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3D Hand Tracking in the Presence of Excessive Motion Blur

Gabyong Park, Antonis Argyros, Juyoung Lee, and Woontack Woo, Member, IEEE

Fig. 1. Our solution supports 3D hand tracking in the presence of excessive motion blur. Left: the depth camera captures the
gyroscope-worn hand and the gyroscope measures the hand’s angular velocity. Right: in the case of fast moving hands, the depth
image is distorted due to motion blur. The proposed method tracks successfully the articulation of the hand despite fast hand rotations.

Abstract—We present a sensor-fusion method that exploits a depth camera and a gyroscope to track the articulation of a hand in
the presence of excessive motion blur. In case of slow and smooth hand motions, the existing methods estimate the hand pose
fairly accurately and robustly, despite challenges due to the high dimensionality of the problem, self-occlusions, uniform appearance
of hand parts, etc. However, the accuracy of hand pose estimation drops considerably for fast-moving hands because the depth
image is severely distorted due to motion blur. Moreover, when hands move fast, the actual hand pose is far from the one estimated
in the previous frame, therefore the assumption of temporal continuity on which tracking methods rely, is not valid. In this paper,
we track fast-moving hands with the combination of a gyroscope and a depth camera. As a first step, we calibrate a depth camera
and a gyroscope attached to a hand so as to identify their time and pose offsets. Following that, we fuse the rotation information of
the calibrated gyroscope with model-based hierarchical particle filter tracking. A series of quantitative and qualitative experiments
demonstrate that the proposed method performs more accurately and robustly in the presence of motion blur, when compared to state
of the art algorithms, especially in the case of very fast hand rotations.

Index Terms—3D hand tracking, 3D hand pose estimation, sensor fusion, depth camera, gyroscope, motion blur

1 INTRODUCTION

Articulated hand motion tracking is a widely studied problem in com-
puter vision, Virtual Reality (VR) and Augmented Reality (AR). Most
of the contemporary research has focused on tracking hands that move
relatively slowly and smoothly. However, in several scenarios such
as sign language understanding, object manipulation, playing musical
instruments, etc, hands move very fast. Fast hand motions introduce
two important problems. First, they break the temporal continuity of
3D hand poses, an assumption several tracking approaches rely upon.
Moreover, they introduce image artifacts such as motion blur, that de-
grade considerably the quality of the available observations. Despite
its importance, tracking the articulation of hands in the case of rapid
hand motions is very much under-explored. In this research, we study
the problem of tracking fast-moving hands in order to support VR and
AR applications that involve rapid hand motions.

Most current approaches to track hand articulations can be cate-
gorized into generative [21, 23, 27, 28, 36] and discriminative ones
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[4, 6, 10, 24, 40, 42–44, 49]. Generative methods track the hand pose
online by optimizing the fit of a virtual 3D hand model to the actual ob-
servations. However, in the case of fast hand motion, they are likely to
loose track of the hand as they rely on the solution in the previous frame
to explore a small part of the hands’ configuration space. Discriminative
methods do not rely on temporal continuity and are able to estimate the
solution in a single frame. However, their solution is very much affected
by the quality of the input images that is severely degraded in the case of
motion blur. Recently, hybrid approaches [14, 29, 31, 38, 45] have been
studied to combine the merits of both strategies. For example, even
though the hand rotates quickly, a generative method can reinitialize the
hand pose based on the output of a discriminative method [31, 38, 45]
or based on the detection of fingertips [34]. This might be a solution
to the temporal continuity problem, but not a solution to the motion
blur problem. For example, if part of the finger is distorted in the
image, fingertip detection cannot be performed. To directly address
motion blur, image deblurring is a possible alternative. However, most
relevant algorithms [5, 16, 35] address an RGB image rather than a
depth image, and are time-consuming, which makes them inappropriate
for applications requiring real-time 3D hand tracking. Although there
are several works [13, 18, 37] to deblur a depth image, the application
is limited to specific time-of-flight cameras rather than general depth
cameras. In addition, the publicly available datasets [9, 50] for the
discriminative approaches do not include the ground truth on frames
during fast motion.

To address the hand tracking problem in the presence of excessive
motion blur we utilize both a depth camera and a gyroscope. The
use of the depth camera is justified because the depth map of a hand
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model can be easily rendered based on a hand mesh, hand pose, and
camera information. Thus, the discrepancy between a hand articulation
hypothesis and the actual observations can be measured and used in
the objective function of an optimization process that drives 3D hand
pose estimation. Using RGB and IR images for the same purpose
requires much more information that is difficult to have (light source,
material properties, texture etc). Furthermore, the variability of an RGB
image due to the lighting conditions (e.g., strongly illuminated vs dark
scenes) might lead to tracking instabilities. However, depth information
might be affected by motion blur that occurs as objects in a scene
move over the period of exposure determined by the camera shutter
speed. Although recently developed depth cameras with global shutter
alleviates motion blur, images acquired by ordinary depth cameras
with a rolling shutter suffer from severe artifacts due to fast motion, as
shown in Fig. 1. In such a situation, a gyroscope can provide valuable
hand motion information as it does not suffer from fast motion and is
not affected by visual occlusions. At the same time, a gyroscope that is
worn in the back side of the palm is much less invasive compared to
e.g., reflective markers placed on the hand’s fingertips.

