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ARTICLE INFO ABSTRACT

We present RFOVE, a region-based method for approximating an arbitrary 2D shape with an automatically
determined number of possibly overlapping ellipses. RFOVE is completely unsupervised, operates with-
out any assumption or prior knowledge on the object’s shape and extends and improves the Decremental
Ellipse Fitting Algorithm (DEFA) [1]. Both RFOVE and DEFA solve the multi-ellipse fitting problem by per-
forming model selection that is guided by the minimization of the Akaike Information Criterion on a suitably
defined shape complexity measure. However, in contrast to DEFA, RFOVE minimizes an objective function
that allows for ellipses with higher degree of overlap and, thus, achieves better ellipse-based shape approx-
imation. A comparative evaluation of RFOVE with DEFA on several standard datasets shows that RFOVE
Overlapping objects achieves better shape coverage with simpler models (less ellipses). As a practical exploitation of RFOVE, we
Ellipse fitting present its application to the problem of detecting and segmenting potentially overlapping cells in fluores-
AIC cence microscopy images. Quantitative results obtained in three public datasets (one synthetic and two with
more than 4000 actual stained cells) show the superiority of RFOVE over the state of the art in overlapping
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1. Introduction

The approximation of a 2D object with a sufficient number of
geometric primitives is an interesting problem in computer vision
and pattern recognition with several applications including object
detection and retrieval [2,3], tracking [4], motion analysis and action
recognition [5,6]. The selection of the type of prototypes such as
rigid templates, line segments [7], deformable part models [8], cir-
cles [9,10], ellipses [1,11-15], ellipsoids and superquadrics [16,17] is
application-dependent [1].

In our previous work [1], we have proposed the Augmentative
Ellipse Fitting Algorithm (AEFA) and the Decremental Ellipse Fitting
Algorithm (DEFA) to solve the problem of approximating a 2D shape
by a set of ellipses. AEFA gradually increases the number of ellipses
that approximate a given 2D shape starting from a single one, while
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DEFA reduces the number of ellipses starting with a large (but auto-
matically determined) number of such ellipses. On average, DEFA is
three times faster than AEFA and yields slightly better results [1].
Thus, in this work, we focus on improving DEFA.

DEFA approximates a 2D shape with an automatically determined
number of ellipses, achieving a good balance between model com-
plexity (number of ellipses) and shape coverage (percentage of shape
points covered by the ellipses) under the so-called Equal Area con-
straint. According to this constraint, the sum of the areas of all ellipses
should be equal to the area of the given shape. The parameters of the
ellipses are iteratively estimated based on the covariance matrix of
the shape pixels that are associated to them through hard clustering.
Due to this hard clustering, DEFA gives good quality solutions when
the shape can be approximated with ellipses of low overlap. How-
ever, in case that the shape is better approximated with considerably
overlapping ellipses, DEFA fails to estimate accurately their param-
eters. In this work, we overcome this problem by relaxing the Equal
Area constraint and by optimizing directly for shape coverage. More
specifically, we require that the union of shape points under all esti-
mated ellipses is as close as possible to the area of the original shape.
This allows a data point to be associated with more than one ellipses
and makes a very significant difference in the final result.
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Fig. 1(a), (b) and (c) show the results of DEFA and RFOVE in a sim-
ple, illustrative example of a shape that consists of two overlapping
ellipses. DEFA gives a coverage of 94.2% with two ellipses (Fig. 1 (a))
and of 95.1% with one ellipse (Fig. 1 (b)), and selects one ellipse to
represent this shape. RFOVE (Fig. 1 (¢)) gives a coverage of 99.1% with
two ellipses. Clearly, the solution of RFOVE agrees better with human
intuition. The yellow points in Fig. 1 (c) contribute to the estimation
of both ellipses.

Fig. 1 (d) shows several overlapping 2D elliptical shapes and the
result of the application of RFOVE. The ground truth centroid of each
object is shown with a red plus. The boundaries detected by the
proposed method are plotted in green color and are in almost full
agreement with the ground truth.

The superiority of RFOVE over DEFA has been experimentally
verified in several public datasets. On top of this, we assess the
impact of RFOVE on the problem of cell segmentation in fluorescence
microscopy images. Cell segmentation plays a key role in high-
throughput applications such as quantification of protein expression
and the study of cell function [19]. Moreover, the detection of over-
lapping objects of different size and pose that do not usually contain
enough visible geometrical evidence, make cell boundary estimation
avery challenging task [18]. Fig. 1 (e) shows a fluorescence microscopy
image of cells that are heterogeneous in shape and size. The image
exhibits considerable foreground and background intensity varia-
tions. In Fig. 1 (f) the ground truth centroid of each cell is shown with
a red plus. The boundaries detected by RFOVE are plotted in green
color and are in almost full agreement with the ground truth, despite
the existence of several touching/overlapping cells.

2. Related work
We review representative research efforts related to the problem

of ellipse-based approximation of a given 2D shape as well as to the
problem of cell segmentation.

2.1. Approximating 2D shapes with ellipses

Several methods have been proposed for modeling a given 2D
shape with a set of ellipses. Most of them can be classified into
(a) boundary-based methods that minimize the approximation error
between the ellipses and edge data points and (b) region-based
methods that minimize the approximation error between the regions
of ellipses and the given shape [1]. The first category of methods
typically employ the Hough Transform [20], Genetic Algorithms [21]
or edge-following schemes [22]. Most of them work well when
the ellipses are partially occluded, but cannot perform region-based
fitting of multiple ellipses. Other methods fit ellipses based on the
detection of special geometric points e.g. pupils in the case of faces
images [11], that are used to define three main parameters of the
ellipses (ellipse center, orientation, minor and major axis).

