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Abstract. We present an unsupervised method for the detection of all
temporal segments of videos or motion capture data, that correspond to
periodic motions. The proposed method is based on the detection of simi-
lar segments (commonalities) in different parts of the input sequence and
employs a two-stage approach that operates on the matrix of pairwise
distances of all input frames. The quantitative evaluation of the pro-
posed method on three standard ground-truth-annotated datasets (two
video datasets, one 3D human motion capture dataset) demonstrate its
improved performance in comparison to existing approaches.

Keywords: Periodicity Detection · Repetitive Motions Detection · Com-
monalities Discovery · Video Segmentation.

1 Introduction

Periodic or repetitive motions are very common in natural and man-made envi-
ronments [3]. Therefore, their detection constitutes an important step towards
the segmentation and the high level interpretation of video and motion cap-
ture (mocap) data. This is an interesting problem in computer vision and pat-
tern recognition whose solution has several applications in action and activity
recognition, medical diagnosis [1], detection of machine failures [13], repetition
counting [14], etc.

In this work, we address the problem of temporal segmentation of periodic
segments in videos and mocap data and we propose a solution which neither
requires prior knowledge nor imposes constraints on the speed, the number or the
length of the periods of the periodic segments. Moreover, the method tolerates
variations of the period of the periodic motions. The input to the proposed
method is the N ×N symmetric matrix D that contains the pairwise distances
of all N frames of the input sequence. Figure 1 provides an example of such a
matrix D, where warm (red) and cold (blue) colors correspond to high and low
values in D, respectively. The main diagonal of this matrix contains zeros, since
these points hold the distance of each frame of the sequence to itself.
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Fig. 1. An example of the distance matrix D of the frames of a video, in which a
periodic action appears between two non-periodic actions. The periodic nature of the
middle action gives rise to low values in D (i.e., similar frames) along straight line
segments that are parallel to the diagonal of D. The goal of the proposed method is
to detect such lines and to estimate the period of the corresponding periodic action
(i.e., the offset from the diagonal). The periodic segment detected by the first and
second stage of the proposed method are plotted with a white and a black straight
line, respectively. The projection of the endpoints (A,B) of the black line on the main
diagonal, give the start (A′) and the end (B′) of this periodic segment.

Let us consider that a periodic segment [A′, B′] with period T starts at frame
A′ and ends at frame B′ of the video. Due to the definition of periodicity, we
know that there is a strong similarity between the segment [A′, B′] and another
part of the sequence that is temporally displaced by T (see Figure 1). This
means that D contains a straight line segment AB where A = (A′, A′ + T )
and B = (B′ − T,B′) that is parallel to the main diagonal, along which D
has very low values. In practice, due to deviations from perfect periodicity, the
path connecting A and B might deviate from straightness and might not be
perfectly parallel to the diagonal. Detecting periodic segments and estimating
their period, amounts to detecting and localizing straight lines of minimum cost
that are located off the main diagonal, as for example the line AB in Figure 1.
The sum of the entries of D under such a line/path is inversely proportional to
the similarity of the two parts of the sequence. A low (high) cost path corresponds
to a high (low) confidence on the existence of a periodic segment. Short paths
correspond to periodic segments of a few frames, which are not that interesting.
As paths increase in length, their cost also increases. Thus, the trade-off between
the length of the path (the duration of the segments) and its cost should be
balanced.

A related work [8], developed P-MUCOS, a method that reduces the problem
of periodicity detection to the problem of finding common sub-sequences in a
sequence. This is achieved by employing MUCOS [9] a graph-based search algo-
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rithm for finding common sub-sequences (commonalities) between two different
sequences. MUCOS has a complexity of O(N2) and it is an efficient alternative
to employing Dynamic Time Warping (DTW) [10]. As shown in [9,8], the com-
putational complexity of a DTW-based exhaustive algorithm that evaluates all
paths and keeps the best one is O(N6).