In this paper we focus on combining a gyroscope attached to the
hand and a depth camera for hand articulations tracking that is robust
to motion blur. We present a novel sensor-fusion method for track-
ing hand articulations. Recently, sensor-fusion algorithms have been
proposed for the problem of tracking the 3D pose of the human body
[11,12,22,33,47,51]. Our approach consists of two major steps: sensor
calibration and 3D hand tracking. The calibration step estimates the
time delay and pose offset between the depth camera and the gyroscope
in an offline process. Since each sensor uses a different timeline, the
time delay from the gyro’s timeline to the camera’s one is estimated
to achieve their synchronization. Besides, the coordinate systems of
the two sensors differ because the gyroscope is attached to the user’s
hand, and the camera observes the hand from a point of view exter-
nal to the hand. The tracking step estimates the hand pose based on
hierarchical particle filter in an online fashion. Initially, sampling
for hand orientations (called slerp-based sampling) is performed by
spherical interpolation of the trajectory among the poses estimated by
the gyroscope and the orientation estimated for the previous frame.
The sampled particles (candidate hand pose orientations) are evaluated
based on their likelihood which is computed by considering the hand
depth image and the calibrated gyroscope information. Following that,
the pose of each part of the hand is hierarchically estimated based on a
particle filtering approach.

The proposed method is evaluated by quantitative and qualitative
experiments based on datasets we compiled. It should be noted that
existing datasets are not adequate for our purposes because they do
not cover fast hand motions and motion blur and do not provide si-
multaneously data from a depth camera and a gyroscope. We use the
acquired dataset as well as synthetic data to assess the accuracy of
calibration and to support the ablative study of the main components
of the proposed algorithm. Finally, a quantitative/qualitative compari-
son with state-of-the-art methods is conducted. For the evaluation of
the tracking accuracy, we exploit the ground truth based on infrared
(IR) images since the IR image is not distorted despite fast motion.
The experimental results demonstrate that when hand motion is rapid,
the proposed tracking method exhibits superior performance to other
tracking algorithms.

Overall, the contribution of this research can be summarized as
follows:

1. We present the first method that performs 3D hand tracking of
a fast moving hand by explicitly dealing with hand observations
that are degraded due to motion blur. This is achieved based on
the fusion of gyroscopic and visual information.

2. Sensor calibration: We estimate time delay and pose offset be-
tween a depth camera and a gyroscope and we evaluate the cali-
bration result based on synthetic and real data.

3. Sensor-fusion based 3D hand pose tracking: The rotation infor-
mation of the calibrated gyroscope is fused to generative tracking

based on hierarchical particle filtering. Slerp-based sampling
and gyro-based regularization are applied to the particle filter to
address fast motion.

4. Method evaluation in the case of fast moving hands: We compile
new datasets to evaluate the proposed method and we show ex-
perimentally that it exhibits superior performance compared to
state-of-the-art methods.

2 RELATED WORK

A number of methods have been proposed for solving the problem of
3D hand pose estimation. According to Erol et al. [8], they can be
divided into generative and discriminative approaches. Additionally,
we discuss some representative hybrid methods as well as methods for
sensor-fusion-based tracking.

Discriminative Approaches The discriminative approaches esti-
mate the hand joint 3D locations in a single frame from RGB or depth
input. Such methods require a classifier/regressor that is trained on a
large dataset. Some works [40,42–44] use Random Decision Forests to
estimate joint positions in a single frame, but are difficult to generally
estimate hand pose, requiring hand-crafted features to describe the hand
pose. Recently, the works [4,6,10,24,49] achieved significant accuracy
without hand-crafted features based on deep learning. Methods that
are based on Convolutional Neural Networks (CNNs) also fall in this
category. The generalization beyond their training set is challenging
since a large number of parameters need to be learned. Moreover,
there are significant difficulties in obtaining large, accurately annotated
datasets. The works [9, 50] have produced large datasets of real hand
depth images annotated with joint locations based on magnetic sensors.
Although they cover various hand postures, it is not easy to sample
evenly the space of hand poses. Datasets based on a rendered hand
model can alleviate this problem. The work [25] proposed an approach
that generates synthetic hand images that follow the same statistical
distribution as real-world hand images. Although the current discrimi-
native approaches perform well when trained on a large dataset, they
do not perform equally well in the case of fast hand motion and motion
blur, a situation that is treated successfully by the method we propose
in this paper.

Generative Approaches The generative, model-based ap-
proaches estimate the 3D hand pose by optimizing the fit of a rendered
3D hand model to the observed data. The approaches fit a hand model
constructed based on geometric primitives to RGBD data with vari-
ous optimization and filtering methods. For example, the methods of
Oikonomidis et al. [27,28] use Particle Swarm Optimization (PSO), the
works [21, 36] use Hierarchical Particle Filter (HPF), and other works
[23, 41] use Iterative Closet Point (ICP). Although they exhibit ade-
quate performance, such methods rely highly on the parameters of the
selected hand model and on the initialization of the starting pose (usu-
ally the solution of the previous frame). Methods that adapt the hand
model’s shape in an online fashion have already been proposed [20,46].
This improves tracking accuracy and removes some of the complexity
of the manual fine tuning of the hand model.

Hybrid Approaches The tracking accuracy of the generative ap-
proaches drops in the case of rapid hand motion. Regarding the selec-
tion of a proper starting pose for optimization, learning-based methods
or fingertip detection are additionally applied, resulting in hybrid ap-
proaches that have both generative and discriminative elements. The
methods [31, 38, 45] generated multiple hypotheses from the previous
solution and the pose classified by the trained model, and the work of
Qian et al. [34] reinitialized the hand pose based on finger detection.
They can reinitialize the hand pose even when the tracking fails. In the
works [29, 32] the 3D hand pose is estimated by a generative approach
that operates on the joint locations that are estimated by a robust dis-
criminative approach. In any case, the tracked hand pose would not be
accurate if pose re-initialization performs inadequately. This happens
commonly when the obtained image is severely distorted due to motion
blur. The work of Mueller et al. [26] optimizes both 3D hand pose and

hand shape for interacting hands after correspondence regression. How-
ever, although it successfully handles complex hand-hand interactions,
it also suffers from motion blur induced due to fast hand motion.

