend on a single dataset, containing images from
specific viewpoints, captured at arbitrary illumination
conditions and do not generalize to new conditions.

In the most recent work, (Li et al., 2018b), the
GAN framework is utilized for learning how to discri-
minate between known and unknown persons. Their
network architecture comprises of two types of dis-
criminators; one between persons and other visual
content, and the other between known and unknown
persons. They consider a subset of the ids (persons)

as known, while the rest of the ids are divided into
training and testing. We argue that this method, alt-
hough promising, is impractical in real-world scena-
rios. The reason is the following. Learning to discri-
minate between known versus unknown persons con-
sists of utilization of both (a) known ids and (b) a set
of few hundred unknown ids, during training. The la-
ter set essentially represents the negative samples, i.e.
unknown persons. The method in (Li et al., 2018b)
is demonstrated on training and testing datasets from
same period of time and camera network ((Li et al.,
2018b), Sec. 4.2). Therefore it depends on time-
demanding acquisition and manual labeling of person
images, apart from those of known ids. This assump-
tion is fairly limiting. Moreover, the occurrence of an
unknown id requires overly time-consuming training
of the neural network that prohibits the real-time ope-
ration of the system. This time-consuming training is
due to the incremental augmentation of the gallery of
known persons.

Our Approach. In this work, we propose OW-
REID, a novel method for open-world person re-
identification. OW-REID operates on a person des-
criptor that consists of both hand-crafted and learnt
features. It capitalizes on the Kernel Null Folley-
Summon Transform (KNFST) (Bodesheim et al.,
2013), a parameter-free novelty detection technique,
to decide whether a person belongs to the gallery set
or not. Novelty detection based on KNFST is pos-
sible without requiring an annotated dataset of non-
target persons. This increases the exploitability of
the method in real world conditions as it reduces dra-
matically its setup time and costs. The KNFST al-
gorithm has been applied to re-identification (Zhang
et al., 2016) but for addressing the closed-world ver-
sion of the problem. In this context it is used as a
feature mapping/reprojection technique and not as a
novelty detection mechanism. More specifically, it is
used to learn the transfer function normalizing person
appearance across a number of views so that known
people can be re-identified if observed by these ca-
meras. In contrast, OW-REID learns a person-specific
representation from a number of cameras, so that (a)
these persons can be re-identified by these or other ca-
meras and (b) unknown persons are identified as such.

Our Contribution. In summary, the contributions
of this work are the following: (1) We propose OW-
REID, a novel method for open-world person re-
identification by treating it as a novelty detection pro-
blem; (2) We propose a hybrid person descriptor that
consists of supervised (hand-crafted) and unsupervi-
sed (learnt) features. This contributes to better no-
velty detection accuracy and independence from the
training data; (3) We provide an extensive, compa-



rative study and evaluation of the proposed approach
against baseline methods and person descriptors on
standard datasets.

3 OPEN-WORLD
RE-IDENTIFICATION
(OW-REID)

The proposed approach for novelty detection and
open-world person re-identification (OW-REID) capi-
talizes on KNFST (Bodesheim et al., 2013), a met-
hod for detecting novel entities among general known
object categories. In our framework, each category
corresponds to a single person and contains different
views of that person. KNFST is applied to person des-
criptors that represent a view of each person as a mul-
tidimensional feature vector.

3.1 Person Description

As person descriptors, we have considered both learnt
and hand-crafted features that have been designed to
optimize the accuracy of novelty detection and person
re-identification.

As a first candidate, we considered the features
proposed in (Hermans et al., 2017) where each image
of a person is represented as an 128-D feature vector,
called TriNet. TriNets are learned through training on
two recent large-scale datasets, Market1501 (Zheng
et al., 2015a) and MARS (zhe, 2016), achieving state-
of-the-art re-identification accuracy in those particu-
lar datasets.

As a second candidate, we considered the recently
proposed, hand-crafted GOG features (Matsukawa
et al., 2016b). In (Matsukawa et al., 2016b), two
variants for GOG are presented. The first, GOGrgb,
is obtained by applying the GOG descriptor on an
RGB color representation of an image. In the second,
GOGfusion, the GOG descriptor is applied indepen-
dently to the RGB, Lab, HSV and nRnG color en-
codings and the results are concatenated. In prelimi-
nary experiments, the GOGrgb descriptor yielded bet-
ter novelty detection accuracy and was adopted there-
after. In line with (Matsukawa et al., 2016b), we ap-
ply mean removal and L2 normalization. Also, using
default settings, the GOGrgb descriptor has 7,567
dimensions. To retain only expressive components
and improve accuracy, we retained 1000 components
through PCA dimensionality reduction. Henceforth,
we refer to the resultant descriptor simply as GOG.