Region based methods are more tolerant to noise since they take
into account all shape points. For a single ellipse, its parameters can
be analytically determined based on the second order moments of
the data [5]. For more than one ellipses, several methods provide
approximate solutions. For some approaches, the number of ellipses
should be known a priori [23]. Other methods assume that other
aspects of the model structure is known [24]. As an example, in [24]
a Gaussian Mixture Model (GMM) is estimated using Expectation-
Maximization (EM) for decomposing a silhouette into images. This
method assumes a known number of ellipses which must be orga-
nized in a known hierarchical structure. These two constraints
greatly simplify the problem because they permit the optimization of
a subset of ellipses at a time as opposed to the optimization of the full
set of parameters of an unknown number of ellipses. In [25], the 2D
skeleton of a shape is used to partition it into a set of regions. Then,
a set of ellipses is computed for each region via least squares fitting.
A greedy cost minimization is then applied to the entire model to
merge any suboptimal ellipses in a way that maximizes the coverage
of the 2D shape. The use of a 2D skeleton and the local ellipse fitting
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Fig. 1. (a) The green and blue points constitute the foreground. The figure shows the results of DEFA when forced to estimate two ellipses. The two colors indicate the achieved
assignment of points to ellipses. (b) DEFA result for the image of (a) when DEFA estimates a single ellipse. (c) The result from the application of the proposed RFOVE algorithm on
the same data. The yellow points participate in the estimation on both ellipses. (d) The result of RFOVE in a synthetic image from [18]. (e) A fluorescence microscopy image and (f)
the output of the proposed method. In (d) and (f) the boundaries of the detected objects are shown in green color and their ground truth centroids are plotted as red pluses. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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makes this method very fast. However, it is sensitive to errors occur-
ring during the initial selection of regions. For example, the use of 2D
skeleton failed to accurately detect the borders between regions of
different width (e.g., see Fig. 3 (b) of [25]).

2.2. Cell segmentation

Image segmentation is a key step in many image/video analy-
sis tasks and multimedia applications [26]. Cell segmentation is an
important problem in biomedical image analysis, which we use as
a benchmark for assessing the usefulness of the proposed RFOVE
method. Cell segmentation can be addressed by interactive tech-
niques [27]. However, interactive/manual cell segmentation is a sub-
jective, tedious, labor-intensive and time-consuming task, especially
for large datasets. Therefore, automatic cell segmentation methods
with the ability to deal with different cell types and image artifacts
are required [19,18,12].

Several image segmentation methods have been proposed to
automatically detect and split overlapping cells in fluorescence
microscopy images. Most of these methods consist of two major steps,
(a) segmenting cells and cell constellations from their image back-
ground and (b) splitting of overlapping cells. One popular thresholding
method that can be used as an initialization step in cell detec-
tion is Otsu’s method [12-14,28,29], that performs fully automatic,
clustering-based image thresholding. Otsu’s method calculates the
optimum threshold separating the foreground from the background
so that their combined spread (intra-class variance) is minimal.
The Otsu’s method does not perform sufficiently well when the
assumption of a bimodal image intensities distribution is violated.
This happens, for example, when there is considerable intensity
inhomogeneity in the image foreground and/or background (e.g.,
see Fig. 1 (e)). This problem is also common to other segmentation
methods that compute global thresholds for detecting cells [30].

Deformable models, which are able to capture a wide spectrum
of shapes, can also be considered as another category of cell seg-
mentation techniques [19]. There are two main types of deformable
models: parametric, which use an explicit representation of objects,
and implicit like level sets. Level sets methods [31,32,12] have been
used to extract contours and to evaluate whether a cell is blurry.
Such methods show promising results, but they usually require
initialization e.g., by Otsu’s method as proposed in [12].

Deep convolutional neural networks (CNNs) have been applied
recently to cell segmentation [33-35], cell splitting [36] and track-
ing [37] so as to learn cell appearance features. In [33], a deep CNN is
combined with the Voronoi diagram of clusters to detect neutrophils,
a primary type of immune cells. The CNN-based hierarchical repre-
sentation of features outperforms hand-crafted features on this task.
In [35], cell segmentation is performed using MultiResUNet archi-
tecture, a modified version of U-Net [38], that improves the results
of the state-of-the-art U-Net model[38]. In [34], a multistage CNN is
trained to produce the categorization of all pixels. Deep CNNs have
been also applied to the problem of cell nuclei splitting [36], yielding
high performance results even when the training set is a small sub-
set of the original dataset. In [37], the proposed cell tracking method
consists of a particle filter motion model, a multi-task learning obser-
vation model based on CNNs, and an optimized model update strategy
to enable the multi-task observation model for the variation of the
tracked cell over the entire tracking procedure. Such methods yield
high performance results, but are training set dependent.

The splitting of touching cells is often handled with watershed-
based segmentation [39,40]. However, such methods suffer from
over-segmentation when cells have different sizes and shapes [13].
The over-segmentation is reduced in [40] using marker-controlled
watersheds, but the detection of markers is still not accurate in
cases of considerably overlapping cells [12]. In [19], touching cells
are first distinguished from non-touching ones based on predefined

rules applied to the convex hull of the segmented cell regions. Then,
splitting is achieved by identifying splitting point-pairs. In [30] the
splitting is performed by minimizing the maximum eccentricity of
the resulting sub-regions under the constraint of equal cells area.
This results in equally sized cells of almost circular shape.

Many recent methods [12-15] operate by fitting ellipses to the
boundaries of segmented cells, or to specific proper boundary split
points. In [14] and [15], the problem of overlapping objects segmen-
tation is treated by first identifying concave points through polygonal
approximation. The concave points in the objects contour are used
to identify splitting points on the contours. Finally, ellipse fitting is
applied to such splitting points to separate the overlapping objects.
Similarly, in [13], a cell image is segmented by thresholding, followed
by a polygonal approximation to extract the feature points of cell
contours. Then, candidate splitting point pairs are obtained by cal-
culating the bottleneck rate of point pairs and then by using ellipse
fitting to identify the correct splitting point pair. Another recent
method that follows this approach is presented in [12] and consists of
four steps: contour extraction, concave point detection, contour seg-
ment grouping and ellipse fitting. The concave points include corner
points of a cell which are detected by applying a number of empiri-
cal criteria. A basic rule for contour segment grouping is that if two
segments are connected and split by one concave point, they should
not belong to the same group. Finally, an ellipse is fitted to each
group using least squares fitting [41]. Ellipses with minor and major
axes of appropriate length and low least squares fitting error are pre-
served. These methods give satisfactory results, however, they are
sensitive to errors on boundary detection and they rely on heuris-
tically determined thresholds to identify the splitting points of the
touching cells.

