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Abstract

We present MocapNET, an ensemble of SNN [28] encoders that estimates the 3D
human body pose based on 2D joint estimations extracted from monocular RGB images.
MocapNET provides an efficient divide and conquer strategy for supervised learning. It
outputs skeletal information directly into the BVH [41] format which can be rendered in
real-time or imported without any additional processing in most popular 3D animation
software. The proposed architecture achieves 3D human pose estimations at state of the
art rates of 400Hz using only CPU processing.

1 Introduction

Human body pose estimation/recovery (HPR) has received a lot of attention from the com-
puter vision community due to its many important applications. A great volume of research
has been carried out using a variety of methodologies [13, 42, 52, 58] but arguably, the
biggest advances in the field have been achieved recently thanks to the developments in deep
learning and convolutional neural networks. However, despite recent advancements, motion
capture (MOCAP) systems still remain dependent on expensive multi-camera setups [46] and
cumbersome motion capture suits that feature physical markers to facilitate pose estimation.

Our work presents an effort towards human motion recovery of good quality, which is,
nevertheless, achievable at low hardware, setup and operational costs. In contrast to existing
methods that try to handle what is essentially the input equivariance problem using extensive
architectures, we have chosen an alternate route. Instead of deriving a formulation that treats
extraction of joint rotations as the final module of a computationally long chain of discrete
steps, we attempt to treat the problem at its core by training a feed-forward network (FNN)
that directly regresses joint rotations from 2D input. By decomposing the input and output
spaces, we eventually reduce the complexity of the task so that simple and fast to compute
FNNs can tackle it. This divide and conquer idea is evident in all of our design choices.
The high-dimensional input of localized 2D joints is difficult to be directly correlated to
output angles, so it is converted to a richer representation we have named Normalized Signed
Distance Matrices (NSDMs). NSDMs (described in Section 3) are an alternate formulation
of Euclidean Distance Matrices (EDMs) [32, 33] that in addition to translation invariance
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Figure 1: Indicative sample input RGB frames and the corresponding poses recovered by
MocapNET. Skinned 3D human body model created using MakeHuman [36].

maintain joint order and are scale resistant, thus simplifying learning. Instead of one big,
deep complex and monolithic network, we design separate specialized networks tailored to
specific orientations. Each network is further split into smaller specialized encoders, one for
each joint.

We train our networks on the publicly available CMU dataset [70]. To deal with its
limitations [3, 78], we perturb it, randomize parts of it and simulate self-occlusions to en-
rich it during data augmentation. Despite the high dimensionality of the 3D pose estimation
problem, we still manage to approach it using what is in essence multilayer perceptrons, the
simplest neural networks available [59] and among the fastest to compute. At the same time,
the powerful self-normalization properties of the SeLLU activation layers [28] help reduce
their generalization gap. These choices enable 3D pose estimation at state of the art com-
putational performance, i.e. 404.7Hz/2.4ms per evaluation on an Intel Core i7-8700 CPU
using Tensorflow [2] 1.14.0. Besides being extremely fast, MocapNET does not rely on an
independent kinematic solver, nor any temporal regularisation, and to the best of our knowl-
edge, is the first work that offers direct BVH output from 2D points in an end-to-end neural
network.

2 Related Work

Human pose estimation is a very active topic with a large volume of recent, novel works.

2D human body joints estimation: DeepPose [68] motivated many researchers to incor-
porate neural networks for the task of 2D pose estimation, moving it away from its initial
use as a means for image classification [30, 31]. This trend continued with Tompson et
al. [67] that offered a technique that coupled convolutional networks with Markov Random
Fields to tackle the problem. This, in turn, revealed the potential of this approach resulting in
many 2D pose estimation methods from RGB images that are powered with deep-learning.
The stacked hourglass networks of Newell et al. [44], Convolutional Pose Machines [74]
and OpenPose [9] are among the most popular works. Other cutting-edge research includes
DeepCut [50] as well as the ones presented in [8, 11, 81] which provide the computer vision
community with tools to robustly handle the 2D human pose estimation task.