In addition, we introduce GOG+TriNet, a new
descriptor formed by the concatenation of the GOG

and TriNet descriptors, in an effort to retain the ad-
vantages of both worlds.

3.2 Novelty Detection

Given a gallery set G and a query image q, we wish to
deduce whether q depicts a person of known identity
(i.e., whether q ∈ G). Let c be the number of known
persons. Query and gallery images are assumed to en-
velope persons, showing as less background as pos-
sible. Below we describe how KNFST (Bodesheim
et al., 2013) is applied to solve this novelty detection
problem.

Each image x (either query or gallery ones) are
mapped to a descriptor/feature space F as discussed
in Section 3.1. After this mapping has been perfor-
med, the original images are not utilized anymore. Let
i ∈ [1,c] enumerate persons in G . Let also vi be the
number of images of person i, and j ∈ [1,vi] enume-
rate the images for person i. Then, xi j denotes the
person descriptor of the jth image of the ith person.

Let X ∈ Rn×d be a matrix containing a descriptor
xi j in each of its rows (n = ∑

c
i=1 vi is the number of

gallery images and d the dimensionality of xi j). The
kernel K∈Rn×n is constructed to contain pairwise si-
milarities for these n vectors. As in (Liu et al., 2017),
pairwise similarities are measured utilizing the Radial
Basis Function (RBF) kernel.

Using KNFST, a projection P(x) : F →N is lear-
ned, where N denotes a c−1 null space. Each person
i is represented by a point ti ∈N , i ∈ [1,c], defined as
ti = mean j(ti j). The input parameters of KNFST are
K and corresponding person labels. Details on how
the projection is computed can be found in (Bodes-
heim et al., 2013). To provide some intuition, Fig. 1
provides a 2D visualization of how KNFST operates.
Figure 1 left, shows 100 images of the RAiD data-
set (10 images for each of 10 randomly chosen per-
sons). Originally, these are 1128-D GOG+TriNet vec-
tors in F that are projected on the 2D plane using t-
SNE (Maaten and Hinton, 2008) to aid visualization.
Images of the same person correspond to the same
marker and color. We can see that images of the same
person project to different points on the plane. Actu-
ally, for each person there are two clusters of points,
each corresponding to images acquired by a different
camera. Figure 1 right, shows a 2D projection of the
representation of the same images in the N space. It
can be verified that in this space, images of the same
person are much more tightly clustered.

Novelty detection is then performed as follows.
The feature vector z in F corresponding to a query
image q is projected to point t in N . A novelty score
is computed, as the distance of t to its nearest neig-



Figure 1: Visualization of feature vectors for 10 images per person and for 10 persons in the original feature space F (left)
and in the KNFST’s projection space N (right). Each person identity is represented by a unique marker and color. Both F
and N spaces are projected to the 2D plane for visualization purposes (see text for details).

hbor ti in N (ideally, the different persons in the gal-
lery G). If this distance is larger than a threshold θ,
the query image is considered to be novel, i.e., depict
a person that is not a member of the gallery. At the
same time, if this distance is lower than θ, the iden-
tity of the nearest neighbor ti of t in N solves the
re-identification problem.

As soon as a novel person is detected, its views
can be used to augment the gallery G and re-learn
the KNFST-based mapping from F to N . Thus,
the proposed method can be turned into an on-
line/incremental approach that extends an original
gallery G of known persons, as views of previously
unseen persons are encountered..

4 EXPERIMENTAL EVALUATION

To evaluate novelty detection, we adopt the recently
proposed cross-view scheme (Zhu et al., 2017). In
this scheme, G contains images from a subset of
views (cameras). The query set Q contains images
of both known and unknown persons from the remai-
ning views. Considering the remaining views is par-
ticularly important because in a real-world setting, a
person is typically first observed in a view and needs
to be re-identified in another view, which usually is
subject to different illumination conditions.