In [42,18], two boundary-based methods have been proposed
that use seed point extraction to discriminate overlapping objects.
The seed point extraction methods recognize the presence and esti-
mate the number of the individual objects in the image as identified
by the seed points [18]. In [42], a modified erosion process is used
for decomposing a mixture of particles into markers, and then an
edge-to-marker association method is proposed to identify the set
of evidences that eventually delineate individual objects. Next, the
set of evidences is input to a Gaussian mixture model on B-splines,
the solution of which leads to the joint learning of the missing con-
tour and the particle shape. In [18], a method starts with seed point
extraction using bounded erosion and Fast Radial Symmetry trans-
form (FRS) [43]. FRS is a feature extraction technique that transforms
the original image to a new representation that highlights the local
radial symmetry of the image gradient. Extracted seed points are
then utilized to associate edge points to objects in order to create
contour evidence. Finally, the contours of the objects are estimated
by fitting ellipses to the contour evidence. Curvature estimation can
be also used for cell splitting [13,14,44], but such methods share the
aforementioned robustness issues that are common to the rest of
the boundary-based methods. Another seed point extraction method
is the Slide Band Filter (SBF) method [45], which belongs to the
family of local convergence filters. SBF estimates the overall conver-
gence by combining all the individual convergence degrees of sample
points in such way that the convergence of the pixel interest point is
maximized along each radial direction.

In a recent work [46], we applied DEFA for the cell segmentation
problem, yielding promising results when the touching cells have
low ratios of overlap. In this work, we employ the proposed RFOVE
method to solve the cell segmentation problem yielding high per-
formance results even when the cells overlap ratio is high. Similarly
with [46], we employ a modified version of the Bradley’s segmentation
method [47], which is a real-time adaptive thresholding using the
mean of a local window to improve the accuracy in cell detection.
The Bradley’s method is selected because it is local and adaptive and
performs well in challenging images with intensity inhomogeneity.
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By employing the same baseline cell segmentation strategy as in [46]
and replacing DEFA with RFOVE, we show the impact of RFOVE in a
practical and important vision and pattern recognition problem.

2.3. Our contribution

In summary, the main contributions of this paper are:

o RFOVE an efficient, region based, parameter-free method for
approximating a 2D shape with ellipses.

o The experimental, quantitative evaluation of RFOVE based on
several standard datasets which reveals its state of the art
performance.

e The use of RFOVE to solve the problem of segmenting and
splitting cells in fluorescence microscopy images.

e The experimental evaluation of RFOVE-based cell segmenta-
tion on standard datasets, which reveals its state of the art
performance in comparison to DEFA and several other existing
methods.

3. RFOVE: Region-based Fitting of Overlapping Ellipses

We present the proposed method for Region-based Fitting of
Overlapping Ellipses (RFOVE) that improves and extends the multi-
ellipse fitting method (DEFA) [1]. Similarly to DEFA, RFOVE approxi-
mates an arbitrary 2D shape with a number of ellipses, without any
assumption or prior knowledge regarding the input shape.

3.1. Problem formulation

We assume a binary image I that represents a 2D shape. A pixel
p of I belongs either to the foreground F (I(p) = 1) or to the
background B (I(p) = 0). The area A of the 2D shape is given by

A=31(p). (1)

peF

We also assume a set E of k ellipses E;, each with individual area |E;|.
A binary image Uk is also defined so that Ug(p) = 1 at points p that
are inside any of the ellipses E; and Ug(p) = 0, otherwise. Then, we
define the coverage af of the 2D shape by the given set of ellipses E
as:

%z%gmmw. )
pe

Essentially, o is the percentage of the 2D shape points that are under
some of the ellipses in E.

Let |E| denote the sum of the areas of all ellipses |E| = !‘:1 |E;l.
Let Cr denote the area covered by all ellipses:
Ce=> Ulp). (3)

pel

It should be stressed that Cz < |E|, with the equality holding in the
case that all ellipses are pairwise disjoint. This is because in case of
two overlapping ellipses, |E| counts the area of their intersection two
times, while Cg does not.

DEFA [1] estimates the parameters of a set Ex of k ellipses Ej
so that og- as defined in Eq. (2) is maximized under the Equal Area
constraint. According to this constraint, it should hold that |[Ex| = A.
Instead, in RFOVE we want to maximize the shape coverage ag- with
a set of ellipses Ex whose Cg: is as close as possible to A. In notation,

E* = argmgxag s.t. Cg=A. (4)

In order to estimate the optimal number k of ellipses, we opti-
mize the trade-off between shape coverage o and model complexity
(number of ellipses) by employing the Akaike Information Criterion
(AIC) [48] on the shape complexity measure C defined in [1]. This is
computed on the basis of the radii of the circles that are centered on
the 2D skeleton of the shape and are maximally inscribed in it. The
AlC-based model selection criterion amounts to the minimization of
the quantity [1]

AIC(E, C) = CIn(1 — ag) + 2k, (5)

over all possible numbers of ellipses, k. Intuitively, this achieves a
good balance between the increased shape coverage that is achieved
as more ellipses are used to approximate a certain shape, with the
associated increased complexity of that model (due to the increase
of the number of employed ellipses).

The shape complexity measure we use as well as the model
selection process are invariant to shape rotation and translation and
are slightly affected by scale changes, mainly due to quantization/
resolution issues.

3.2. The RFOVE algorithm

RFOVE operates similarly to DEFA and in a number of steps which
are summarized as follows.