One-stage 3D human body joints estimation: Many works that use RGB images as in-
put adopt a holistic approach to the pose estimation problem and infer 3D pose from 2D
images in one step. For example, [57] adopts a Bayesian approach, Du et al. [18] defines
an intermediate height map generation, Ghezelghieh et al. [20] has a smart camera logic,
Rogez et al. [53] uses an image synthesis engine and an end-to-end CNN architecture and
LCR-Net [54, 55] combines a pose proposal/classifier with a regressor. Some methods (e.g.,
DensePose [4], Omran et al. [45] with a combination of a DNN network and the SMPL [35]
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model) go a step further by also addressing the problem of human body shape estimation by
calculating 3D mesh associations. Kanazawa et.al [26] model the human body using SMPL
as well as camera information while also coupling a discriminator network. Chen et. al. [12]
employ a 3D pose library and sets of virtual cameras. Tan et al. [62] use pose silhouettes
to derive 3D human shape and pose. Other works are focused in acquiring 3D points from
2D images using either a single [47], or more cameras [19, 48]. Some methods use a purely
convolutional approach to extract 3D pose like [72] that models 3D volume loss, while some
others rely on separate algorithms [82] to perform optimization. Tenkin et.al. [65] uses both
RGB to 2D as well as 2D to 3D learning.

Two-stage 3D human body joints estimation: Our approach falls to the so called two-stage
method category since it separates pose estimation from pattern recognition and operates on
2D points uplifting them to 3D. One-stage methods have the merit of not relying on anything
but their own training set. At the same time, this is one of their weaknesses, in the sense that
generating an extensive and unbiased dataset is very difficult [71, 84]. Indicatively, there are
works specializing in dataset generation using synthetic data coming from 3D models [14]
or MOCAP data [53]. High-level data makes data augmentation a much easier task.

Within this method category, Bogo et. al [7] use the SMPL linear model [35] and regress
both pose as well as the human shape. Other RGBD based methods [51] use a 3D model
acquired using an RGBD camera and use Particle Swarm Optimization [27] as their opti-
mization technique. VNect [40] also uses a two stage RGBD approach but with a generic
skeleton model, while Li et al. [34] uses a similar concept albeit using RGB data, only.
Certain methods utilize adversarial networks to formulate an inverse graphics problem [69].
Very recent works on RGBD data have reached a point of also accounting for garments [80].

The most similar work to ours is [43] that utilizes 2D EDMs as its input representation,
although regressed to 3D EDMs and not to direct output angles like our work. Another
recent paper that identifies the need for structure-aware regression is [60] although their joint
connection representation is less rich than our NSDM formulation (Sec 3). Our approach
shares the compact formulation of [37] although on a much more shallow network without
residual connections. Similar approaches include [24] but instead of silhouettes we use the
numerical values of 2D points and retrieve results like [49] without physics simulations.

Recent trends show the importance of high-level inference like the one we attempt.
Translation and rotation invariant features [77], representations that handle discontinuities
in rotations [85] and works that utilize different data mappings that better encode structural
properties such as kinematic chain spaces [73] offer promising results. On the other hand
advances and improvements on neural networks like dynamically routed neural networks of
capsules [56] focus on equivariance by means of architectural changes. Our approach deals
with the problem by using a combination of NSDMs (Section 3), independent encoders, and
dataset splits that focus on partitions of the pose space. We can thus address a difficult task
while using a much less complex feed-forward model formulation.

3 Methodology

MocapNET operates on 2D joint input, received in the popular COCO [9] or BODY25 [10,
17] format and internally converted to NSDM matrices. The output is a list of 132 values
that correspond to ready-to-use BVH [22] motion frames for a particular input. The first 6
output values for each frame encode skeleton position and orientation, and the rest, angles
for each joint of the recovered pose (w.r.t the T-Pose of the armature). Each of the 132 output
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parameters is estimated by a standalone encoder trained to accommodate a particular joint.
The encoders have a compression parameter A that controls their size/quality/speed. They
are organized in ensembles (Fig. 4) which are themselves organized into classes (Fig. 2),
trained to handle particular coarse ranges of human pose orientations.