Evaluation datasets comprise of multiple images
per person, per view. Persons in G and Q are imaged
in a wide range of viewpoints and lighting conditi-
ons. Let Lg and Lq denote the disjoint sets of views
in G and Q , respectively; L = Lg ∪Lq denotes the
set of all views. Let Qk and Qu denote the subsets
of images of known and unknown persons, respecti-
vely; thus, Q = Qk∪Qu. In the experiments, we rand-
omly choose the views in Lg, to avoid bias to specific
views. Similarly, to avoid bias over specific persons,
we randomly chose the identities in Qk and Qu. Fi-
nally, to avoid bias over a specific random selection of

views or persons, we perform 300 random trials and
report average accuracy, in each case. In all perfor-
med experiments, G is not incrementally updated, as
it would be in a real-world system. This is to measure
the accuracy of novelty detection over multiple trials
and under the same conditions, regarding varying gal-
lery sizes c and numbers of gallery images per person,
vi. Also, in line with (Bodesheim et al., 2013), relati-
vely small values of c are considered (< 50).

Datasets. To evaluate OW-REID, three recent data-
sets have been employed, Market1501 (Zheng et al.,
2015a), DukeMTMC-reID (Zheng et al., 2017b) and
RAiD (Das et al., 2014). All datasets contain multi-
ple persons and multiple views per person. For the
first two datasets, images are split into training and
testing sets. For these datasets, only the testing set
is utilized in the evaluation, as the training set is re-
served for learning methods (see Sec. 2). For RAiD,
no such splitting is provided and the entire dataset is
utilized.

The testing subsets of Market-1501 and
DukeMTMC-reID datasets contain 750 and 1110
persons, observed from up to 6 and 8 cameras, re-
spectively. For DukeMTMC-reID, we are interested
in persons that are imaged in at least two views (702
in total), as required by the cross-view protocol.
RAiD contains images for 43 walking persons from
4 views (2 indoor and 2 outdoor), with an exception
of 2 persons that are imaged by only 3 views.

Novelty Detection Evaluation Metrics. Novelty de-
tection accuracy is measured in (Bodesheim et al.,
2013) using the area under the ROC curve, hence-
forth auROC. The ROC curve plots the true positive
rate (TPR) against the false positive rate (FPR), for
different values of θ. In our case, TPR denotes the ra-
tio of persons correctly classified as unknown, while
FPR denotes the ratio of known persons misclassi-
fied as unknown. The works in (Günther et al., 2017;
Zheng et al., 2016b; Zhu et al., 2017) use the DIR



curve (Jain and Li, 2011), which correspondingly to
the ROC curve, plots the Detection Identification Rate
(DIR) over the False Alarm Rate (FAR), as a function
of threshold θ. This curve has been also referred to
as “True Target Rate (TTR) over False Target Rate
(FTR)” in (Zheng et al., 2016b; Zhu et al., 2017).
This measure is similar to ROC but, besides novelty
detection, assesses identification accuracy as well. In
this work, we borrow the idea from (Bodesheim et al.,
2013) and use the area under the DIR curve, hence-
forth auDIR, which is determined based on FAR and
DIR, where FAR is the ratio of unknown persons mis-
classified as known and DIR is the ratio of persons
correctly classified as known and, also, correctly re-
identified.

Experiment Types. We investigated two parameters
that affect the performance of novelty detection: (a)
the number of images vi for each known person i, and
(b) the number of known persons, c. A large value of
vi, implies that persons are imaged in a wide range of
viewpoints and illumination conditions. In this case,
novelty detection is provided with diverse gallery data
for each person, which we anticipate as beneficial for
novelty detection accuracy. In contrast, a large value
of c implies greater ambiguity in novelty detection, as
there is a greater chance for accidental similarity of
an unknown person to a person in G .

Given the above, novelty detection accuracy was
assessed in a wide variety of settings, in two experi-
ments, the VPV (varying person views) and the VGS
(varying gallery size) experiments. More specifically,
in the VPV experiment, the number of known persons
was constant (c = 20) and the number of available
images per person, vi, was modulated as follows. We
required vi to be in range [vl ,vu] and systematically
varied the limits of this range. The specific value of vi
depends on how many images are available for person
i in the particular trial. If there are not enough gallery
images (vi < vl), person i is considered as unknown.
If more than enough images are available (vi > vu),
we randomly choose a subset of vu images from the
available ones. As mentioned earlier, the datasets do
not have the same number of images per person. For
this reason, we evaluate these datasets in suitable ran-
ges (see Section 4). In the VGS experiment, values
vl = 20, vu = 50 were kept constant and c varied in
the range {1,5,10, . . . ,50}, for all datasets.