3.2.1. Skeleton extraction

First, the medial axis (skeleton) S of the 2D shape is computed,
which provides important information on the parameters of the
ellipses that could approximate the original shape. Medial axis skele-
tonization is sensitive to minor boundary deformations, in the sense
that a small perturbation of the boundary of a shape may result in
a significant skeleton branch. To alleviate this problem, instead of
medial axis-based skeletonization we employ shape thinning [49]
combined with a closing morphological filter [50].

3.2.2. Initialization of ellipse hypotheses

RFOVE defines a set CC of circles that are used as initial ellipse
hypotheses. The centers of these circles lie on S and their radii are
defined by the minimum distance of these centers from the contour
of the shape. Circles are considered for inclusion in CC in decreasing
order with respect to their radius. Initially, CC = @. Each considered
circle is introduced in CC if its overlap with the already selected cir-
cles is below a certain threshold. In order to reduce the cardinality
of CC and the complexity of RFOVE, circles with radius lower than
3% of the maximum radius are ignored. The number of initial circle
hypotheses constitutes an upper bound for the maximum number of
fitting ellipses.

3.2.3. Evolution of ellipse hypotheses

The Gaussian Mixture Model Expectation Maximization (GMM-
EM) algorithm is responsible for computing the parameters of a
fixed number k of the ellipses in E with the best coverage oy of the
given 2D shape. This is achieved by repeatedly applying two steps
(a) shape points assignment to ellipses, and (b) ellipse parameters
estimation.

o Assignment of shape points to ellipses: A point p is assigned to an
ellipse E; iff p is inside that ellipse. Formally, it should hold that

F(p,E;) < 1.0, (6)
where

P —cill
F(p,Ej) = ——. 7
B = T =i %
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In Eq. (7), ¢; is the origin of ellipse E;, p’ is the intersection of the
line connecting p and ¢; with the ellipse E;, and || - || signifies the
length of a 2D vector. Thus, F(p,E;) = 1.0 for points p that lie
on the boundary of E;. Given that ellipses may overlap, a shape
point p may be associated with more than one ellipses.

o Estimation of ellipse parameters: The parameters of an ellipse
E; are directly updated by the second order moments of the
points associated to this ellipse in the previous, assignment
step.

3.2.4. Solving for the optimal number of ellipses

Different models (i.e., solutions involving different numbers of
ellipses) are evaluated based on the AIC criterion (see Eq. (5)) that
balances the trade off between model complexity and approxima-
tion error. In order to minimize the AIC criterion, RFOVE reduces the
number of considered ellipses starting from a large, automatically
defined set (the set CC of circles defined in the initialization step).
Since there is no lower bound on the AIC as the number of ellipses
decreases, this process continues until the set of all ellipses contains
a single ellipse. In each iteration (each candidate number of ellipses
from |CC| down to 1), a pair of ellipses is selected as candidates for
merging. DEFA considers the merging of adjacent ellipses, only. On
the contrary, RFOVE considers any pair of ellipses as candidates for
merging. The pair that is finally merged is the one that results in the
lowest AIC. From all possible models (involving from a minimum of
1 to a maximum of |CC] ellipses), RFOVE reports as its final solution
the one with the minimum AIC.

3.2.5. Rejecting spurious solutions

For an ellipse E;, we define its overlap ratio O(E;) as the percentage
of its points that are overlapping with the union of the rest of the
ellipses, that is:

|E;n (Uj = 1.j # ikE;)|

OCE:) = IEil

: (8)

An ellipse E; with overlap O(E;) that is higher that a predefined
threshold T,y = 95% is rejected from being considered part of a
model. Fig. 2 provides an example of such a situation. The ellipse E,
has a high O(E,) value, therefore, a small contribution to the cover-
age of the image foreground, compared to a solution involving only
E; and Es. Thus, it can be excluded from the final solution.

Fig. 3 provides another example that shows that by setting appro-
priately the T,, value, one can control the segmentation results. The
figure shows the application of RFOVE in an image with T,, = 40%
(left, under-segmentation), and T,, = 95% (right, near perfect
segmentation).

RFOVE has the same computational complexity as DEFA [1]. This
is equal to O(c2n), where n denotes the number of foreground pixels
and ¢ = |CC| denotes the number of circles that constitute the initial
hypotheses of ellipses representing the 2D shape.

Fig. 4 illustrates an example run of RFOVE. Fig. 4 (a) shows the
skeleton and the initial ellipse hypotheses of the 2D shape. Fig. 4
(b)-(f) show the ellipses estimated by RFOVE in the case of 9, 5, 3, 2
and 1 ellipses. The colormap of Fig. 4 (b)-(f)corresponds to F(p), that
is, the distance of foreground pixels from the ellipses introduced so
far (cold and warm colors denote small and large distances, respec-
tively). Fig. 4 (i) shows the final solution and the clustering of pixels
(g = 98.8%), respectively. Fig. 4 (j) shows the AIC and BIC criteria
for different values of k. A clear minimum at k = 2 is identified. As it
can be verified, the minimization of AIC or BIC yields the same solu-
tion. Thanks to the ability of RFOVE to handle overlapping ellipses,
this solution agrees with human intuition better than the solution of
three ellipses provided by DEFA (Fig. 4 (g)) with o = 94.7%.

4. Using RFOVE for cell segmentation

We assume a gray-scale image (see Fig. 1 (a)) depicting a number
of cells that vary with respect to size and shape and which may be
touching each other. The cells as well as the background on which
they appear may also vary in brightness. Each cell is free of holes and
can be discriminated from its local background because of its higher
brightness and its elliptic-like shape.