Preparing the training and test data: The original CMU dataset [70] is recorded in ASF/
AMC format. However, we use its BVH conversion [22] since it allows direct training on
the chosen BVH [41] output format. BVH files can be rapidly deployed to animate skinned
human models in 3D editors and game engines (e.g., Blender, Unity, Maya, Lightwave 3D,
Cinema 4D, etc). This high-level output can be used to animate any compatibly rigged
skinned model. We have chosen the same female model in all illustrations (Figures 1, 6) to
showcase that despite the different measurements and even genders of the observed subjects
MocapNET does a good job on pose retrieval and a generic parametric MakeHuman [36]
model properly reflects the observed poses. Although BVH provides a very compatible out-
put format, the specification also has shortcomings [41]. By using an appropriate armature
we overcome most of them and by prepending a T-Pose as the first frame of the file output,
we signal the orientation of our armature, since most BVH importer software recognize this
as a cue and automatically adjust the BVH skeleton to their internal coordinate system.
Since the BVH standard mandates Euler angles we are forced to utilize them to offer an
end-to-end SNN with BVH output. Although Euler angles hinder neural network learning
due to discontinuities [85], our class separation scheme (discussed in the next paragraphs)
effectively mitigates this problem. We use BVH datasets 01 to 19 from [22] for training. We
noticed that datasets 01/01, 01/04, 13/17, 13/18, 13/23, 14/02, 14/03, 14/23, 16/45, 16/46,
16/54, 16/57 and 17/10 contain flipped arm orientations (probably due to errors while port-
ing from the original ASF/AMC dataset) that degrade results. Omitting these problematic
datasets leaves us with approximately 484K MOCAP poses, or BVH “motion frames” of de-
picted actions. Given that acquisition was performed at 120 fps, neighboring frames depict
very similar poses. Moreover, skeletons move along the same 3D paths and motions have a
high degree of repetitiveness, so the number of available frames appears deceptively large.

Data augmentation: To enrich the dataset we create random 2D image locations P(x;,y;)
and depth values d; where 0 <x; <W, 0 <y; <H (in pixels) and 1000 < d; <5500 (in mm),
assuming video with frame size equal to W x H. With these random 2D points and depths and
assuming a camera C with known intrinsic parameters W, H, f, fy, cx, ¢, we can randomize
the skeleton positions of the dataset at 3D points (X;,Y;,Z;) where X; = (x; — ¢x) - di/ fxs
Y; = (yi —¢y) -di/ fy and Z; = d;. This first data augmentation allows MocapNET to learn
how constellations of 2D points are affected by 3D translations.

A second randomization performed on recorded joint angles diversifies captured poses.
We perturb the following joints: 1/l shoulder, r/1 elbow, /1 hand, 1/1 hip, r/l knee and r/1 foot.
Their orientations are perturbed by uniform random values so that their new value is at most
+5° away from the original rotation. The perturbation could have been larger, but even using
this setting projections shift sufficiently, since rotations stack across the kinematic chain.

Finally, we perform randomization of the orientation of the human skeletons. In order
to deal with ambiguities due to symmetries and distinguishing very different poses we also
split the randomized poses into three different classes. Assuming a possible rotation vector
is (ry,ry,7;) we define the following orientation classes.

Class A: Includes orientations where —35° < r, <35°, —180° < r, <180° and —35° <r, <
35°. A problem with this class is that around r;, 180°,-180°(or 0°,360°) samples suffer from
discontinuities which cause big loss fluctuations for small angle changes during training. We
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Selection of Class Each input frame uses the best suited ensemble for its orientation
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Figure 2: FFNs can’t effectively handle direct conversion of 2D points to 3D pose for all pos-
sible human orientations at once. Instead of enlarging them we train simpler, faster encoder
ensembles specialized in specific body orientations. Class A provides a rough orientation
estimation for any input. Using this we choose Class B or C and extract a 3D pose. Each
class/ensemble has the same internal organization which is illustrated in Fig 4.

do not use this class for pose estimation but just to decide if an input corresponds to a person
facing forward or backward, subsequently picking the correct class for pose retrieval.

Class B: Back orientations where —35° < r, <35°, —90° <r, <90° and —35° < r, < 35°.
Class C: Front orientations using the same limits as Class B but having the r, component
shifted by 180°so that r, = 0° results in a front facing skeleton (Figure 2).

