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Abstract. This paper addresses the problem of 3D hand pose estima-
tion by modeling specific hand actions using probabilistic Principal Com-
ponent Analysis. For each of the considered actions, a parametric sub-
space is learned based on a dataset of sample action executions. The
developed method tracks the 3D hand pose either in the case of uncon-
strained hand motion or in the case that the hand is engaged in some
of the modelled actions. The tracker uses gradient descent optimization
to fit a 3D hand model to the available observations. An online crite-
rion is used to automatically switch between tracking the hand in the
unconstrained case and tracking it in the case of learned action sub-
spaces. To train and evaluate the proposed method, we captured a new
dataset that contains sample executions of 5 different grasp-like hand
actions and hand/object interactions. We tested the proposed method
both quantitatively and qualitatively. For the quantitative evaluation we
relied on our dataset to create synthetic sequences from which we artifi-
cially removed observations to simulate occlusions. The obtained results
show that the proposed method improves 3D hand pose estimation over
existing approaches, especially in the presence of occlusions, where the
employed action models assist the accurate recovery of the 3D hand pose
despite the missing observations.

1 Introduction

The problem of effectively inferring the 3D pose of human parts and understand-
ing human actions is a challenging topic in computer vision. In real life, human
hands support important functions by executing complex tasks such as object
manipulation and sign-based human-to-human communication. By developing
technical systems that are able to observe and understand the configuration of
human hands we can support applications such as sign language recognition, in-
teractive games or virtual reality environments, robotic arm tele-operation and
many others. Such applications typically require high accuracy and robustness.
To meet these requirements, many challenges must be addressed such as oc-
clusions, uncontrolled environments and fast hand motions. We focus on the
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problem of 3D hand pose estimation and gesture recognition based on model-
ing and exploiting action priors. More specifically, the goal is to exploit prior
knowledge on the hand actions to estimate the hand pose and the performed
gesture. Taking into account the high dimensionality of hand models, we use
Probabilistic Principal Component Analysis [23], a linear dimensionality reduc-
tion technique, combined with gradient based optimization. The input to our
approach is RGB image sequences. Prior knowledge in the form of kinematic
constraints (average size of an articulated structure, degrees of freedom for each
articulation), or motion dynamics (physical laws ruling the object movements,
assumptions on grasp movements) may provide rich information and facilitates
the solution of the aforementioned problem. In our case, prior knowledge is based
on the modeling of a set of predefined actions. The main assumption is that the
finger motions are correlated given a particular hand action such as an object
grasp. In other words, we assume that a grasp that concerns a particular object
type will be performed similarly regardless of the subject that performs it.

1.1 Related Work

A large number of methods have been proposed for solving the 3D hand pose
estimation and gesture recognition problems using markerless RGB-D or RGB
observations. Several works employ prior information on the hand motion to fa-
cilitate and speed-up pose estimation, and/or to deal with missing observations.

Model based approaches use 3D hand models and local optimization to esti-
mate the hand pose. Several optimization algorithms have been proposed, such
as Particle Swarm Optimization [18,13], hierarchical particle filters [11], or the
quasi-Newton method [4]. Methods that estimate the shape of the hand in ad-
dition to the pose by using deformable hand models have also appeared [10,21].

Discriminative approaches attempt to regress the pose directly from obser-
vations. Hybrid methods use a discriminative component to extract high level
features which are then fed into a generative component. Over the last years,
Convolutional Neural Network (CNN) based approaches dominate this category.
One direction is to estimate 2D keypoints which are then lifted to 3D [2,16]. The
downside of passing through a 2D representation is the presence of projection
ambiguities which can be overcome by employing suitable priors. Approaches
that rely on RGB-D provide good accuracy and avoid the projection related
ambiguities [20,17]. Another approach is to directly estimate the 3D pose from
RGB images [12].