Sensor Fusion Approaches IMU (Inertial Measurement Unit)
is widely used in combination with a visual sensor for human body
pose estimation. The works [33, 47] proposed sensor fusion algorithms
that combine inertial data and multi-view markerless motion capture
data for full-body tracking. In contrast, Helten et al. [12] proposes a
hybrid method with a single depth camera and inertial sensors. This
requires a less complicated hardware setup, but the inertial sensors
are only used to query poses in a database rather than complementing
the information provided by the visual sensor. The work of Malleson
et al. [22] proposed a real-time optimization-based framework for
full-body pose estimation, which incorporates constraints from the
IMUs, cameras and a prior pose model. Zheng et al. [51] proposed
an algorithm for non-rigid surface reconstruction for fast motions and
challenging poses with severe occlusions, combining a single depth
sensor and sparse IMUs. Gilbert et al. [11] also proposed the method
of fusing visual and inertial information for 3D human pose estimation
based on deep learning.

While gyroscopes are widely used for human body pose estimation,
their use for hand pose estimation has not been investigated yet. As an
example of applying the sensor-fusion method to hand tracking, Kim et
al. [15] uses the pose estimated by an IMU sensor to assist model-based
tracking. This results in a more robust performance compared to using
vision-based hand tracking, only. However, in that work, the IMU-
based rotation replaces the one estimated from the visual information,
rather than being fused with it, as in our work. To the best of our
knowledge, there has been no previous works that used gyroscopic
information that is fused with visual model-based tracking for pose
estimation of fast moving hands.

3 METHODOLOGY

Our goal is to track the 3D hand pose which is modeled as a 27-
dimensional vector, given gyroscopic and RGB-D camera inputs. Our
approach consists of two major steps: offline calibration and online
sensor-fusion hand tracking. An overview of the proposed method is
shown in Fig. 2. Input RGB-D images from the camera and angular ve-
locity from the gyroscope are preprocessed. During offline calibration,
the time delay and pose offset between the camera and gyroscope are
estimated. Then, for online sensor-fusion hand tracking, the calibrated
gyroscopic information is efficiently fused to a Hierarchical Particle
Filter (HPF) tracking method to estimate the 3D hand pose.

Preprocessing: We segment the hand by setting that the user wears a
blue wristband. Hand segmentation is not the focus of this work and
can be achieved by several other methods [1,48]. We choose to perform
hand segmentation as in the work of Tkach et al. [46]. Specifically, the
position of the wristband is estimated by color segmentation in HSV
space, the 3D points in the proximity of the wristband are identified
and their principal axis is calculated. The axis is then used to segment
the hand part.

The angular velocity �w(t) measured by the gyroscope is converted
to the quaternion representation as follows:

Q(�w(t)) =
(

cos
|�w(t)dt|

2
,
�w(t)
|�w(t)|

sin
|�w(t)dt|

2

)
, (1)

where dt is the sampling time of the gyroscope.
Thereby, the rotation at time t relative to an initial pose is calculated

as the product of quaternions from the initial time step to the present
time t, that is, as ∏t

i=0 Q(�w(i)).

Hand model: We adopt the parametric hand model for both calibration
and tracking. The kinematic model of the hand is represented as a vector
of 27 parameters modeling 26 degrees of freedom (DoFs), consisting
of global 3D translation, global 3D rotation encoded as a quaternion,
and 3D rotation of the fingers. For each finger, three joints are modeled;
one for the saddle joint at the base, and two for the two remaining hinge

joints. Each saddle joint has two DoFs, and each hinge joint has one
DoF. To calculate the discrepancy between a hand pose hypothesis and
a given set of visual observations, the hand model is rendered with the
shader of the OpenGL pipeline by taking into account the hypothesized
hand pose and the camera calibration information.

3.1 Calibration
Fig. 3 illustrates the relationship between the coordinate systems of
the camera and the gyroscope. We individually estimate the time delay
and the pose offset between the gyroscope and the depth camera. The
calibration is achieved by exploiting the hand orientations estimated
by each of the sensors. We first calculate the pose offset and then
estimate the time delay. For the estimation of pose offset, we gather
the orientations by a 3D hand tracker in depth images and those of
gyroscope. The hand orientation hc(t) relative to the reference frame
of the depth camera is obtained by the solution in the work [21], and
the gyro rotation hg(t) relative to the reference frame of the gyroscope
is calculated by hg(0)∏t

i=0 Q(�w(i)) where hg(0) is initialized to an
identity quaternion. For the estimation of time delay, we gather the
hand depth images Do(0..t) and those Dr(0..t) rendered from the gyro
sensor. For Dr, we fix the remaining parts such as the hand’s translation
and the fingers’ rotation so that the only orientations of the hand are
considered. The proposed calibration approach is presented in the
following in more detail.

3.1.1 Pose offset

The relation between hc and hg at a time step t is defined by the two
offset rotations (o1, o2) based on:

hc(t) = o1hg(t)o2. (2)

From Eq. 2, the rotation ∆hc(t) relative to the initial pose hc(0) is
derived by:

∆hc(t) = h−1
c (0)hc(t) (3)

= (o−1
2 h−1

g (0)o−1
1 )(o1hg(t)o2) (4)

= o−1
2 h−1

g (0)hg(t)o2 (5)

= o−1
2 ∆hg(t)o2. (6)

As derived in Eq. 6, we can simplify the problem of estimating two
pose offsets (o1,o2) to the one of estimating a pose offset o2. Next, we
express Eq. 6 as a homogeneous 4×4 matrix based on:

o2∆hc(t)−∆hg(t)o2 = 0 (7)
Hco2 −Hgo2 = 0 (8)
(Hc −Hg)o2 = 0 (9)

Ho2 = 0, (10)

where Hc is a 4 × 4 matrix corresponding to ∆hc(t) and Hg is a 4 × 4
matrix corresponding to ∆hg(t).