For each randomized pose we simulate self-occlusions during dataset preparation, by
projecting points onto a virtual camera C and then applying a depth ordering pass that erases
joints hidden behind the torso or near the radius of other joints (right example of Figure 3).

We repeat the above randomization process by adding every input pose three times, per-
turbed differently, to create more training samples that offer a richer source of rotation and
translation exemplars. The employed randomization scheme can result in poses where joints
fall out of the bounds of the camera. We detect and omit those from our training set. The
final training set amounts to ~ 1.5M training poses per orientation class.

Working with pure MOCAP data and 2D points makes the randomization scheme much
more robust than randomization based on appearance [14] since we only use the skeleton
information. Since class A ensemble is only exposed to randomized frontal views of the
body and class B to randomized back views, our aggregate network is effectively trained on
~ 3.0M training poses despite never needing to accommodate all of them in GPU memory
during training, nor needing to generalize to all of them at once. Our method can be ex-
tended to more distinct classes to improve accuracy without computational overheads during
evaluation. On the other hand, training time increases linearly with more available classes.
Poses with orientations close to class boundaries appear to be gracefully handled using both
neighboring classes during experiments. Extra precautions that could be useful in ensembles
with many classes is to have overlapping areas between classes to bolster output consistency.

Representing 2D poses with Normalized Signed Distance Matrices (NSDMs): Euclidean
Distance Matrices (EDMs) [75] offer a simple and useful data representation that encodes
data points in relation to each other rather than relative to an external coordinate system.
We formulate a variation of EDMs we call Normalized Signed Distance Matrices that are
conceptually similar albeit better suited for our task.

The employed COCO [9] or BODY25 [17] 2D joints input consists of a set of N points
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NSDM Matrix walking towards camera NSDM Matrix walking left from camera NSDM Matrix walking right with occlusions

.

2i1N4.08,6.49,-211.23)
ws

Figure 3: Visualization of the employed NSDM encoding using RGB images where B chan-
nel encodes pairwise 2D joint distance on the X axis (image width), G on Y axis (image
height) and R occlusions (2D points not present). Although our encoding shares a lot of
similarities with EDMs [75] our formulation maintains sign information, is more robust to
scale changes and diagonal elements are 0.5 instead of 0.0, except when a joint is occluded.

Jop ={pi,...,pn}. Out of those, we select M 2D points to create NSDM matrices, namely
hip, neck, head, 1/r collar, I/r shoulder, I/r elbow, 1/r hand, 1/r hip, I/r knee and I/r foot. We
also generate two new artificial points left and right of the hip displaced on the x axis by
-0.3 and +0.3 units relative to normalized image width. Since the human body has most of
its points along the vertical axis these 2 artificial points contribute with more features on the
horizontal axis that better encode small variations in pose that could otherwise be lost.

Each 2D joint p; where 1 <i < M is associated with its coordinates p; = (x;,y;) which
are normalized to the input image frame dimensions and are therefore bounded in the range
[0,1]. We also associate each such point with a visibility status parameter v; provided by
thresholding OpenPose joint confidence values (1 if joint is visible, O if joint is occluded).
We calculate 2 matrices NSDM* and NSDM”. The entries of the NSDMs are calculated as

croon_J 054¢ci—c; vi#0,v;#0

NSDM* (i, ) = { 0 ! otherwi;e7
for ¢ € {x,y}. Using this formulation diagonal elements have a value of 0.5 except when
occluded. We deviate from the original EDM formulation to allow negative values (< 0.5 in
our case) which are useful since they are a source of information differentiating symmetric
changes in the configuration of limbs. Our data representation also anticipates the behavior
of the SelLU [28] activation function since occluded values fall on its non-linear part. After
calculating NSDM* and NSDM” we calculate the length of the torso and use its value to
normalize all matrix elements. This final normalization increases the robustness to scale
changes since these affect all limbs. Sample 17x17 NSDMs are visualized in Figure 3.

Instead of convolving kernels in a CNN, by creating input with pairwise association of
all inputs we achieve a similar effect in a shallower network with less operations. It is also
very important to once again stress that NSDMs are by their definition translation invariant
and resistant to scale changes. This, combined with the separation of the human orientation
classes (Fig. 2) greatly simplifies the task of learning-based 3D pose estimation.