For gesture recognition, recent methods rely mostly on CNNs. Liang [9] pro-
posed a multi-view framework for recognizing hand gestures using point clouds
captured by a depth sensor. They used CNNs as feature extractors followed by
an SVM classifier to classify hand gestures. In [15] they utilized a CNN and
stacked a denoising auto-encoder for recognizing 24 hand gestures of the Amer-
ican Sign Language. In [8], they used two CNN architectures, one lightweight
CNN architecture for detecting hand gestures and a deep CNN for classifying
them.
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Several approaches use prior motion information and dimensionality reduc-
tion to facilitate hand pose estimation. In [7,5], they employ Principal Compo-
nent Analysis (PCA) to learn a lower dimensional space that describes compactly
and effectively the human hand articulation, thus reducing the computational
effort needed for hand poses estimation. In [14], they use PCA to learn subspace
models from cyclic motions. Nonlinear dimensionality reduction techniques have
also been used, as, for example, in [6] where ST-Isomap is used. However, Isomap
and LLE do not provide mapping between the latent space and the data space.
Gaussian Process Dynamical Model (GPDM), a nonlinear reduction method,
had been applied [19] for 3D human body tracking. Urtasun et al. [24] use a
form of probabilistic dimensionality reduction with a GPDM to formulate the
tracking as a nonlinear least-squares optimization problem. Tian et al. [22] use
Gaussian Process Latent Variable Models (GPLVM) for 2D pose estimation.

Our contribution: This work aims at exploiting prior knowledge about par-
ticular hand motions to reduce the dimensionality of the hand pose estimation
problem, which (a) speeds-up the tracking and (b) provides robustness to noise
and missing observations. The first contribution is the coupling of the state of
the art hybrid approach of [16] with probabilistic PCA dimensionality reduction.
An additional contribution is the compilation of a dataset comprised of several
actions (mostly grasping) executed by multiple actors. The dataset has been
used for the training of our method and will become publicly available.

2 Method Description

2.1 Hand Model

The hand model we use (see Fig. 1) is comprised of a kinematic skeleton and
a 3D mesh that represents the geometry of its surface. It has 26 degrees of
freedom (DOFs), 6 for global position and rotation and 20 for finger articulation.
Specifically, the kinematics of each finger is modeled using four parameters, two
for the base joint of the finger and one for each of the two remaining joints.

2.2 Action PPCA Training

The Probabilistic Principal Components Analysis (PPCA) requires a dataset of
example executions (RGB sequences) of a set of actions. The hand pose in each
frame of the dataset is annotated. As described in Sec. 2.1, the hand pose is
comprised of a global translation and rotation and the hand joints articulation.
The action modeling concerns only the articulation part, so in the following we
stripped the global transform DOFs from the hand state. Given the articulation
pose sequences, a small number of key poses specific for each motion is identified.
Subsequently, the motions are time wrapped so that the key poses are temporally
aligned. Furthermore, the number of poses of each sequence is reduced to a
predetermined value N . The state of a pose is denoted by tn where the index n

is the action phase with n ∈ [1..N ].
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Fig. 1. Hand model: Left: hand shape/geometry, right: hand kinematics.

We used the Expectation-Maximization (EM) algorithm for training a PPCA
model for each action. As input, the algorithm takes the state trajectories of a
set of sample action executions. Each trajectory state t results from the con-
catenation of the N hand pose states tn. The output of EM is the estimated
weight matrix W and the variance of noise σ2. Using these we can convert full
dimensional states tn to reduced dimensional states xn and vice versa using:

xn = Y −1WT (ti −Θ), (1)

tn = xn ∗W +Θ, (2)

where Θ is the training states mean and Y = σ2I +WTW .

2.3 PPCA Hand Tracking

The input to the proposed tracking algorithm is an RGB image and the M

action PPCA models. From the image we extract the 2D hand joint locations.
These locations are used in an optimization algorithm (see following paragraph)
to estimate the hand pose. The optimization is performed M + 1 times i.e.
on the full dimensional space, and on each of the M modeled sub-spaces. Each
optimization provides a candidate solution and the best solution is selected using
a method described later in this section. All the steps of the proposed method
are summarized in Algorithm 1.

Optimization Algorithm: 3D hand pose estimation is treated as an optimiza-
tion problem, as in [16]. The input to the optimizer is a set of 2D hand keypoints
which are localized in the input image using OpenPose [3]. Typically, the op-
timization is performed on the full hand state. We also follow this approach
to track free hand motion. However, for the pre-modeled actions, we exploit
dimensionality reduction to perform optimization on a lower dimensional space.