Given the dataset sizes, in all experiments, we
chose |Lg|= 5 for the Market1501 and DukeMTMC-
reID and |Lg| = 2 for RAiD. In all experiments, the
TriNet features used were as originally trained on the
Market1501 dataset.
Comparison with Baselines. We compare the per-
formance of OW-REID against two baseline met-

hods: (a) distance thresholding in the original feature
space and (b) Multiple One-Class SVMs. In (a), we
compute pairwise distances of a query z ∈ F against
all xi j, as measured by the Euclidean (L2) distance.
Query z is considered to belong to an unknown per-
son, if the maximum of pairwise distances is larger
than a threshold θ. For (b), we used the νSVM vari-
ant (Schölkopf et al., 2000), with ν= 0.5 and γ= 1/d,
where d is the dimensionality of F . We utilized c
One-Class SVM models, one for each person. Each
model mi is learned by utilizing all the vi feature vec-
tors xi j for person i. Then, we compute the pairwise
scores of z against every mi, select the best score and
compare it to threshold θ, as above. We note that we
use the inverse distance as novelty score.

Tables 1 and 2 summarize mean auROC, of the
compared methods for the VPV experiment (varia-
ble vl) and VGS experiment (variable c), respectively.
Tables 3 and 4 summarize auDIR quantities, for the
same experiments. TriNet features dominate perfor-
mance in the Market1501 dataset, independently of
the novelty detection method. That is attributed to the
fact that TriNet features were defined through training
on exactly this dataset. For the other two datasets,
we observe significant performance drop when Tri-
Net features are utilized, independently of the novelty
detection method. We conclude that learning featu-
res in a certain dataset and context, proves inadequate
for supporting accurate novelty detection in other da-
tasets, obtained under different conditions. We also
stress that re-training features in a new setting is a
cumbersome task. First, because it requires labori-
ous manual annotation for the gallery images and, se-
cond, because in an open-world setting, examples of
unseen persons are not available. In contrast, the pro-
posed combination of TriNet with hand-crafted featu-
res yields the best performance, when an appropriate
novelty detection method is utilized.

Indeed, the selection of the novelty detection met-
hod plays a significant role in the obtained perfor-
mance. When hand-crafted (GOG) features are uti-
lized, better results are obtained using OW-REID.
Even more importantly, OW-REID combined with
GOG+TriNet achieves a better overall performance
against the other compared methods. OW-REID per-
forms worse only for very small values of c, vl . In
these cases, the limited number of samples make it
difficult for KNFST to learn an appropriate projection
space N . Nonetheless, OW-REID performs well
when vl ≥ 10, an assumption that can easily be met
in practice. OW-REID is computationally more ef-
ficient than the L2 baseline, because it compares a
query with a single point in N , instead of comparing
it to all images in the gallery.



Table 1: Mean auROC for the VPV experiment (varying person views, vl).
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method features 1 5 10 15 20 25 30 35 40 45 50

OW-REID
TriNet 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 - -
GOG 0.81 0.82 0.83 0.85 0.85 0.86 0.86 0.87 0.88 - -

GOG+TriNet 0.95 0.96 0.96 0.97 0.97 0.97 0.96 0.97 0.97 - -

OSVM
TriNet 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 - -
GOG 0.82 0.82 0.82 0.84 0.83 0.83 0.81 0.83 0.86 - -

GOG+TriNet 0.96 0.96 0.96 0.97 0.96 0.96 0.95 0.96 0.97 - -

L2
TriNet 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 - -
GOG 0.80 0.79 0.79 0.80 0.79 0.80 0.79 0.80 0.84 - -

GOG+TriNet 0.94 0.94 0.94 0.94 0.93 0.93 0.93 0.93 0.95 - -
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method features 1 5 10 15 20 25 30 35 40 45 50

OW-REID
TriNet 0.71 0.71 0.72 0.72 0.74 0.74 0.76 0.79 0.79 0.85 -
GOG 0.70 0.71 0.76 0.79 0.82 0.79 0.80 0.80 0.80 0.84 -