Ensemble of SNNs: Despite the presented prepatory measures, the 2D joints to 3D angles
problem remains ill-posed by its definition. Without an explicit camera calibration and limb
dimensions as constraints, each 2D point cloud can correspond to arbitrarily many different
3D points and relevant skeleton configurations. On top of this, partially observed skeletons
(e.g., due to occlusions) often result in incomplete information. Even in scenes where the
full skeleton is observable the employed 2D joints detector [9] can provide noisy estimations.
Finally, the high dimensional output means that inevitably we won’t be able to densely cover
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Figure 4: MocapNET SNN encoder ensemble overview for a particular orientation class.
We use 3 and 4 layer SNN [28] encoders that uplift 2D Points to a BVH [41] motion frame.
Value A is a network compression parameter. Values “inp, in,” refer to fan-in, the number of
input elements of a layer, in, = 171 elements and for the rest, in, = 578.

every possible human body configuration with enough training samples. Self-normalizing
Neural Networks (SNNs) [28] offer a good fit to our problem with their elegant formulation
that outperformed other feed forward neural network methods, guaranteeing strong regu-
larization and robust learning.We thus train multiple SNN encoders (illustrated in Fig. 4)
that come in two flavors. The first are 3-stage networks designed to work on 2D (x,y,v),
(v encodes visibility), input and derive the 3D position for the root bone which is the hip.
The second type is 4-stage SNN encoders that regress NSDM input to joint Euler angles in
degrees using the corresponding to the rotation of the specific joint.

The 2D body + hands estimations extracted using [10], form an input array in, of 171
elements since we have 57 (x,y,v) triplets. Following the steps described in the NSDM
elaboration we also get two 17x17 NSDM matrices, one for X values and one for Y values
that yield in, = 17x17x2 = 578. Since all of the 3-stage and 4-stage encoders share inputs
we can effectively combine them into an ensemble as seen in Figure 4.

We have identified layer fan-in (the number of input connections) of the layers of the
encoders to be one of their most important design considerations since it defines their repre-
sentational capabilities, how much information flows from layer to layer and ultimately the
number of trainable parameters for our model. The scaling parameter A configures fan-in, as
also observed in Fig. 4. Assuming a A = 1.5 we define an ensemble of ~ 9.3M parameters
where each SNN encoder has = 170K parameters. A = 1.0 results to a ~15M ensemble
of 270K encoders, A = 3.0 a =5M / 70K combination. We use A = 0.8 to train the single
orientation encoder used from class A and A = 1.0 for the encoders of class B and C.

Networks where A > 4 are much less responsive to observations. Even dated i7-4790
CPUs perform at 2.5ms/387.0Hz for A = 2.0, a relatively larger A = 1.5 encoder ensem-
ble takes 3.3ms/300.8Hz and a large A = 1.0 ensemble operates at 5.3ms/185.9Hz. Re-
cent i7-8700 CPU hardware performs even better with evaluation for A = 1.0 happening
at 2.4ms/404.7Hz, A = 1.5 1.3ms/753.8Hz and A = 2.0 1.2ms/771.7Hz. These rates only
account for MocapNET performance (excluding OpenPose [10] time). Since all tested con-
figurations perform at state of the art rates, we believe that desktop computers should use
larger A values and lower-end or mobile devices can be accommodated with smaller values.

The ensemble approach guarantees a fair share of weights dedicated to each encoder. A
hypothetical A = 1.0 ensemble defined as a monolithic 15M network would be much harder
to train, offer no way of parameter separation (like the orientation we use on class A) nor any
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MocapNET A = 1, Trained on CMU, tested using H36M Blind Protocol 1 ]

Input [ Dir [ Dis [ Eat | Gre | Pho | Pos | Pur | Sit | Smo | Pho | Wai | Wal | Dog | WaT | Sit | Avg |
GT 135 140 145 143 153 137 174 215 1565 150 151 156 166 134 246 136
GT + N (0.,5) 141 147 150 143 158 141 178 219 161 155 156 159 169 139 248 140
GT + N(0,10) 154 159 162 160 169 152 188 228 174 167 168 170 180 154 256 154
GT + N (0.15) 172 178 180 178 186 170 202 241 190 183 136 187 194 174 267 172
GT + N(0,20) 195 199 198 199 204 189 218 256 208 201 204 207 213 197 280 195

Table 1: Results of MocapNET for A = 1.0 trained on CMU data and tested on Human3.6M
using Blind Protocol 1. All numbers are MPJPE in millimeters. We test using Ground Truth
(GT) plus different settings of gaussian pixel noise N(i,062) with mean u and variance .
The average error for Protocol 1 is marked with bold.