The solution of Eq. 10 such that oT
2 o2 = 1 is in the null space of

the matrix H. Using the Singular Value Decomposition (SVD) of the
matrix H, we get H = UDV T where U , D and V are 4 × 4 square
matrices. Finally, the solution can be obtained as a row vector of
V corresponding to the smallest singular value of D. The solution
o2 is unique if the matrix H is a 8 × 4 matrix constructed from the
accurate two pairs of ∆hc and ∆hg where the last element (the smallest
element) in the diagonal of D is zero. However, in a real problem,
they are contaminated by noise since ∆hc(t) is estimated by the hand
tracker and ∆hg(t) is calculated by the multiplication of the angular
velocities, which accumulates error. To alleviate this problem, we
gradually construct the matrix H from more than two pairs with the
following conditions:

1. We construct the matrix H when the hand tracking result is likely
to be adequate by checking the depth energy Ed in Eq. 19.
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model can be easily rendered based on a hand mesh, hand pose, and
camera information. Thus, the discrepancy between a hand articulation
hypothesis and the actual observations can be measured and used in
the objective function of an optimization process that drives 3D hand
pose estimation. Using RGB and IR images for the same purpose
requires much more information that is difficult to have (light source,
material properties, texture etc). Furthermore, the variability of an RGB
image due to the lighting conditions (e.g., strongly illuminated vs dark
scenes) might lead to tracking instabilities. However, depth information
might be affected by motion blur that occurs as objects in a scene
move over the period of exposure determined by the camera shutter
speed. Although recently developed depth cameras with global shutter
alleviates motion blur, images acquired by ordinary depth cameras
with a rolling shutter suffer from severe artifacts due to fast motion, as
shown in Fig. 1. In such a situation, a gyroscope can provide valuable
hand motion information as it does not suffer from fast motion and is
not affected by visual occlusions. At the same time, a gyroscope that is
worn in the back side of the palm is much less invasive compared to
e.g., reflective markers placed on the hand’s fingertips.

In this paper we focus on combining a gyroscope attached to the
hand and a depth camera for hand articulations tracking that is robust
to motion blur. We present a novel sensor-fusion method for track-
ing hand articulations. Recently, sensor-fusion algorithms have been
proposed for the problem of tracking the 3D pose of the human body
[11,12,22,33,47,51]. Our approach consists of two major steps: sensor
calibration and 3D hand tracking. The calibration step estimates the
time delay and pose offset between the depth camera and the gyroscope
in an offline process. Since each sensor uses a different timeline, the
time delay from the gyro’s timeline to the camera’s one is estimated
to achieve their synchronization. Besides, the coordinate systems of
the two sensors differ because the gyroscope is attached to the user’s
hand, and the camera observes the hand from a point of view exter-
nal to the hand. The tracking step estimates the hand pose based on
hierarchical particle filter in an online fashion. Initially, sampling
for hand orientations (called slerp-based sampling) is performed by
spherical interpolation of the trajectory among the poses estimated by
the gyroscope and the orientation estimated for the previous frame.
The sampled particles (candidate hand pose orientations) are evaluated
based on their likelihood which is computed by considering the hand
depth image and the calibrated gyroscope information. Following that,
the pose of each part of the hand is hierarchically estimated based on a
particle filtering approach.

The proposed method is evaluated by quantitative and qualitative
experiments based on datasets we compiled. It should be noted that
existing datasets are not adequate for our purposes because they do
not cover fast hand motions and motion blur and do not provide si-
multaneously data from a depth camera and a gyroscope. We use the
acquired dataset as well as synthetic data to assess the accuracy of
calibration and to support the ablative study of the main components
of the proposed algorithm. Finally, a quantitative/qualitative compari-
son with state-of-the-art methods is conducted. For the evaluation of
the tracking accuracy, we exploit the ground truth based on infrared
(IR) images since the IR image is not distorted despite fast motion.
The experimental results demonstrate that when hand motion is rapid,
the proposed tracking method exhibits superior performance to other
tracking algorithms.

Overall, the contribution of this research can be summarized as
follows:

1. We present the first method that performs 3D hand tracking of
a fast moving hand by explicitly dealing with hand observations
that are degraded due to motion blur. This is achieved based on
the fusion of gyroscopic and visual information.

2. Sensor calibration: We estimate time delay and pose offset be-
tween a depth camera and a gyroscope and we evaluate the cali-
bration result based on synthetic and real data.

3. Sensor-fusion based 3D hand pose tracking: The rotation infor-
mation of the calibrated gyroscope is fused to generative tracking

based on hierarchical particle filtering. Slerp-based sampling
and gyro-based regularization are applied to the particle filter to
address fast motion.

4. Method evaluation in the case of fast moving hands: We compile
new datasets to evaluate the proposed method and we show ex-
perimentally that it exhibits superior performance compared to
state-of-the-art methods.

2 RELATED WORK

A number of methods have been proposed for solving the problem of
3D hand pose estimation. According to Erol et al. [8], they can be
divided into generative and discriminative approaches. Additionally,
we discuss some representative hybrid methods as well as methods for
sensor-fusion-based tracking.

Discriminative Approaches The discriminative approaches esti-
mate the hand joint 3D locations in a single frame from RGB or depth
input. Such methods require a classifier/regressor that is trained on a
large dataset. Some works [40,42–44] use Random Decision Forests to
estimate joint positions in a single frame, but are difficult to generally
estimate hand pose, requiring hand-crafted features to describe the hand
pose. Recently, the works [4,6,10,24,49] achieved significant accuracy
without hand-crafted features based on deep learning. Methods that
are based on Convolutional Neural Networks (CNNs) also fall in this
category. The generalization beyond their training set is challenging
since a large number of parameters need to be learned. Moreover,
there are significant difficulties in obtaining large, accurately annotated
datasets. The works [9, 50] have produced large datasets of real hand
depth images annotated with joint locations based on magnetic sensors.
Although they cover various hand postures, it is not easy to sample
evenly the space of hand poses. Datasets based on a rendered hand
model can alleviate this problem. The work [25] proposed an approach
that generates synthetic hand images that follow the same statistical
distribution as real-world hand images. Although the current discrimi-
native approaches perform well when trained on a large dataset, they
do not perform equally well in the case of fast hand motion and motion
blur, a situation that is treated successfully by the method we propose
in this paper.