P-MUCOS is an one-stage approach that applies MUCOS to the distance
matrix D of the input sequence. This results in the detection of the main diag-
onal of D as the major commonality. To avoid this trivial solution, P-MUCOS
employs a filtering technique that enhances the off-diagonal commonalities that
correspond to periodic segments. However, this enhancement is not strong close
to the commonality endpoints, a fact that influences negatively the accuracy of
periodicity detection.

Thus, in this work, we present P-MUCOS-S2, an improvement of P-MUCOS,
which addresses the drawback of P-MUCOS by introducing a two-stage ap-
proach for commonality detection. In the first stage, the strongest part of the
off-diagonal commonality is detected in an improved version of the enhancement
performed by P-MUCOS. In the second stage, a hysteresis-thresholding-like op-
eration extends the initial detections by optimizing an appropriately defined
objective function. P-MUCOS-S2 is evaluated quantitatively in comparison to
the P-MUCOS and another, Fourier-based baseline approach [8] and is shown
to improve substantially the accuracy of periodicity detection. The experimental
evaluation is performed on the publicly available video datasets employed in [8],
but also on a relevant mocap dataset.

In summary, the contributions of this work are: the improvement of the P-
MUCOS algorithm for temporal localization of periodic segments by (a) improv-
ing the commonalities enhancement filtering approach of the first state and (b)
by introducing a hysteresis-thresholding-based second stage, as well as the quan-
titative evaluation of the new algorithm P-MUCOS-S2 on standard datasets on
motion captured and video datasets in comparison to existing approaches.

2 Related work

The problem of detecting periodic segments in time-series has been well studied.
In [4], the problem of periodicity detection in time series is addressed using
the time warping algorithm WARP. A given time series is transformed to time-
stamped events drawn from a finite set of nominal event types. The main idea
of WARP is that if the time series is shifted by a number of elements equal to
the period of the time series, then the original time series and the shifted one
will be very similar. More recently, Karvounas et al. [5] formulate the detection
of a periodic segment as an optimization problem that is solved based on an
evolutionary optimization technique. Given a time series representing a periodic
signal with a non-periodic prefix and tail, the method estimates the start, the
end and the period of the periodic part. The most important limitation of that
method is that it assumes a video containing a single periodic segment. Another
related challenging problem concerns the problem of periodicity detection from
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incomplete observations [7]. In [7], the authors propose a probabilistic model for
periodic behaviors that was successfully applied on real human movement data.

The periodicity detection in videos is a more challenging problem, due to
the high variability of the video content. In [11], Polana and Nelson devise an
extension of the Fourier formula to detect periodicity in videos based on nor-
mal flow variation between successive image frames. The authors show that
periodicity is an inherent low-level motion cue that can be exploited for robust
detection of periodic phenomena without prior structural knowledge. Cutler and
Davis [3] address the problem of periodicity detection for both stationary and
non-stationary periodic signals. For the case of stationary signals, this can be
achieved by a Fourier Transform followed by a Hanning filter. For the non-
stationary case, Short-Time Fourier Transform is employed to better handle the
shifting spectrum. As in [11], the objects are tracked and aligned before the peri-
odicity analysis. The baseline method (see Section 4), that is presented in [8], is a
natural extension of the power spectrum method [3]. According to this method,
a given signal is periodic if the peak of its spectrum is greater than µ + 3σ,
where µ and σ denote the mean and the standard deviation of the signal spec-
tral power. Such spectral domain methods have the limitation that the action
frequency should be almost constant and it would emerge as a discernible peak
at a time frequency graph. However, the amount of variation in appearance be-
tween repetitions and the variation in action length means that in certain cases,
no such clear peak may be identifiable [6].

Wang et al. [17] proposed a method for retrieval of social games that are
characterized by repetitions, from unstructured videos. Each frame is mapped
to the nearest keyframe, yielding a sequence of keyframe indices that are used
to mine recurring patterns. The approach proposed in [15] combines ideas from
nonlinear time series analysis and computational topology, by translating the
problem of finding recurrent dynamics in video data, into the problem of de-
termining the circularity of an associated geometric space. There exist several
supervised techniques that attempt to identify sequences in similarity/distance
matrices [2]. In [2], for loop-closure were detected based on a classifier trained
on similarity matrices. The proposed methodology can be also applied to such
problems.