[ MocapNET A = 1, Trained on CMU, tested using H36M Blind Protocol 2 |
[ Tnput [ Dir [ Dis [ Eat [ Gre | Pho | Pos | Pur | Sit | Smo | Pho | Wai | Wal | Dog | WaT | Sit | Avg. |

GT 138 145 142 144 151 146 165 194 152 154 150 160 175 138 219 138
GT + N(0.5) 143 150 145 149 155 149 170 197 155 157 154 162 177 142 223 143
GT + N(0,10) 156 163 155 159 164 157 183 205 165 167 167 170 186 154 230 156
GT + N(0.15) 175 181 169 175 180 172 197 219 180 182 182 185 196 170 245 175
GT + N(0,20) 194 202 184 194 196 192 216 233 194 199 197 200 215 191 259 194

Table 2: Same as in Table 1 for Blind Protocol 2.

control over what parts of the computational budget affect which joints. Using our ensemble
approach, feature selection is specialized for each joint and each loss function during training
fully and only reflects each encoder’s assigned task which is a much better proposition.

Training the ensemble: We use Keras [15] with the Tensorflow [2] back-end to facili-
tate training. We use the RMSProp optimizer to train our networks with a learning rate of
0.00025, e = 10~° and employ a 0.2 dropout in layers trained for 30 epochs. RMSProp is
an adaptive learning optimizer which has been criticized by recent works [76], however we
found it to be a good choice to facilitate training. The employed loss function uses the mean
squared error (MSE) metric to suppress large error deviations and since each of the encoders
only handles one parameter, this effectively guides back-propagation during optimization.
We train using mini-batches of 20 samples per batch. This setting balances averaging
the loss of the randomized samples without considerable impact on training speed. Higher
values gradually lead to less responsive pose tracking while batch-size values less than 12
lead to more jittery output and very long training times. Recent papers [23] advocate the use
of a variety of modifications to remedy the problems of large batch sizes but it still remains
an open topic. A good overview of the problem is offered by [38]. We suggest batch sizes of
12-32 samples depending on the needs of an application and the available training time.
When starting to train a new class, layers are initialized (as required by SNNs [28]) with
samples from a truncated normal distribution centered at 0 with ¢ = /1/N where N is
the number of input units in the weight tensor. However, as we gradually train encoders,
neighboring joint angle weights are initialized using weights from the previously closest
trained encoder. We employ early training termination by monitoring the loss function and
halting if loss improvements are less than 0.001 in 5 or more consecutive training epochs.
We also use model checkpoints [16] that monitor loss so that each training session returns
the best loss encountered, something which may not necessarily occur during the last epoch.

4 Experiments

Quantitative experiments: We evaluate MocapNET using the Human 3.6M (H36M) [25]
dataset which it is the de facto standard [6, 12, 18, 26, 29, 39, 40, 47, 54, 57, 58, 63, 64,
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[ Comparison of methods tested on H36M Protocol 1 (Method / MPJPE) ]

25] Our* [18] [29] 61 [82] 791 [83] [64] [57] [66] [26] [54] [12] [40] [471 [61]
162 136 119 118 116 113 108 107 101 93 88 88 88 82 80 72 40

Table 3: Comparison of the proposed method to others (errors in mm). MocapNET is only
trained in the CMU dataset [70] so its accuracy for P1 is negatively biased.

Accuracy as a function of A Robustness to Noise for A=1.0
1 1
] S
2 o8 2 o8
> >
& 06 - &5 06
k) k) GT
s 04 s 04 GT+N(0,5) ——
El El GT+N(0,10) ——
g o2 2 02 GT+N(0,15)
[ o = 0 GT+N(0,20) ——
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Distance Of Joints(mm) Distance Of Joints(mm)

Figure 5: MocapNET accuracy for different A values (left), and for various levels of Gaus-
sian noise on the 2D input for A = 1.0 (right).