GOG+TriNet 0.74 0.75 0.79 0.82 0.84 0.82 0.83 0.83 0.83 0.86 -

OSVM
TriNet 0.70 0.70 0.72 0.71 0.71 0.73 0.75 0.78 0.77 0.79 -
GOG 0.68 0.69 0.71 0.74 0.74 0.70 0.71 0.73 0.73 0.77 -

GOG+TriNet 0.74 0.74 0.76 0.77 0.77 0.73 0.74 0.77 0.78 0.80 -

L2
TriNet 0.76 0.76 0.76 0.75 0.76 0.77 0.78 0.80 0.79 0.82 -
GOG 0.69 0.69 0.71 0.72 0.73 0.71 0.70 0.71 0.70 0.74 -

GOG+TriNet 0.74 0.75 0.75 0.76 0.77 0.73 0.72 0.73 0.73 0.76 -

R
A

iD

method features 2 5 10 15 20 30 40 50 60 70 80

OW-REID
TriNet 0.65 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.70 0.71
GOG 0.63 0.66 0.69 0.71 0.72 0.72 0.73 0.75 0.74 0.75 0.76

GOG+TriNet 0.67 0.73 0.76 0.78 0.79 0.78 0.79 0.80 0.76 0.78 0.79

OSVM
TriNet 0.64 0.67 0.68 0.69 0.70 0.69 0.69 0.70 0.69 0.69 0.70
GOG 0.62 0.67 0.69 0.71 0.71 0.70 0.71 0.71 0.71 0.71 0.72

GOG+TriNet 0.69 0.73 0.74 0.76 0.76 0.75 0.76 0.76 0.75 0.75 0.76

L2
TriNet 0.69 0.72 0.72 0.74 0.74 0.73 0.73 0.74 0.74 0.74 0.75
GOG 0.61 0.64 0.66 0.67 0.67 0.66 0.68 0.68 0.68 0.68 0.69

GOG+TriNet 0.68 0.72 0.73 0.74 0.74 0.72 0.73 0.73 0.73 0.73 0.74

Table 2: Mean auROC for the VGS experiment (varying gallery size, c).

M
ar

ke
t1

50
1

method features 1 5 10 15 20 25 30 35 40 45 50

OW-REID
TriNet 0.72 0.99 0.99 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.97
GOG 0.34 0.52 0.75 0.83 0.86 0.87 0.87 0.87 0.83 0.86 0.86

GOG+TriNet 0.99 0.71 0.91 0.96 0.97 0.97 0.97 0.97 0.96 0.96 0.96

OSVM
TriNet 0.55 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.97 0.97 0.97
GOG 0.67 0.87 0.87 0.86 0.84 0.83 0.81 0.81 0.81 0.80 0.79

GOG+TriNet 0.58 0.98 0.98 0.97 0.96 0.96 0.95 0.95 0.95 0.94 0.93

L2
TriNet 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98
GOG 0.65 0.84 0.84 0.83 0.81 0.79 0.78 0.77 0.77 0.75 0.75

GOG+TriNet 0.96 0.97 0.97 0.95 0.94 0.93 0.92 0.91 0.91 0.90 0.89

D
uk

eM
T

M
C

-r
eI

D

method features 1 5 10 15 20 25 30 35 40 45 50

OW-REID
TriNet 0.79 0.77 0.76 0.74 0.74 0.73 0.72 0.72 0.70 0.69 0.69
GOG 0.65 0.64 0.78 0.81 0.82 0.82 0.81 0.81 0.77 0.77 0.78

GOG+TriNet 0.74 0.72 0.82 0.84 0.84 0.84 0.83 0.83 0.78 0.77 0.78

OSVM
TriNet 0.78 0.77 0.76 0.72 0.70 0.71 0.69 0.68 0.66 0.65 0.65
GOG 0.79 0.77 0.78 0.75 0.74 0.74 0.71 0.71 0.68 0.68 0.67

GOG+TriNet 0.84 0.82 0.82 0.78 0.77 0.76 0.74 0.74 0.71 0.71 0.70

L2
TriNet 0.85 0.85 0.81 0.77 0.76 0.75 0.73 0.72 0.71 0.70 0.70
GOG 0.76 0.73 0.77 0.73 0.73 0.73 0.71 0.72 0.70 0.69 0.69