Generative Approaches The generative, model-based ap-
proaches estimate the 3D hand pose by optimizing the fit of a rendered
3D hand model to the observed data. The approaches fit a hand model
constructed based on geometric primitives to RGBD data with vari-
ous optimization and filtering methods. For example, the methods of
Oikonomidis et al. [27,28] use Particle Swarm Optimization (PSO), the
works [21, 36] use Hierarchical Particle Filter (HPF), and other works
[23, 41] use Iterative Closet Point (ICP). Although they exhibit ade-
quate performance, such methods rely highly on the parameters of the
selected hand model and on the initialization of the starting pose (usu-
ally the solution of the previous frame). Methods that adapt the hand
model’s shape in an online fashion have already been proposed [20,46].
This improves tracking accuracy and removes some of the complexity
of the manual fine tuning of the hand model.

Hybrid Approaches The tracking accuracy of the generative ap-
proaches drops in the case of rapid hand motion. Regarding the selec-
tion of a proper starting pose for optimization, learning-based methods
or fingertip detection are additionally applied, resulting in hybrid ap-
proaches that have both generative and discriminative elements. The
methods [31, 38, 45] generated multiple hypotheses from the previous
solution and the pose classified by the trained model, and the work of
Qian et al. [34] reinitialized the hand pose based on finger detection.
They can reinitialize the hand pose even when the tracking fails. In the
works [29, 32] the 3D hand pose is estimated by a generative approach
that operates on the joint locations that are estimated by a robust dis-
criminative approach. In any case, the tracked hand pose would not be
accurate if pose re-initialization performs inadequately. This happens
commonly when the obtained image is severely distorted due to motion
blur. The work of Mueller et al. [26] optimizes both 3D hand pose and

hand shape for interacting hands after correspondence regression. How-
ever, although it successfully handles complex hand-hand interactions,
it also suffers from motion blur induced due to fast hand motion.

Sensor Fusion Approaches IMU (Inertial Measurement Unit)
is widely used in combination with a visual sensor for human body
pose estimation. The works [33, 47] proposed sensor fusion algorithms
that combine inertial data and multi-view markerless motion capture
data for full-body tracking. In contrast, Helten et al. [12] proposes a
hybrid method with a single depth camera and inertial sensors. This
requires a less complicated hardware setup, but the inertial sensors
are only used to query poses in a database rather than complementing
the information provided by the visual sensor. The work of Malleson
et al. [22] proposed a real-time optimization-based framework for
full-body pose estimation, which incorporates constraints from the
IMUs, cameras and a prior pose model. Zheng et al. [51] proposed
an algorithm for non-rigid surface reconstruction for fast motions and
challenging poses with severe occlusions, combining a single depth
sensor and sparse IMUs. Gilbert et al. [11] also proposed the method
of fusing visual and inertial information for 3D human pose estimation
based on deep learning.

While gyroscopes are widely used for human body pose estimation,
their use for hand pose estimation has not been investigated yet. As an
example of applying the sensor-fusion method to hand tracking, Kim et
al. [15] uses the pose estimated by an IMU sensor to assist model-based
tracking. This results in a more robust performance compared to using
vision-based hand tracking, only. However, in that work, the IMU-
based rotation replaces the one estimated from the visual information,
rather than being fused with it, as in our work. To the best of our
knowledge, there has been no previous works that used gyroscopic
information that is fused with visual model-based tracking for pose
estimation of fast moving hands.

3 METHODOLOGY

Our goal is to track the 3D hand pose which is modeled as a 27-
dimensional vector, given gyroscopic and RGB-D camera inputs. Our
approach consists of two major steps: offline calibration and online
sensor-fusion hand tracking. An overview of the proposed method is
shown in Fig. 2. Input RGB-D images from the camera and angular ve-
locity from the gyroscope are preprocessed. During offline calibration,
the time delay and pose offset between the camera and gyroscope are
estimated. Then, for online sensor-fusion hand tracking, the calibrated
gyroscopic information is efficiently fused to a Hierarchical Particle
Filter (HPF) tracking method to estimate the 3D hand pose.

Preprocessing: We segment the hand by setting that the user wears a
blue wristband. Hand segmentation is not the focus of this work and
can be achieved by several other methods [1,48]. We choose to perform
hand segmentation as in the work of Tkach et al. [46]. Specifically, the
position of the wristband is estimated by color segmentation in HSV
space, the 3D points in the proximity of the wristband are identified
and their principal axis is calculated. The axis is then used to segment
the hand part.

The angular velocity �w(t) measured by the gyroscope is converted
to the quaternion representation as follows:

Q(�w(t)) =
(

cos
|�w(t)dt|

2
,
�w(t)
|�w(t)|

sin
|�w(t)dt|

2

)
, (1)

where dt is the sampling time of the gyroscope.
Thereby, the rotation at time t relative to an initial pose is calculated

as the product of quaternions from the initial time step to the present
time t, that is, as ∏t

i=0 Q(�w(i)).

Hand model: We adopt the parametric hand model for both calibration
and tracking. The kinematic model of the hand is represented as a vector
of 27 parameters modeling 26 degrees of freedom (DoFs), consisting
of global 3D translation, global 3D rotation encoded as a quaternion,
and 3D rotation of the fingers. For each finger, three joints are modeled;
one for the saddle joint at the base, and two for the two remaining hinge

joints. Each saddle joint has two DoFs, and each hinge joint has one
DoF. To calculate the discrepancy between a hand pose hypothesis and
a given set of visual observations, the hand model is rendered with the
shader of the OpenGL pipeline by taking into account the hypothesized
hand pose and the camera calibration information.