4.1. Segmenting cells from their background

The first step in our approach is to apply the Bradley’s segmen-
tation method [47] and a hole filling step. We get slightly better
results by performing image smoothing, e.g. using a Gaussian filter
with o = 2, prior to segmentation. The Bradley’s method calcu-
lates a locally adaptive image threshold that is chosen based on local,
first-order image statistics around each pixel. This method is robust
to illumination changes and clearly outperforms global threshold-
ing techniques like Otsu’s method [28] in images that exhibit strong
illumination variations. A drawback of Bradley’s method is that, seg-
ments of the background with locally higher brightness are identified
erroneously as cells (see Fig. 5 (b)). To reduce these false positives, we
have introduced two shape- and one appearance-based constraints.

e Area constraint (shape): The expected area of each cell should
exceed a minimum threshold, T,. So, segments that are partic-
ularly small, are rejected from further consideration. To avoid
the rejection of cells that are partially visible (i.e., appear
at/intersect with image boundaries), T, is applied not to the
measured object area but rather on an approximation of their
expected area which is computed as the area of the circle
that can be fitted best to the eight extrema points of their
boundary [9].

e Roundness constraint (shape): Cells are circular/elliptic-like
objects, so we have used the roundness measure to reject
objects with complex shapes that deviate considerably from
this pattern. The Roundness R measures how closely the shape
of an object resembles that of a perfect circle and is defined by
the following ratio:

4no
R= pT' 9)

where « and p denote the area and the perimeter of the object,
respectively. The roundness R takes a maximum value of 1 for
the perfect circle. According to our experiments, for a region to
actually represent a cell it is required that R > 0.2.

o Intensity constraint (appearance): The aforementioned shape
constraints suffice to reject several false positives as, for
example, the one in the image center and the two in the
top-right of Fig. 5 (b). We introduce another, intensity-based
constraint, that is uncorrelated to the shape-based constraints,
to reject more false positives such as the circular object on
the top right of Fig. 5 (b). The intuition behind this constraint
is that the intensity distribution within a cell should be more
similar to the intensity distribution within the rest of the cells,
rather than to the intensity distribution of the local back-
ground. To quantify this, we first extract the local background
of each detected object by computing the Voronoi diagram of
the objects’ centroids and by removing from this the detected
objects (see Fig. 5 (c)). To measure the distance between two
intensity distributions, we employ the popular Bhattacharyya
distance [51,52] under the assumption of normal distributions.
More specifically, assuming two distributions gq; and q,, their
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(a)

Fig. 2. (a) A 2D shape and (b) three ellipses E1, E; and E3 that are considered as a model approximating it. Notice that E; has very large overlap with E; and E3 (yellow pixels), so it
does not contribute significantly to increasing the coverage of the shape. Given that this overlap is greater than 95%, the proposed method will automatically reject the inclusion
of this ellipse to the model of the 2D shape. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(a) T,, = 40%

(b) Tpo = 95%

Fig. 3. (a) A solution of RFOVE with T,, = 40% and (b) Toy = 95%.

means f; and their variances 01.2, i € {1,2}, the Bhattacharyya
distance D(qy,q;) of q; and g, is defined as [53]:

(th —ﬂz)z] (10)

1 o} o2 1
D(q1,q2)—4[ln(4022+4012+2 + o7+ o2

Fig. 5 (b) shows the boundaries of the detected cells as those
were identified by the original Bradley’s segmentation method [47]
superimposed to the input image and the ground truth as in Fig. 1
(f) The four false positives are rejected by employing the proposed
constraints (see Fig. 5 (d)).

4.2. Identifying overlapping cells

We apply RFOVE to each and every connected region that comes
as a result of the previous segmentation step. In practice, assuming
that most of the cells appear isolated (i.e. not overlapping with oth-
ers), we apply RFOVE in all regions whose area is greater than the
median area of all detected regions. This results in a computational
speedup of about 50% without sacrificing the quality of the obtained
results. If more that half of the connected components resulting from
the segmentation step correspond to overlapping/touching cells, the
median can be substituted by a lower percentile value.

5. Experimental evaluation

We performed several classes of experiments to evaluate quan-
titatively and qualitatively RFOVE! and its capacity to (a) approx-
imate 2D shapes with ellipses and (b) to support the segmenta-
tion of potentially overlapping cells. The following sections describe
the employed datasets (Section 5.1), the evaluation metrics used
(Section 5.2) and the obtained results (Sections 5.3 and 5.4). In each
experiment, RFOVE is compared quantitatively against state of the
art approaches. Qualitative results are also provided.

5.1. The employed datasets

The experimental evaluation of the proposed method was con-
ducted based on several datasets [54,18,1].

5.1.1. DEFA dataset [1]
This dataset contains 3950 binary shapes. It consists of the
following four sub-datasets:

e MPEG-7 dataset [55]: consists of 1400 shapes organized in 70
categories with 20 shapes per category.

e a subset of LEMS [56], i.e.,, 1462 shapes that come from
the following categories of the original database: Buildings,

1 Our intention is to make the code implementing the proposed method together
with the datasets and the experimental results publicly available at https://sites.
google.com/site/costaspanagiotakis/research/cs.
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Fig. 4. (a) The skeleton and the initial ellipse hypotheses of the 2D shape. (b)-(f): The intermediate solutions proposed by RFOVE using 9, 5, 3, 2 and 1 ellipses. Captions show
the estimated values of shape coverage ag. (g) The association of pixels to k = 3 ellipses which is the final solution estimated by DEFA. (h) The AIC and BIC criteria for different
values of k for DEFA. (i) The association of pixels to k = 2 ellipses which is the final solution estimated by RFOVE. The points in yellow color contribute to the definition of both
ellipses. (j) The AIC and BIC criteria for different values of k for RFOVE. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Containers, Fish, Fruit and vegetables, Misc Animal, People, 5.1.2. U20S dataset [54]

Robots, Toddlers and Turtles, and SISHA SCALE and SISHA A collection of 48 images (1349 x 1030 pixels) that include 1831
SHEAR datasets. U20S cells.

o SISHA SCALE dataset [1]: Contains 32 original shapes and 16
scale transformations (544 images in total). 5.1.3. NIH3T3 dataset [54]

o SISHA SHEAR dataset [1]: Contains 32 original shapes and 16 A collection of 49 images (1344 x 1024 pixels) that include 2178
shear transformations (544 images in total). NIH3T3 cells. The NIH3T3 dataset is more challenging than U20S

@
o
1
(a) (b) (d)

Fig. 5. (a) A fluorescence microscopy image. (b) The boundaries of the cells as detected by the Bradley’s segmentation method [47] superimposed on (a). The ground truth cell
centroids are shown with red “+". (c) The detected cells (plotted in black) and their local backgrounds defined based on the Voronoi diagram of their centroids. (d) The final cell
segmentation result of the RFOVE method. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 1
The average AIC of AEFA, DEFA and RFOVE, the Pr(AEFA/AIC), Pr(DEFA/AIC) and the
Pr(RFOV E/AIC) computed on all images of the four DEFA datasets.