Given a hand pose and its forward kinematics function, we compute the po-
sitions of the joint keypoints mi = (ui, vi), i ∈ [1, I], I = 18, on the image plane.
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Algorithm 1 Hand pose estimation.

1: Initialization: tf0
2: for <each frame RGBf> do

3: [t0t , S
0

t ] = solver(RGBf , t
0

f−1) # Sec. 2.3
4: for <every model m> do

5: [xm
t , Sm

f ] = solver(RGBf , x
m
f−1) # Sec. 2.3

6: tmt = xm
f−1 ∗W +Θm

n

7: end for

8: msel = select model([xm
f , Sm

f ]Mm=0) # Sec. 2.3
9: Solution: t

msel

f

10: end for

Let oi = (ui, vi), i ∈ [1, I], represent the detected 2D joints (using OpenPose)
and fi be a binary flag taking the value of 1 if the i-th keypoint is actually de-
tected and 0 otherwise. For a given pose, the total discrepancy S(x, o) between
the observed and the model joints is given by:

S(x, o) =

I∑

i=1

fi‖mi − oi‖. (3)

The 3D pose x∗ that is most compatible with the available observations can be
estimated by minimizing the objective function of Equation 3:

x∗ = argmin
x

{S(x, o)}. (4)

This is achieved using the Levenberg-Marquardt optimizer that minimizes this
objective function after the automatic differentiation of the residuals. In our im-
plementation, optimization has been performed by employing the Ceres Solver [1].

Model Selection: The selection of the appropriate low dimensional model
to be used is performed automatically and on-line. The selection relies on the
optimization score but for stability we propose a model locking mechanism based
on the action phase and the model likelihood.

For each frame we perform the optimization procedure using all the available
models (including the full dimensional model aiming at recovering free hand
motion). The optimization score Sm

f for each model m approximates the degree
of fit of each model to the observations. We select the model with the minimum
score value: msel = argminm{Sm

f }Mm=0. The pose estimation of this model tmf is
thus the output of the algorithm for the frame f .

The selection procedure based solely on the optimization score is unstable.
This is mainly due to the fact that the optimization algorithm relies only on the
visible keypoints whose number fluctuates during tracking. To achieve model se-
lection that is robust to the score fluctuations, we use a model locking approach.
By this approach, we lock to a specific model if two criteria are met: (i) the
model likelihood Lm is above a threshold value and (ii) the action phase n is
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Fig. 2. Grasp actions that have been used in the developed dataset. (a) Pincer grasp,
(b) palm grasp, (c) spherical grasp, (d) parallel extension grasp, (e) ring pinch grasp.

above a threshold value. Essentially, these two criteria ensure that if a particular
action is detected with a high likelihood and the action execution has advanced
considerably, the algorithm will lock the selection to that action model until
action completion. The model likelihood is given by:

Lm(xn) = exp−
((xm −Θm

n )Cm−1(xm −Θm
n))

T )

2
, (5)

where Θm
n is mean value for model m and Cm is the covariance matrix.

3 Experiments

Dataset: For the purposes of this work, we created a new dataset for training
and testing the proposed method. The dataset contains 5 grasping actions per-
formed by 6 subjects, 2 females and 4 males. Every subject repeated each action
6 times. The instructions that had been given to all subjects was the verbal de-
scription of the actions they had to perform. This gave the opportunity to have
action executions with considerable variability. Characteristic snapshots of the
specified set of actions are shown in Fig. 2. For every action in the dataset the
hand starts from a neutral (open) configuration.

To enable the quantitative evaluation of the proposed method, we used the
real world dataset to create a synthetic one. To do so, we tracked the hands in
the real dataset to obtain 3D hand poses that we considered as ground truth.
We then used the known camera parameters to project the 3D joint locations
extracted from the aforementioned ground truth poses back to the image. We
provide these 2D image locations as input to the method. To simulate occlusions,
we selectively removed some of the 2D keypoints from the input that is provides
to the evaluated methods.