3.1 Calibration
Fig. 3 illustrates the relationship between the coordinate systems of
the camera and the gyroscope. We individually estimate the time delay
and the pose offset between the gyroscope and the depth camera. The
calibration is achieved by exploiting the hand orientations estimated
by each of the sensors. We first calculate the pose offset and then
estimate the time delay. For the estimation of pose offset, we gather
the orientations by a 3D hand tracker in depth images and those of
gyroscope. The hand orientation hc(t) relative to the reference frame
of the depth camera is obtained by the solution in the work [21], and
the gyro rotation hg(t) relative to the reference frame of the gyroscope
is calculated by hg(0)∏t

i=0 Q(�w(i)) where hg(0) is initialized to an
identity quaternion. For the estimation of time delay, we gather the
hand depth images Do(0..t) and those Dr(0..t) rendered from the gyro
sensor. For Dr, we fix the remaining parts such as the hand’s translation
and the fingers’ rotation so that the only orientations of the hand are
considered. The proposed calibration approach is presented in the
following in more detail.

3.1.1 Pose offset

The relation between hc and hg at a time step t is defined by the two
offset rotations (o1, o2) based on:

hc(t) = o1hg(t)o2. (2)

From Eq. 2, the rotation ∆hc(t) relative to the initial pose hc(0) is
derived by:

∆hc(t) = h−1
c (0)hc(t) (3)

= (o−1
2 h−1

g (0)o−1
1 )(o1hg(t)o2) (4)

= o−1
2 h−1

g (0)hg(t)o2 (5)

= o−1
2 ∆hg(t)o2. (6)

As derived in Eq. 6, we can simplify the problem of estimating two
pose offsets (o1,o2) to the one of estimating a pose offset o2. Next, we
express Eq. 6 as a homogeneous 4×4 matrix based on:

o2∆hc(t)−∆hg(t)o2 = 0 (7)
Hco2 −Hgo2 = 0 (8)
(Hc −Hg)o2 = 0 (9)

Ho2 = 0, (10)

where Hc is a 4 × 4 matrix corresponding to ∆hc(t) and Hg is a 4 × 4
matrix corresponding to ∆hg(t).

The solution of Eq. 10 such that oT
2 o2 = 1 is in the null space of

the matrix H. Using the Singular Value Decomposition (SVD) of the
matrix H, we get H = UDV T where U , D and V are 4 × 4 square
matrices. Finally, the solution can be obtained as a row vector of
V corresponding to the smallest singular value of D. The solution
o2 is unique if the matrix H is a 8 × 4 matrix constructed from the
accurate two pairs of ∆hc and ∆hg where the last element (the smallest
element) in the diagonal of D is zero. However, in a real problem,
they are contaminated by noise since ∆hc(t) is estimated by the hand
tracker and ∆hg(t) is calculated by the multiplication of the angular
velocities, which accumulates error. To alleviate this problem, we
gradually construct the matrix H from more than two pairs with the
following conditions:

1. We construct the matrix H when the hand tracking result is likely
to be adequate by checking the depth energy Ed in Eq. 19.
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Fig. 2. Overview of the proposed method as described in Section 3. Input RGB-D images and angular velocity are preprocessed for offline calibration
and online sensor-fusion hand tracking. For offline calibration, the pose offset o2 and time delay τ are estimated (see Section 3.1). The calibrated
information is fused to online sensor-fusion hand tracking (see Section 3.2).

Fig. 3. Time and pose offset between gyroscope and camera.

2. To minimize the accumulation error of the gyroscope, we initialize
the data pair (∆hg(t),∆hc(t)) by calculating it from the point when
H is constructed.

3. To minimize the time delay issue, the matrix H is constructed
when the hand does not move.

Consequently, the calibrated gyro rotation hcalib
g with the estimated

pose offset is calculated by hc(0)o−1
2 ∆hg(t)o2.

3.1.2 Time delay
To estimate the time delay τ between the gyroscope and the depth
camera we seek for the time offset of the two signals that maximizes
their correlation. In a preliminary experiment, we tried to estimate
the time delay in a straightforward manner, that is by calculating the
correlation between the hand rotation as estimated by the camera and
by the gyroscope during fixed time. However, we observed that the
estimated delay was not adequately accurate since the calibration re-
quires highly accurate and fast-tracking performance in one frame unit.
Therefore, we used the depth images from the orientations rather than
directly comparing orientations. First of all, hand pose is initialized by
the 3D hand tracker of Makris et al. [21] based on a depth image. Since
only the hand rotation affects the variable of the gyro, the remaining
parameters (the hand translation and the fingers’ rotation) are fixed as

Fig. 4. Dynamic Bayesian network of the proposed model. We omitted
observations of the depth image and the gyro’s angular velocity for clarity.
The dot arrow represents the slerp-based estimation for a palm.

the initial pose. Following that, we record the depth images Do(0, ..,T )
from the depth camera and the angular velocities �w(0, ..,T ) of the gy-
roscope while the hand simply turns left and right. The depth image Dr
is rendered by the rotation hcalib

g of the gyroscope calibrated from the
pose offset. The optimal time delay is estimated by finding the minimal
average of the pixel-by-pixel errors between depth images Do(0, ..,T )
and the corresponding rendered depth maps Dr(hcalib

g (0, ..,T )) based
on:

τ∗ = argmin
τ

T

∑
t=0

|Do(t)−Dr(hcalib
g (t + τ))|/N, (11)

where N is the number of non-zero pixels in the depth image.