60, 79, 82, 83]. Evaluation is performed using the mean per joint estimation error (MPJPE)
for all joints after Procrustes alignment [21] of a method’s estimation to the ground truth.
The datasets used for training and evaluation are defined through clearly specified protocols.
Protocol 1 dictates training on subjects 1, 4, 6, 7, 8 and performing tests on subjects 9, 11
on 2D points originating from all available cameras. Since we do not train on any data from
H36M but otherwise adhere to this protocol, we label it Blind P1 (BP1). Protocol 2 uses
the same training and test sets as P1 but only on the frontal camera. We again perform
experiments without training on H36M, so we label this as Blind P2 (BP2) protocol. There
are inconsistencies in the literature about the alignment performed during experiments. For
example in [12], P1 uses procrustes alignment and P2 root alignment, whereas in [37], P1 is
root and P2 procrustes. We perform both P1 and P2 using procrustes alignment.

Tables 1 and 2 reveal medium accuracy across all actions from all viewing angles with the
exception of the two sitting datasets where the topology of the body is more challenging and
not well represented in the CMU training examples. This is contrary to other methods which
have larger relative fluctuations across actions with the most accurate typically being the
walk action. Another interesting result is that on BP2 (Table 2) which reflects frontal view
accuracy, and thus an easier case, MocapNET achieves the same average error as in BP1.
We attribute this to the employed class structure that effectively decouples orientations. An
important result is that the method performs well with noisy input (Fig 5), with an average
impact of less than 2cm for a relatively large noise margin (¢ = 10 pixels).

Our network has never seen people performing many of the H36M actions, nor received
any input using similar camera intrinsics, angles etc. Experiments from Yasin et al’s Dual-
Source 3D Human Estimation [78] hint at accuracy penalties of ~ 30mm for our case. The
limitations of [70] are very well documented and also one of the main premises of [3] that
adds a greater variety of poses with a MOCAP suit. Comparison to other methods is sum-
marized in Table 3. MocapNET is not as accurate as the state of the art but this is natural as
it deals with rotation regression and not 3D position regression. Even small errors in each of
the joint angles quickly stacks across the kinematic chain with a negative impact on accuracy.

Qualitative experiments: We collected various dancing videos from YouTube that feature
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Figure 6: Qualitative results of MocapNET on YouTube dancing videos. Sample input RGB
frames and renderings of the estimated poses using a skinned 3D human body model.

interesting/unusual poses, used OpenPose to estimate 2D joints and MocapNET to uplift
them to BVH files. We then used MakeHuman [36] to generate a parametric skinned model
and Blender [5] to animate the armature. Figure 6 illustrates indicative results. The sup-
plementary material accompanying this paper includes several example output videos. We
observe that even if joint positions are not exact (and this also depends on the configurable
limb dimensions of the MakeHuman model), motions tend to translate well into the armature.
Failure cases mostly consist of persons being very close to the camera and thus typically their
feet going out of the field of view. This particular case could be remedied with specialized
classes that handle joint estimation without feet. Other problems are caused (a) by poses that
are very far from the ones in the training set, (b) by inaccuracies of the 2D joints estimator
and (c) by bodies that are curled up and where there is not enough structural information on
the NSDM matrices for a clearly defined solution.

5 Discussion

We proposed a novel method which, in conjunction with OpenPose, is able to recover 3D
human poses from plain RGB input and directly convert them to BVH files. MocapNET
provides a fast and efficient baseline method for 3D editing software that allows cheap, easy
and direct virtual character animation from pictures or videos. The proposed solution is very
fast, conceptually simple and has ample potential for accuracy improvements. Future work
should initially extend the training dataset with a richer source of MOCAP data since this
seems to currently be the main deficiency. Creating more classes to further decompose input
pose space should be attempted since they don’t affect performance using our formulation.
Adding hands to the training data should also be thoroughly investigated. To encourage
research, MocapNET along with its supplementary material can be downloaded at [1].
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