Table 3

Comparison of the performance of seedpoint extraction methods on the Synthetic
dataset [18]. The second column shows the maximum overlap ratios of each of the
three categories (40%, 50%, and 60%) of the Synthetic dataset.

Dataset AIC AIC AIC Pr Pr Pr
AEFA DEFA RFOVE (AEFA/AIC) (DEFA/AIC) (RFOVE/AIC) Overlap ratioininput [%]  TPR[%] PPV[%]  AD (pixel)
MPEG-7 —447 -451 -495 7.6% 9.1% 71.2% BE-FRS [18] 40 95 100 2.03
LEMS -635 —639 -694 3.8% 3.5% 87.3% FRS [43] 40 96 99 2.14
SISHA-SCALE -43.6 —44.6 -48.7 6.4% 7.4% 75.7% SBF [45] 40 97 97 2.85
SISHA-SHEAR —53.4 —543 -59.4 9.4% 10.3% 75.4% DEFA [1] 40 76 87 0.81
) ] RFOVE (proposed) 40 96 97 0.58
Bold entries show the top-performing method. BE-FRS [18] 50 93 100 210
FRS [43] 50 94 97 2.20
dataset, since it contains cells/nuclei with varying brightness, and SBF [45] 50 94 99 3.05
images often contain visible debris [54]. Both U20S and NIH3T3 DEFA [1] >0 7 85 112
. K . RFOVE (proposed) 50 91 95 0.78
datasets include cells that are heterogeneous in shape and size. BE-FRS [18] 60 92 100 223
FRS [43] 60 94 99 2.32
5.1.4. Synthetic dataset [18] SBF[4[5]] 60 94 96 3.08
: : : : : : i Al 60 68 86 1.53
Consists of images with overlapping objects with elliptical shape DEF,

8 ppIng obj p P RFOVE (proposed) 60 89 96 1.04

that are randomly scaled, rotated, and translated. The dataset con-
sists of 150 sample images of 300 x 400 pixels, split into three
subsets based on the degree of overlap of the objects. In each subset
the maximum overlap ratios allowed are 40%, 50%, and 60%, respec-
tively. Each subset of images in the dataset contains 50 images of
40 objects. The minimum and maximum width and height of the
bounding boxes of the ellipses are 30, and 45 pixels, respectively.

5.2. Evaluation criteria

Several metrics are used to evaluate RFOVE. The multitude of
these metrics is because (a) we want to evaluate several different
aspects of RFOVE, (b) different datasets provide ground truth in dif-
ferent forms and (c) in order to be able to compare with different
state of the art methods and, given the lack of availability of their
implementations, we need to adapt to the evaluation metrics used in
the relevant publications.

5.2.1. Metrics for multi-ellipse fitting

Given the lack of objective ground truth in the DEFA dataset, as
in [1], we compare multi-ellipse fitting methods on the basis of the
shape coverage oy and the AIC that they achieve. A larger shape
coverage is preferable. Moreover, a smaller AIC signifies better bal-
ance between model complexity and shape coverage. To compare
methods on the basis of a, we also compute Pr(m/ag). For a given
multi-ellipse fitting method m, Pr(m/ag) is the percentage of images
of the dataset in which method m clearly outperforms all other meth-
ods it is compared with respect to coverage ag. As in [1], a method
is supposed to clearly outperform another method if its performance
in a certain metric is better by a margin of 0.1%. It also turns out that
the value 100% — Y°,, Pr(m/ o) gives the percentage of images of the
dataset for which there is no clear winner method. As an example,
the interpretation of the 6th column of the first line on Table 2 is that
in the MPEG7 dataset, RFOVE clearly outperformed AEFA and DEFA in
the coverage o criterion in 68.7% of the images. Similarly, we define
and compute Pr(m/AIC).

In datasets where ground truth is available (e.g., in Synthetic
dataset), to assess the performance of ellipse fitting we employ

Table 2
The average coverage o of AEFA, DEFA and RFOVE, the Pr(AEFA/ o), Pr(DEFA/ o) and
the Pr(RFOV E/ag) computed on all images of the four DEFA datasets.

Dataset 073 of ap Pr Pr Pr

AEFA DEFA RFOVE (AEFA/ag) (DEFA/og)  (RFOVE[og)
MPEG-7 89.9% 90.1% 91.7% 8.4% 8.1% 68.7%
LEMS 93.0% 93.1% 94.7%  4.0% 3.9% 84.4%
SISHA-SCALE 93.6% 93.7% 94.8% 59% 5.1% 74.4%
SISHA-SHEAR 92.9% 93.0% 94.5% 7.5% 10.5% 73.7%

Bold entries show the top-performing method.

the True Positive Rate (TPR) and Positive Predictive Value (PPV), as
in[18]:

P

TPR = 5N (1
P

PPV = 7TP+FP' (12)

where True Positive (TP) is the number of correctly detected seed-
points or segmented objects, False Positive (FP) is the number of
incorrectly detected seedpoints or segmentation results, and False
Negative (FN) is the number of missed seedpoints of objects. For
RFOVE, the equivalent of seedpoints are the centroids of the esti-
mated ellipses. Similarly to [18], in order to determine whether a
seedpoint was correctly detected (TP), the distance to the ground
truth object center was computed and the decision was made using
a predefined threshold. The threshold value was set to 8 pixels [18].
The average distance (AD) from detected seedpoints to the ground
truth object center point was used as the third performance measure
for seedpoint extraction. To decide whether the splitting result was
correct or incorrect, the Jaccard Similarity coefficient (JSC) was used.
The threshold values for the ratio of overlap were set 0.7 as in [18].
The average Jaccard Similarity coefficient (AJSC) value was also used
as another metric for evaluating the splitting performance.