Levy and Wolf [6] use a deep learning approach to count the number of
repetitions of approximately the same action in an input video sequence. In
[14], the problem of visual repetition from realistic video has been formulated
and solved, improving the results derived by Levy and Wolf [6]. The authors
derive three periodic motion types by decomposition of the 3D motion field into
its fundamental components and employ the continuous wavelet transform and
combine the power spectra of all representations to support viewpoint invariance.

Most of the aforementioned approaches cannot handle the problem of peri-
odicity detection under any video content and without some type of supervision.
The method presented in this paper improves the results of [8] that was the
first that makes no such assumption and is fully unsupervised. Additionally, the
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proposed method has been also applied to motion captured data and it can be
also used for period tracking and in repetition estimation [14].

3 P-MUCOS-S2: Commonality-based periodicity detection

Let A be a sequence of N frames and D the N × N symmetric matrix of the
pair-wise distances of these frames. The proposed method can assume a variety
of frame representations and corresponding frame distance metrics.

An example of such a distance matrix D of the frames of a sequence, in
which a periodic action appears between two non-periodic actions, is shown in
Figure 1. The periodic nature of the middle action gives rise to low values in D
(i.e., similar frames) along straight line segments that are parallel to the diagonal
of D and at horizontal offset T from the diagonal, where T is the period of the
periodic action. This is because the distance between frames fi and fi+T of a
periodic action with period T is expected to be very low. The goal of the proposed
method is to detect such lines and to estimate the period T of the corresponding
periodic action. Such a straight line is shown in Figure 1 in black color. The
projection of the endpoints (A,B) of the black line on the main diagonal, give the
start (A′) and the end (B′) of the corresponding periodic segment. By detecting
such segments, we can segment the periodic parts of a sequence and estimate
the period of each of them. This can be achieved by employing a method that
detects commonalities between two sequences. The MUCOS [9] method suits this
purpose, as it discovers all commonalities (similar segments) of two sequences
v1 and v2, given their distance matrix D. The application of MUCOS on the
square matrix D of distances of a single sequence will result in the detection of
the diagonal as the major commonality. This trivial solution can be excluded
from consideration, as performed in [8] where the P-MUCOS algorithm was
proposed. P-MUCOS is improved by introducing, P-MUCOS-S2, an approach
that operates in two stages.

P-MUCOS-S2, stage 1: P-MUCOS applies the following symmetric filter Hp

at point p = (i, j) of the distance matrix D to emphasize the commonalities to
be detected:

Hp(q) = −a · cos
(

2πd

τ

)
· (τ − d), (1)

where q = (u, v), d = |v − u|, τ = j − i, and a is determined by the constraint∑
q |Hp(q)| = 1. The response of filter Hp on point p is given by

DH(p) =
∑
q∈R(τ)Hp(q) ·D(p− q) where the square region R is defined as

R(τ) = {(u, v)| − τ/2 ≤ u ≤ τ/2,−τ/2 ≤ v ≤ τ/2}. Intuitively, H operates
as follows. At a point p = (i, j) the distance matrix is convolved with a filter
whose width is τ and whose coefficients are a sinusoidal pattern, evolving per-
pendicularly to the main diagonal of D, with a minimum at p. Thus, in case
that a commonality path c passes through p, the locally minimum value at p
will be further pronounced. Figure 2 illustrates the positioning of filter H at two
different points p and p′ of a distance matrix. The dotted rectangle denotes the
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Fig. 2. A schematic illustration of the filtering operations in [8] and in the current
work (see text for details).

periodic part of the video corresponding to this distance matrix. The rectangles
located at p and p′ denote the color-coded coefficients of filter H. Finally, the
red diagonal lines besides the main diagonal denote commonality paths.