GOG+TriNet 0.83 0.81 0.81 0.77 0.77 0.76 0.73 0.74 0.72 0.71 0.71

R
A

iD

method features 1 5 10 15 20 25 30 35 40 45 50

OW-REID
TriNet 0.62 0.76 0.73 0.71 0.69 0.68 0.67 0.67 0.64 - -
GOG 0.42 0.55 0.68 0.73 0.74 0.74 0.75 0.76 0.75 - -

GOG+TriNet 0.82 0.70 0.77 0.79 0.79 0.76 0.76 0.77 0.75 - -

OSVM
TriNet 0.63 0.78 0.73 0.71 0.69 0.68 0.67 0.67 0.65 - -
GOG 0.64 0.75 0.73 0.72 0.71 0.71 0.69 0.69 0.68 - -

GOG+TriNet 0.62 0.83 0.79 0.77 0.75 0.74 0.73 0.73 0.71 - -

L2
TriNet 0.92 0.83 0.79 0.75 0.73 0.72 0.71 0.70 0.68 - -
GOG 0.60 0.70 0.70 0.69 0.67 0.68 0.67 0.66 0.65 - -

GOG+TriNet 0.80 0.81 0.77 0.75 0.73 0.72 0.71 0.70 0.68 - -

Comparison with the State of the Art. The met-
hod in (Wang et al., 2016) is not compatible to our
evaluation protocol, because it only applies to a sin-
gle view pair and requires all query data as a batch,
rather than as a stream, as typically happens in real-
world applications and in OW-REID. Also, none of
the methods presented in (Zheng et al., 2016b; Zhu
et al., 2017) is compatible to our experimental proto-

col, as their operation requires the availability of an
annotated, non-target dataset. Aiming at a flexible
and easy-to-setup method, OW-REID does not have
this requirement. Additionally, there is no available
implementation for (Zheng et al., 2016b; Zhu et al.,
2017), so they cannot be tested according to our ex-
perimental protocol. However, in order to provide a
basis of comparison of OW-REID to state of the art



Table 3: Mean auDIR for the VPV experiment (varying person views, vl).

M
ar

ke
t1

50
1

method features 1 5 10 15 20 25 30 35 40 45 50

KNFST
TriNet 0.97 0.98 0.98 0.98 0.97 0.97 0.96 0.96 0.96 - -
GOG 0.70 0.71 0.72 0.75 0.74 0.76 0.74 0.74 0.74 - -

GOG+TriNet 0.93 0.94 0.94 0.95 0.94 0.95 0.94 0.93 0.93 - -

OSVM
TriNet 0.96 0.96 0.97 0.98 0.97 0.97 0.96 0.97 0.96 - -
GOG 0.71 0.71 0.71 0.74 0.73 0.74 0.71 0.72 0.72 - -

GOG+TriNet 0.93 0.94 0.94 0.95 0.94 0.94 0.93 0.93 0.93 - -

L2
TriNet 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.97 - -
GOG 0.69 0.69 0.69 0.71 0.70 0.71 0.68 0.68 0.70 - -

GOG+TriNet 0.92 0.92 0.92 0.93 0.91 0.91 0.90 0.90 0.91 - -

D
uk

eM
T

M
C

-r
eI

D

method features 1 5 10 15 20 25 30 35 40 45 50

KNFST
TriNet 0.54 0.55 0.56 0.56 0.58 0.54 0.53 0.52 0.54 0.63 -
GOG 0.47 0.49 0.54 0.60 0.64 0.59 0.59 0.56 0.57 0.65 -

GOG+TriNet 0.56 0.58 0.62 0.67 0.69 0.64 0.63 0.60 0.62 0.70 -

OSVM
TriNet 0.51 0.53 0.54 0.54 0.55 0.51 0.51 0.49 0.51 0.57 -
GOG 0.46 0.48 0.51 0.56 0.59 0.52 0.52 0.52 0.53 0.60 -

GOG+TriNet 0.56 0.57 0.59 0.63 0.64 0.58 0.58 0.56 0.59 0.65 -

L2
TriNet 0.55 0.56 0.57 0.57 0.58 0.54 0.53 0.52 0.53 0.59 -
GOG 0.46 0.48 0.51 0.55 0.59 0.54 0.53 0.51 0.52 0.59 -