5.2.2. Metrics for cell segmentation

We employed both region-based and contour-based metrics, as
in [19]. The region-based metrics include the JSC Similarity coeffi-
cient, widely used to measure spatial overlap, as well as Dice false

Table 4

Comparison of the performance of the proposed method on the Synthetic dataset [18].
The second column shows the maximum overlap ratios of each of the three categories
(40%, 50%, and 60%) of the Synthetic dataset.

Overlap ratio in input [%] TPR [%] PPV[%] AJSC [%]
BE-FRS [18] 40 93 95 89
CECS [15] 40 89 91 83
DEFA [1] 40 72 83 86
RFOVE (proposed) 40 95 96 92
BE-FRS [18] 50 88 92 83
CECS [15] 50 82 87 73
DEFA 50 64 77 84
RFOVE (proposed) 50 82 92 90
BE-FRS [18] 60 87 91 80
CECS [15] 60 75 83 65
DEFA [1] 60 59 75 83
RFOVE (proposed) 60 84 91 89

Bold entries show the top-performing method.

Bold entries show the top-performing method.
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Fig. 6. Results of DEFA (1st row) and RFOVE (2nd row) on selected shapes from the LEMS dataset. Captions show the values of achieved shape coverage .

positives (Dice FP) and Dice false negatives (Dice FN). Dice FP assesses
over-segmentation and Dice FN under-segmentation. As contour-
based metrics, we use the Hausdorff distance and the Mean Absolute
contour Distance (MAD).

5.2.3. Metrics for cell splitting

As in [19], we also employ the number of false positives (FP)
that counts the spuriously segmented cells and the number of false
negatives (FN) that counts the cells that have not been segmented.

5.3. Results on multi-ellipse fitting

5.3.1. Quantitative results

We evaluated the capacity of RFOVE to perform multi-ellipse fit-
ting on the DEFA dataset and in comparison with the AEFA and DEFA
methods [1]. Table 1 shows the average AIC of AEFA, DEFA and RFOVE,
as well as the Pr(AEFA/AIC), Pr(DEFA/AIC) and the Pr(RFOV E/AIC)
computed in the four DEFA sub-datasets. The corresponding statis-
tics for shape coverage ag are presented in Table 2. RFOVE clearly
outperforms AEFA and DEFA. DEFA slightly outperforms AEFA as also
reported in [1]. When o is considered, RFOVE outperforms AEFA and
DEFA in 78% of the 3950 shapes. When AIC is considered, RFOVE out-
performs AEFA and DEFA in 80% of the 3950 shapes. RFOVE is clearly
superior in the LEMS dataset, where it outperforms AEFA and DEFA
in 87% and 84% of the 1462 shapes, respectively, when Pr(AEFA/AIC)
and ag are considered. This can be explained by the fact that the
average complexity of shapes in LEMS is higher than that of MPEG
and SISHA datasets [1]. Thus, in LEMS there exist more complex
shapes that are better modeled and approximated by RFOVE.

The performance of the RFOVE has been also evaluated on the
Synthetic dataset [ 18] and in comparison to state of the art seedpoint
based extraction methods (Table 3, comparison with BE-FRS [18],

FRS [43] and SBF [45]), as well as ellipse fitting methods (Table 4,
comparison with BE-FRS [18], CECS [15] and DEFA [1]). Both Tables
show the performances of BE-FRS, FRS, SBF and CECS as reported
in [18]. In all cases, the performance of RFOVE is comparable or sur-
passes that of the state of the art, while it clearly outperforms the
competing seedpoint extraction methods on the average distance
(AD) metric.

It should be mentioned that RFOVE requires the setting of only a
few parameters (three shape and area constraints to remove spurious
solutions). In contrast, the top performing method BE-FRS requires
setting several parameters concerning the type of structuring ele-
ment that determines the erosion process, the number of erosion
operations, the range of radii at which the FRS transform is com-
puted, the Radial-Strictness that defines to what extent the radial
symmetry-ness of features and the divergence weight factor [18].

5.3.2. Qualitative results

Figs. 6 and 7 show representative results from DEFA and RFOVE
on selected shapes from the LEMS and MPEG7 datasets, respectively.
RFOVE gives lower AIC and higher coverage than DEFA even with
lower number of ellipses (see Figs. 6 (a) and (d), 7(b) and (e)). In
addition, thanks to its capability to handle ellipses with considerable
overlap, RFOVE better captures shape details than DEFA (see Figs. 6
(b) and (e), (c) and (f), 7(a) and (d), (c) and (f)).

Fig. 8 shows three representative results of RFOVE method on
the Synthetic dataset using three sample images belonging in the
three categories of the Synthetic dataset with 40% (left), 50% (mid-
dle) and 60% (right) overlapping ratios. The ground truth centroid of
each object is shown with a red plus. The boundaries detected by the
proposed method are plotted in green color and are in almost full
agreement with the ground truth.
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Fig. 7. Results of DEFA (1st row) and RFOVE (2nd row) on selected shapes from the MPEG7 dataset. Captions show the values of achieved shape coverage a.

Fig. 8. Sample results of the RFOVE method on the Synthetic dataset [18]. The ground truth centroid of each object is shown with a red plus. The boundaries detected by the
proposed method are plotted in green color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5.4. Results on cell segmentation/splitting

5.4.1. Quantitative results,comparison with non-learning-based
methods

We evaluated the capacity of RFOVE to segment potentially
overlapping cells with top performing non-learning-based methods,
namely, the Three-step [32], the LSBR [31], the LLBWIP [19] and the
Otsu method with a hole filling step as described in [13]. Tables 5 and
6 summarize the results obtained on the U20S and NIH3T3 datasets,
respectively. Tables present average scores computed over individ-
ual scores per image of a dataset. On the U20S dataset, RFOVE and
LLBWIP yield similar results, outperforming the rest of the meth-
ods. RFOVE clearly outperforms all the methods under any metric
in the more challenging NIH3T3 dataset, due to the proposed adap-
tive image segmentation method that gives high performance results
under variations on background and foreground brightness.