3.2 Sensor-fusion hand tracking
We adapt Hierarchical Particle Filter (HPF) for sensor-fusion hand
articulations tracking. The work of Makris et al. [21] firstly proposed
the HPF for hand articulations tracking. We describe the HPF tracking
framework of Fig. 4. We define the full state xt of the hand pose at
a time step t with the auxiliary models x[0:5]t to track distinct parts

Algorithm 1 HPF for Sensor-fusion Hand Tracking

Input: {x( j)
[0:M]t−1,w

( j)
t−1}

N
j=1,zt

Ouput: {x( j)
[0:M]t ,w

( j)
t }N

j=1

//Slerp-based hand pose estimation for the palm.
for each particle j=1 to N do

Sample x j
[0]t from Eq. 16.

Update its weight w j
t using Eq. 22.

end for
Normalize the particle weights.
Resample the particle set according to its weights.
//Hierarchical hand pose estimation.
for each model i=0 to M do

for each particle j=1 to N do
Sample x j

[i]t from Eq. 17 and Eq. 18.

Update its weight w j
t using Eq. 22.

end for
Normalize the particle weights.
Resample the particle set according to its weights.

end for

of the hand and the main model x[M]t , and the trajectory Gt(0..N) of
the gyro pose to guide 3D orientation of the hand. The framework
follows the Bayesian approach for tracking the hand pose. We denote
the full state sequence x0:t = {x0...xt} and the the set of all observations
z0:t = {d0...dt , �ω0...�ωt} where d is the preprocessed depth image and
�ω is an angular velocity from a gyroscope. Under the assumption by a
single Markov chain, the posterior is formulated based on:

p(x0:t |z1:t) = p(x0:t−1|z1:t−1)∏
i

p(zt |x[i]t)p(x[i]t |Pa(x[i]t))

p(zt |z1:t−1)
, (12)

where Pa(x[i]t ) represents the parent nodes of x[i]t . The HPF approxi-
mates the posterior by propagating hypotheses (particles) based on the
importance sampling method [2]. The particles are generated from the
proposal distribution based on:

q(x0:t |z1:t) = q(x0:t−1|z1:t−1)∏
i

q(x[i]t |Pa(x[i]t)), (13)

where q(x) is proposal distribution of x. The particles are weighted by
the importance weights based on:

wt =
p(x0:t |z1:t)

q(x0:t |z1:t)
(14)

∝ wt−1 ∏
i

p(zt |x[i]t)p(x[i]t |Pa(x[i]t))

q(x[i]t |Pa(x[i]t),zt)
. (15)

The steps to estimate the posterior at time t are shown in Algorithm
1, given the weighted particles {x( j)

[0:M]t−1,w
( j)
t−1}

N
j=1 from the previous

time and the observations zt at time t. The algorithm sequentially
updates the states by sampling particles and updating the weights.
We first sample particles for a palm pose with slerp-based sampling,
which are evaluated by observation likelihood. After normalizing the
weights of the particles, particle resampling is performed as in the
works [2, 17]. Next, each auxiliary models are sequentially updated as
in the work [21]. The final solution is obtained by the weighted average
of the main model particles.

3.2.1 State evolution
The state evolution for the HPF is conducted based on the Bayesian
network, similarly to the work [21]. However, relying on only previous
main model is not suitable for our purposes because the assumption of

the temporal continuity is broken for the fast hand motion. Therefore,
the palm model x[0]t initially samples the particles from the trajectory
of the calibrated gyro poses Gt(0..N) and the palm part of the previous
main model x[M]t−1. In our approach, we obtain the multiple gyro
poses in a camera scene since the sampling frequency of the gyroscope
is faster than that of the camera. The particles of the palm model are
evenly sampled based on:

x[0]t = slerp(a(x[M]t−1,0),Gt(0), ..,Gt(N)), (16)

where a(x[M]t−1,0) is the palm part of the previous main model and
slerp(·) performs spherical interpolation of quaternion among the
poses. Since the gyroscope measures only rotation, the translation
parameters follow the previous main model. We sample again the
particles for the palm model from the state updated by the slerp-based
pose estimation. This refines the estimation when the hand simultane-
ously moves during rotation and the actual hand pose is away from the
trajectory of the gyro pose. The other auxiliary models (fingers) are
sampled from the main model at the previous time step. The sampling
is formulated based on:

p(x[i]t |Pa(x[i]t)) =

{
N(x[i]t ;x[i]t ,Σ[i]) if i = 0
N(x[i]t ;a(x[M]t−1, i),Σ[i]) if i = 1, ..,5

(17)

where the operator a(x[M]t−1, i) produces the part of the state of the
main model, which represents the i-th auxiliary model, and N(x;m,Σ)
expresses the normal distribution over x with mean m and the predefined
diagonal covariance matrix Σ.

The main model is sampled from the updated auxiliary models at
the present time step based on:

p(x[M]t |Pa(x[M]t)) = N(x[M]t ;x[0:M−1]t ,ΣM), (18)

where x[0:M−1]t are the auxiliary models updated by previous steps.
This searches for refinement of the hand pose in a full dimensional
space (26 DoFs), given the concatenation of the updated sub-states
corresponding to the M auxiliary models in lower dimensional spaces.

3.2.2 Observation likelihood
The sampled particles are evaluated based on the observation likeli-
hood, which measures the fitting of the rendered hand model to the
observations of the gyroscope and the depth camera. The input is the
preprocessed depth image and the calibrated gyro pose. To calculate
this likelihood, an objective function is defined as:

E = (1−αg)Ed +αgEg, (19)

where Ed quantifies the depth discrepancy between visual observations
and the rendered hand model, detailed in the work [21], and Eg is a
gyro-regularization term. When the hand motion is fast, the depth
image is blurred. In this case, adopting only Ed does not exhibit
adequate performance due to the degraded depth image. Therefore, we
additionally adopt the term Eg that serves to regularize the sampled
particle x from the calibrated gyro pose. To calculate the term Eg,
similarly to the work [19], we introduce two arbitrary unit length
vectors because the quaternion q is the same as −q. The vectors rotated
by the sampled particle and the calibrated gyro pose are compared in
Euclidean space for similarity of the orientations based on:

Eg =
2

∑
i=1

β‖pr(�ui)−hcalib
g (�ui)‖2

2
2

, (20)

where �ui is an arbitrary unit length vector and pr(�ui) represents the
vector rotated by the hand orientation corresponding to a sampled
particle pr and hcalib

g (�ui) is the vector rotated by the calibrated gyro
orientation, and β is a empirically identified weight value.