GOG+TriNet 0.56 0.58 0.59 0.62 0.65 0.59 0.57 0.55 0.57 0.64 -

R
A

iD

method features 2 5 10 15 20 30 40 50 60 70 80

KNFST
TriNet 0.37 0.46 0.48 0.49 0.49 0.48 0.48 0.48 0.49 0.50 0.51
GOG 0.36 0.44 0.49 0.52 0.54 0.53 0.55 0.56 0.56 0.57 0.59

GOG+TriNet 0.46 0.56 0.60 0.63 0.64 0.63 0.64 0.65 0.63 0.64 0.66

OSVM
TriNet 0.37 0.43 0.46 0.48 0.48 0.47 0.47 0.48 0.48 0.49 0.50
GOG 0.37 0.46 0.50 0.53 0.54 0.52 0.54 0.54 0.54 0.54 0.56

GOG+TriNet 0.45 0.55 0.58 0.61 0.62 0.60 0.61 0.61 0.62 0.62 0.63

L2
TriNet 0.40 0.47 0.49 0.52 0.53 0.51 0.51 0.51 0.52 0.53 0.54
GOG 0.35 0.43 0.47 0.50 0.51 0.49 0.51 0.51 0.52 0.52 0.53

GOG+TriNet 0.44 0.54 0.57 0.60 0.60 0.58 0.60 0.60 0.60 0.60 0.61

Table 4: Mean auDIR for the VGS experiment (varying gallery size, c).

M
ar

ke
t1

50
1

method features 1 5 10 15 20 25 30 35 40 45 50

KNFST
TriNet 0.72 0.98 0.98 0.98 0.97 0.97 0.97 0.96 0.96 0.96 0.95
GOG 0.34 0.48 0.68 0.75 0.76 0.75 0.74 0.74 0.69 0.70 0.69

GOG+TriNet 0.99 0.71 0.90 0.94 0.95 0.95 0.94 0.94 0.92 0.92 0.92

OSVM
TriNet 0.55 0.98 0.98 0.98 0.97 0.97 0.96 0.96 0.96 0.96 0.95
GOG 0.67 0.83 0.81 0.78 0.75 0.72 0.70 0.69 0.68 0.67 0.64

GOG+TriNet 0.58 0.97 0.97 0.95 0.94 0.94 0.93 0.92 0.91 0.91 0.90

L2
TriNet 1.00 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.97 0.97 0.96
GOG 0.65 0.80 0.78 0.76 0.72 0.69 0.67 0.66 0.65 0.63 0.61

GOG+TriNet 0.96 0.97 0.95 0.94 0.92 0.91 0.89 0.89 0.88 0.87 0.86

D
U

K
E

M
T

M
C

-r
eI

D

method features 1 5 10 15 20 25 30 35 40 45 50

KNFST
TriNet 0.72 0.70 0.66 0.61 0.58 0.56 0.54 0.53 0.51 0.50 0.49
GOG 0.57 0.55 0.66 0.65 0.65 0.63 0.60 0.60 0.56 0.56 0.55

GOG+TriNet 0.67 0.66 0.73 0.72 0.70 0.69 0.66 0.65 0.59 0.59 0.59

OSVM
TriNet 0.71 0.69 0.65 0.58 0.54 0.53 0.50 0.48 0.45 0.44 0.43
GOG 0.71 0.68 0.67 0.61 0.59 0.57 0.53 0.53 0.50 0.49 0.48

GOG+TriNet 0.77 0.75 0.73 0.67 0.65 0.63 0.59 0.59 0.55 0.55 0.53

L2
TriNet 0.77 0.76 0.69 0.61 0.58 0.56 0.52 0.51 0.49 0.48 0.46
GOG 0.68 0.65 0.66 0.60 0.59 0.58 0.54 0.54 0.53 0.51 0.50

GOG+TriNet 0.76 0.74 0.73 0.67 0.65 0.64 0.60 0.60 0.58 0.57 0.56

R
A

iD

method features 1 5 10 15 20 25 30 35 40 45 50

KNFST
TriNet 0.62 0.66 0.58 0.51 0.48 0.45 0.44 0.42 0.39 - -
GOG 0.42 0.48 0.56 0.57 0.56 0.54 0.53 0.52 0.51 - -

GOG+TriNet 0.82 0.65 0.68 0.67 0.65 0.60 0.59 0.58 0.55 - -

OSVM
TriNet 0.63 0.68 0.58 0.51 0.48 0.44 0.43 0.41 0.39 - -
GOG 0.64 0.67 0.62 0.57 0.53 0.51 0.49 0.48 0.45 - -