Table 7 gives the evaluation of splitting results on the U20S and
NIH3T3 datasets, where the performances of the methods agree with

the segmentation performances. This experiment shows that RFOVE
outperforms the SEG-SELF method [46] reducing by about half the
number of false positives FP in all dataset. SEG-SELF method differs
from the proposed method in that it uses DEFA to identify splitting,
instead of using RFOVE.

Table 5

Segmentation results on the U20S dataset.
Methods Jsc MAD Hausdorff DiceFP DiceFN
Otsu [13] 83.5 4.5 115 3.0 16.7
Three-step [32] 88.4 47 134 53 52
LSBR [31] 83.2 5.8 19.8 11.8 9.1
LLBWIP [19] 91.6 3.5 12.7 4.7 3.9
RFOVE (proposed)  89.8 2.8 7.5 52 5.7

Bold entries show the top-performing method.
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Table 6

Segmentation results on the NIH3T3 dataset.
Methods JsC MAD Hausdorff DiceFP DiceFN
Otsu [13] 56.9 6.2 129 242 354
Three-step [32] 70.8 5.7 16.4 15.5 19.7
LSBR [31] 64.2 7.2 19.8 212 204
LLBWIP [19] 75.9 4.1 14.3 12.7 12.2
RFOVE (proposed)  81.0 35 8.2 133 8.1

Bold entries show the top-performing method.

Table 7

Splitting results on the U20S and NIH3T3 datasets.
Methods U20S NIH3T3

FP FN FP FN

Three-step [32] 0.5 3.9 1.7 113
LLBWIP [19] 0.3 2.7 15 5.0
SEG-SELF[46] 2.7 0.3 0.7 0.8
RFOVE (proposed) 1.9 0.3 0.3 0.8

Bold entries show the top-performing method.

5.4.2. Quantitative results,comparison with learning-based methods

A comparison of our unsupervised method to supervised,
learning-based methods is not totally fair, however it is of practical
interest to those working on the cell segmentation task. To perform
such a comparison, we rely on the experimental results reported
in [35,36] on the U20S and the NIH3T3 datasets that have been
also employed in the current study. Deep learning methods [35]
outperform the state of the art non-learning-based ones on cell seg-
mentation. In [35], the reported JSC was 91.7% and was computed
on the union of U20S and the NIH3T3 datasets, when half of them
was used for training. The proposed RFOVE method that is the top
performing non-learning-based method on this mixture of datasets
yields 85.4%. The second top performing non-learning-based method
was the LLBWIP [19] and yielded a JSC score of 83.8%.

Regarding the problem of cell splitting, according to the experi-
mental results of [36], the proposed RFOVE method outperforms the
proposed CNN 8 architecture that yields FP = 1.3 (split error) and
FN = 3.3 (merge error) on U20S dataset and, FP = 1.6 (split error)
and FN = 4.1 (merge error) on NIH3T3 dataset (see Table 7).

5.4.3. Qualitative results
Fig. 9 shows two representative results from the application of
RFOVE on (a) the U20S and (b) the NIH3T3 dataset. In both cases,

RFOVE successfully detects and correctly splits the high majority of
cells, despite considerable variations in cell size, shape and intensity.

5.4.4. Computational time

In order to assess the computational efficiency of the proposed
method and its applicability to medical imaging, we measured the
computational time of both steps of the proposed method as function
of image size (image area). We performed the running time experi-
ments on a laptop with a Intel Core i7 2.2GHz processor and 32GB of
RAM memory.

To study how the image size affects the computational time, the
original images of a dataset have been cropped from the top right
corner, according to three predefined percentages (25%, 50%, 75%) of
the original image size. Then, the cropped images as well the orig-
inal ones are used as input to the proposed method. Fig. 10 shows
the average computational time from the application of the first
(segmenting cells from their background) and the second (identify-
ing overlapping cells) step of the proposed method to the NIH3T3
nucleus dataset as a function of the given image size. From this figure,
it can be verified that computational time is linear to the image size.
The first stage of the proposed method yields a segmentation out-
put in 0.227 s on average in the original images of NIH3T3 nucleus
dataset (1.38 MPixels). The corresponding computational time for
the more time consuming stage of identifying the overlapping cells,
is24.4s.

6. Summary and conclusions

We proposed RFOVE, a method that extends and improves
DEFA [1] for approximating a 2D shape with an automatically defined
number of ellipses. The key idea in this improvement was to allow
for the consideration of ellipses with significant overlap. Extensive
experiments on several datasets have shown that compared to DEFA,
RFOVE approximates a given shape with increased shape coverage
and with a better balance of shape coverage and model complex-
ity. Towards a practical exploitation of the resulting algorithm, we
employed RFOVE to the problem of segmenting potentially over-
lapping cells in fluorescence microscopy images. We showed that
cell segmentation based on RFOVE outperforms cell segmentation
based on DEFA. Moreover, the RFOVE-based segmentation method
is comparable or even outperforms a number of competitive, state
of the art methods on a variety of evaluation metrics and in a num-
ber of datasets. Ongoing work targets on the extensions of RFOVE
towards handling shape primitives other than ellipses. In addition,

Fig. 9. Sample results of the RFOVE method on (a) the U20S and (b) the NIH3T3 datasets.
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Fig. 10. Average computational time in seconds from the application of (a) the cell segmentation and (b) the overlapping cells identification steps of the proposed method on the

NIH3T3 nucleus dataset as a function of the percentage of the original image size.

the extension of RFOVE to model 3D shapes can be considered as
future work.
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