In this work, we simplify the filter H significantly. Essentially, the realized
improvement is that at a certain point p, the response is obtained by combining
collinear distance matrix values in a direction perpendicular to the main diago-
nal. More specifically, for the point p in Figure 2, the new filter response is given
by

Df (p) = 2 ·D(p)−D(q0)−D(q1) +D(p1), (2)

where v = [ τ4 ,−
τ
4 ]T , q0 = p + v, q1 = p − v, p1 = p − 2 · v. If p belongs to

a commonality path c, then the point p1 will belong to the next commonality
path c1 that is parallel to c. The point q0 is located halfway between the main
diagonal and commonality c, and q1 is located halfway between commonalities
c and c1. So, the new filter response can be explained by the fact that D should
get low values on p and p1 and high values on q0 and q1. Finally, we subtract
from Df its minimum value, so that Df becomes a non-negative matrix.

Let S be the part of the upper right triangle of D that is restricted by the
minimum (Tm) and the maximum (TM ) duration of a period. In our implemen-
tation, we set Tm = 3 and TM = bN/3c frames, so as to ensure that there exist at
least three periods of the periodic part of the video. The new filter H is applied
to all points in S, to emphasize the commonalities that are close to the diagonal
of the distance matrix D (see Figure 3(b)).

The computational cost of the application of the new filter is constant and
equal to 5 operations per point, while the recursive computation of the filter H
proposed in [8] has computational cost O(τ ·N2) = O(N3) (4 · τ operations per
point). Thus, the new filter results in a significant reduction of the computational
cost. Moreover, as demonstrated by experimental results, the application of this
filter improves the quantitative metrics of periodicity detection compared to the
filter employed in [8].
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Fig. 3. (a) An example of a distance matrix D in which two periodic motions (jumping,
waiving) appear after a non-periodic one (stand up). (b) The enhanced distance matrix
Df which is fed into P-MUCOS-S2. The two orange triangular parts (top-right, bottom
left) are excluded from the commonality search space.

P-MUCOS-S2, stage 2: The filtering operation of stage 1 enhances the dis-
tance matrix so that a commonality can be detected more easily by MUCOS.
However, this enhancement fails close to the endpoints of a commonality path.
This is because the filtering operation close to the end-points of a commonality
path involves, inevitably, values that are outside the commonality rectangle (see
for example points q′1 and p′1 when the filter is applied to point p in Figure 2).
To deal with this issue, the second stage of P-MUCOS-S2 operates as follows.
For each detected commonality c of the first stage, its endpoints are extended in
the direction that is locally parallel to c, by measuring the following objective
function ω(c)

ω(c) =
A(c)∑

p∈cD(p) + ε
, (3)

where A(c) is equal to the area of the bounding rectangle of the commonality
path c, P (c) =

∑
p∈cD(p), and ε is a small constant preventing division by zero.

This objective function captures the trade-off between the terms A(c) and P (c).
Specifically, commonalities c with large A(c) are preferable. At the same time,
as A(c) increases, P (c) also increases. The selected commonality endpoints are
the ones that optimize the objective function ω(c). Example detections of the
second stage are plotted as black lines in Figure 1.

Finally, the period T of a periodic segment that corresponds to a detected
commonality c, can be estimated as the average of the quantities j − i, for all
points (i, j) ∈ c.
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Fig. 4. Snapshots from videos of the PERTUBE dataset.

4 Experimental Results

Datasets: The proposed method was evaluated on one dataset that contains
motion capture (mocap) data and on two datasets that contain conventional
RGB videos.

– MHAD202-s dataset: Contains 202 motion data sequences of the 101
sequence pairs of the MHAD101-s dataset [10]. Each video consists of 3-
7 periodic actions (e.g. jumping in place, jumping jacks, bending hands)
and non periodic actions (e.g. throwing a ball, sit down). Each frame of a
sequence represents the 3D human pose as a 64D vector whose dimensions
encode angles of selected body parts. Distance matrices are obtained by
estimating the Euclidean distances in pairs of such vectors.