Evaluated Methods: We implemented and evaluated the following methods:

– LEV: Levenberg-Marquardt optimization without dimensionality reduction.
– APLEV: Proposed optimization, exploiting the dimensionality reduction

with automatic selection of the modeled actions.
– SPLEV: Proposed optimization exploiting the dimensionality reduction as-

suming knowledge (from the ground truth) of the performed actions.
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Fig. 3. The tracking error Et as a function of the occlusion ratio. Each plot concerns
sequences of a particular action: (a) pincer grasp, (b) palm grasp, (c) spherical grasp,
(d) parallel extension grasp, (e) ring pinch grasp, (f) average over all grasps.

Table 1. Average hand action classification accuracy Ac as a function of the number
H of hidden keypoints.

H 0 3 6 9 12

Pincer grasp 0.99 0.98 0.95 0.64 0.46

Palmer grasp 0.99 0.97 0.93 0.89 0.80

Spherical grasp 0.78 0.71 0.50 0.38 0.37

Parallel extension grasp 0.79 0.71 0.63 0.57 0.41

Ring pinch grasp 0.86 0.79 0.77 0.69 0.54

Average 0.86 0.84 0.75 0.64 0.52

For the low dimensional sub-spaces of APLEV and SPLEV methods we used
10 dimensions, 7 for global position and rotation, 2 for the articulation, and 1
for the action phase. Moreover, the likelihood threshold for the experiments are
0.55 and the phase threshold 0.31.

Quantitative Evaluation: We evaluated the methods quantitatively using the
synthetic dataset described in Sec. 3. We measured the tracking error Et which
is defined as the average 3D distance between the estimated 3D joint locations
and their corresponding ground truth values. We also measured the action clas-
sification accuracy Ac which is the percentage of of frames that were classified
to the correct action class.

In order to assess the ability of the methods to deal with occlusions, the
tracking error was measured for different occlusion ratios. As mentioned in Sec. 3,
to simulate occlusions we ignore a number H of 2D keypoints. In Fig. 3, we
compare the performance of the methods for an occlusion percentage range from
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Fig. 4. Qualitative Results for grasping objects using APLEV. Every row represents
a motion model in different phases.

0% to 60% which corresponds to H = 0 up to H = 12 of hidden 2D keypoints.
The results show that the error of the proposed methods is smaller compared to
the baseline method LEV if 4 or more keypoints are hidden. For the majority of
the modeled actions, automatic model selection performs well and therefore the
error of APLEV is on par with that of SPLEV. In two of the action classes,
model selection does not perform so well, so APLEV has inferior performance
to SPLEV. Nevertheless, it still compares favourably to the performance of the
LEV baseline method.

The primary goal of the proposedAPLEVmethod is to leverage prior knowl-
edge about the performed actions in order to perform better tracking. To do so,
it classifies each frame either into one of the modeled actions or as free hand
motion. In Table 1 we present the action classification accuracy Ac results for
different occlusion ratios. We observe that the classification accuracy remains
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high even in the presence of considerable occlusions. At the same time, classifi-
cation as a function of occlusion vary considerably among different actions.

Qualitative Evaluation: For the qualitative evaluation we used a real world
dataset where a hand performed object manipulation of various objects such as
books, paper, bottle, small balls and pens. The obtained videos have a length
between 250 and 600 frames and each of them contained at least 2 actions. As
it can be verified in Fig. 4, the proposed approach captures the configuration of
the hand correctly, despite the considerable occlusions between the hand and the
manipulated object. More qualitative results are available as a youtube video3.

4 Summary

We presented a method for markerless, model-based tracking of human 3D hand
pose using dimensionality reduction based on action priors. We developed a
dataset that contained instances of 5 action models and performed Probabilistic
Principal Component Analysis to model them. The obtained quantitative and
qualitative results demonstrate that the proposed approach manages to track the
3D pose of a hand robustly, even in the presence of considerable occlusions due
to hand-object interactions. We intend to increase the grasp type action models
so as to to have a more complete relevant dataset. We also plan to incorporate
object detection methods and enrich our method by exploiting fingertip/object
contact points as location priors. Another future research direction is the ex-
ploitation of the proposed approach for 3D human body tracking.
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