GOG+TriNet 0.62 0.77 0.70 0.64 0.61 0.58 0.56 0.55 0.52 - -

L2
TriNet 0.92 0.71 0.62 0.55 0.51 0.48 0.47 0.44 0.42 - -
GOG 0.60 0.63 0.58 0.55 0.51 0.49 0.47 0.45 0.43 - -

GOG+TriNet 0.80 0.75 0.68 0.63 0.60 0.57 0.55 0.53 0.50 - -

methods, we present its performance comparatively
to (Zhu et al., 2017), on the Market1501 dataset on
which (Zhu et al., 2017) has been trained and evalua-
ted.

Table 5 provides the results of this comparison.
(Zhu et al., 2017) utilizes 500 random persons for trai-
ning, which is in contrast to the training set provided
by the authors of the Market1501 dataset (751 trai-

ning persons). TriNet features are learned using the
standard training set, thus, to avoid bias, and inline
with our previous experiments, we utilized only the
testing part of the dataset. To compensate for rand-
omness, we repeat for 300 trials. The rest parameters
were as in (Zhu et al., 2017), i.e., |Lg|= 2 and c = 10.
Under these settings, vl is small; as discussed ear-
lier, this is unfavorable to OW-REID which performs



Figure 2: Qualitative results on the RAiD dataset. Rows 1-2: gallery images. Rows 3-6: correct (green) and incorrect (red)
novelty detection results (see text for details).

Table 5: True Target Rate (TTR, %) at varying False Target
Rates (FTRs, %).

Method 1% 5% 10% 20% 30%

(Zhu et al., 2017) 26.81 52.73 66.47 79.66 86.16

OW-REID with
GOG+TriNet (proposed)

13.53 46.20 66.66 82.10 87.96

much better when a larger number of views per person
is available (vl ≥ 10). Nevertheless, we observe that
OW-REID performs better than (Zhu et al., 2017) for
larger FTR. Moreover, we note that OW-REID is di-
rectly applicable to new datasets, without the need for
learning features or metrics under the new conditions.

Qualitative Results. Figure 2 shows qualitative re-
sults from the application of OW-REID on the RAiD
dataset. The first two rows show representative ima-

ges in a gallery of 10 persons. Two images per person
are shown, each from a different view. Subsequent
rows show indicative results of (a) known persons cor-
rectly identified as such (true negative), (b) known
persons incorrectly identified as unknown (false posi-
tive), (c) unknown persons correctly identified as such
(true positive) and (d) unknown persons incorrectly
identified as known (false negative).

Overall, we observe that our method was success-
ful in identifying known persons as such, even under
different pose and/or lighting settings (third row). Ne-
vertheless, some false positives occur as depicted in
the fourth row. Such false positives never occurred
in cases where the person’s clothing color is promi-
nent, e.g. orange and striped cyan t-shirts (4th and
8th column of gallery images, respectively), due to



less ambiguity. A common cause of false positives
is the intervention of another person (cases 5 and 6).
Similarly, we observe that a variety of unknown per-
sons were identified as such (fifth row), while most of
false negatives (sixth row) share similar appearance
to gallery persons. Some obvious mistakes, such as
the fourth case in sixth row, are considered as short-
comings of the method and require further investiga-
tion. Finally, we should note that there exist corner
cases, where a person is identified as known due to
some images, while as unknown due to others. The-
refore, if multiple images are available (e.g. video se-
quence), we should consider aggregation of multiple
novelty identifications to a single dominant result.

5 SUMMARY AND FUTURE
WORK

We presented a new approach to the problem of open-
world person re-identification. The method is based
on a novelty detection technique appied to person des-
criptors that do not require re-training when the sy-
stem is required to operate in a new setting (new ca-
meras, illumination conditions, etc). Extensive ex-
periments indicated the improved performance of the
proposed approach over baseline and state of the art
methods. Ongoing work includes testing of the ap-
proach when it operates in an online fashion, i.e., in a
setup that involves the incremental learning (Liu et al.,
2017) and incorporation of novel persons in the gal-
lery of known persons. Future work aims at the uti-
lization of multiple query images per person (MvsM
scenario (Lisanti et al., 2015)) and further person des-
cription models, to further increase novelty detection
accuracy.
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