– MHAD202-v dataset: Contains the 202 videos that correspond to the 202
motion capture sequences of the MHAD202-s dataset. As suggested in [10]
and employed in [8], each frame is represented as a 100D vector that con-
catenates trajectory shape, HOG, HOF, and MBH descriptors computed on
top of Improved Dense Trajectories (IDT) features [16].

– PERTUBE dataset: This dataset was introduced in [8] for assessing so-
lutions to the periodicity detection problem. PERTUBE contains 50 videos
showing human, animal and machine motions in lab settings or in the wild
(see Fig. 4). The representation of video frames is as in MHAD202-v.

Performance metrics: In order to assess the performance of the proposed
methods we employed the standard metrics of precision P, recall R, F-measure
score F1 score and overlap O (intersection-over-union). The reported metrics
were computed in each individual sequence and then averaged across all se-
quences of a dataset.

Obtained results: Table 1 summarizes the results of P-MUCOS-S2, P-MUCOS
and BASELINE methods [8] on the MHAD202-s, MHAD202-v and PERTUBE
datasets. All algorithms run with the same parameters in different datasets.
It can be verified that in all datasets, P-MUCOS-S2 outperforms P-MUCOS
and the baseline method. The difference in performance is more striking in the
more challenging, real-world PERTUBE dataset where P-MUCOS-S2 achieves
a 10% and 7% improvement in overlap and F1 score, respectively, compared
to P-MUCOS. Our interpretation is that the MHAD202-s and MHAD202-v
datasets contain simpler data, i.e., each sequence contains clearly periodic and
non-periodic parts of the motion of a human recorded in laboratory conditions.
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Table 1. Evaluation results on the MHAD202-s, MHAD202-v and PERTUBE datasets.

MOCAP VIDEO

Dataset MHAD202-s MHAD202-v PERTUBE

Metric R(%) P(%) F1(%) O(%) R(%) P(%) F1(%) O(%) R(%) P(%) F1(%) O(%)

P-MUCOS-S2 90.4 93.2 91.2 85.4 87.8 98.6 92.7 87.1 92.5 80.2 83.9 75.9

P-MUCOS 85.8 95.7 89.5 82.1 94.4 89.5 90.9 84.7 97.5 68.0 76.8 65.8

BASELINE 86.3 92.9 88.8 82.4 93.2 86.2 88.9 81.6 79.3 61.1 66.8 57.3

This is contrasted to the more complex situations encountered in the youtube
videos of PERTUBE. As a result, the distance matrices of the MHAD datasets
are already of good quality. Therefore, the improved filtering and the two stage
approach followed in this paper has more significant impact when applied to the
lower-quality distance matrices of the PERTUBE data set.

We have also evaluated the following variant of the proposed method. We kept
the original filtering of P-MUCOS and on that result, we applied the second stage
proposed in this work. This hybrid scheme yields an overlap rate O = 70.5%
on the PERTUBE dataset. This means that the filtering improvement of this
work and the introduction of the second stage contribute approximately equally
to the improvement of the P-MUCOS-S2 over the P-MUCOS. Finally, from a
computational point of view, P-MUCOS-S2 is about three times faster than
P-MUCOS.

5 Conclusions

We proposed a method for discovering periodic segments in motion captured
data and videos improving the state-of-the-art method proposed in [8]. The
proposed framework is applied to distance matrices of pairwise distances of all
frames of a given sequence detecting periodic actions in two stages. The experi-
mental results on challenging datasets showed the effectiveness of the proposed
method. As future work, we plan to extend the proposed method in two direc-
tions, (a) computation of the number of repetitions of a certain action [14] and
(b) monitoring of the variation of the period of periodic motions. Both of these
quantitative and qualitative characterizations of periodic motions find important
applications in several computer vision applications involving action recognition,
anomaly detection (e.g., [12]), performance characterization (e.g. [1]), e.t.c.
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