The weight αg is adapted according to the speed of hand motion.
When the hand moves fast, the depth image is usually blurred. In this
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Fig. 2. Overview of the proposed method as described in Section 3. Input RGB-D images and angular velocity are preprocessed for offline calibration
and online sensor-fusion hand tracking. For offline calibration, the pose offset o2 and time delay τ are estimated (see Section 3.1). The calibrated
information is fused to online sensor-fusion hand tracking (see Section 3.2).

Fig. 3. Time and pose offset between gyroscope and camera.

2. To minimize the accumulation error of the gyroscope, we initialize
the data pair (∆hg(t),∆hc(t)) by calculating it from the point when
H is constructed.

3. To minimize the time delay issue, the matrix H is constructed
when the hand does not move.

Consequently, the calibrated gyro rotation hcalib
g with the estimated

pose offset is calculated by hc(0)o−1
2 ∆hg(t)o2.

3.1.2 Time delay
To estimate the time delay τ between the gyroscope and the depth
camera we seek for the time offset of the two signals that maximizes
their correlation. In a preliminary experiment, we tried to estimate
the time delay in a straightforward manner, that is by calculating the
correlation between the hand rotation as estimated by the camera and
by the gyroscope during fixed time. However, we observed that the
estimated delay was not adequately accurate since the calibration re-
quires highly accurate and fast-tracking performance in one frame unit.
Therefore, we used the depth images from the orientations rather than
directly comparing orientations. First of all, hand pose is initialized by
the 3D hand tracker of Makris et al. [21] based on a depth image. Since
only the hand rotation affects the variable of the gyro, the remaining
parameters (the hand translation and the fingers’ rotation) are fixed as

Fig. 4. Dynamic Bayesian network of the proposed model. We omitted
observations of the depth image and the gyro’s angular velocity for clarity.
The dot arrow represents the slerp-based estimation for a palm.

the initial pose. Following that, we record the depth images Do(0, ..,T )
from the depth camera and the angular velocities �w(0, ..,T ) of the gy-
roscope while the hand simply turns left and right. The depth image Dr
is rendered by the rotation hcalib

g of the gyroscope calibrated from the
pose offset. The optimal time delay is estimated by finding the minimal
average of the pixel-by-pixel errors between depth images Do(0, ..,T )
and the corresponding rendered depth maps Dr(hcalib

g (0, ..,T )) based
on:

τ∗ = argmin
τ

T

∑
t=0

|Do(t)−Dr(hcalib
g (t + τ))|/N, (11)

where N is the number of non-zero pixels in the depth image.

3.2 Sensor-fusion hand tracking
We adapt Hierarchical Particle Filter (HPF) for sensor-fusion hand
articulations tracking. The work of Makris et al. [21] firstly proposed
the HPF for hand articulations tracking. We describe the HPF tracking
framework of Fig. 4. We define the full state xt of the hand pose at
a time step t with the auxiliary models x[0:5]t to track distinct parts

Algorithm 1 HPF for Sensor-fusion Hand Tracking

Input: {x( j)
[0:M]t−1,w

( j)
t−1}

N
j=1,zt

Ouput: {x( j)
[0:M]t ,w

( j)
t }N

j=1

//Slerp-based hand pose estimation for the palm.
for each particle j=1 to N do

Sample x j
[0]t from Eq. 16.

Update its weight w j
t using Eq. 22.

end for
Normalize the particle weights.
Resample the particle set according to its weights.
//Hierarchical hand pose estimation.
for each model i=0 to M do

for each particle j=1 to N do
Sample x j

[i]t from Eq. 17 and Eq. 18.

Update its weight w j
t using Eq. 22.

end for
Normalize the particle weights.
Resample the particle set according to its weights.

end for

of the hand and the main model x[M]t , and the trajectory Gt(0..N) of
the gyro pose to guide 3D orientation of the hand. The framework
follows the Bayesian approach for tracking the hand pose. We denote
the full state sequence x0:t = {x0...xt} and the the set of all observations
z0:t = {d0...dt , �ω0...�ωt} where d is the preprocessed depth image and
�ω is an angular velocity from a gyroscope. Under the assumption by a
single Markov chain, the posterior is formulated based on:

p(x0:t |z1:t) = p(x0:t−1|z1:t−1)∏
i

p(zt |x[i]t)p(x[i]t |Pa(x[i]t))

p(zt |z1:t−1)
, (12)

where Pa(x[i]t ) represents the parent nodes of x[i]t . The HPF approxi-
mates the posterior by propagating hypotheses (particles) based on the
importance sampling method [2]. The particles are generated from the
proposal distribution based on:

q(x0:t |z1:t) = q(x0:t−1|z1:t−1)∏
i

q(x[i]t |Pa(x[i]t)), (13)

where q(x) is proposal distribution of x. The particles are weighted by
the importance weights based on:

wt =
p(x0:t |z1:t)

q(x0:t |z1:t)
(14)

∝ wt−1 ∏
i

p(zt |x[i]t)p(x[i]t |Pa(x[i]t))

q(x[i]t |Pa(x[i]t),zt)
. (15)

The steps to estimate the posterior at time t are shown in Algorithm
1, given the weighted particles {x( j)

[0:M]t−1,w
( j)
t−1}

N
j=1 from the previous

time and the observations zt at time t. The algorithm sequentially
updates the states by sampling particles and updating the weights.
We first sample particles for a palm pose with slerp-based sampling,
which are evaluated by observation likelihood. After normalizing the
weights of the particles, particle resampling is performed as in the
works [2, 17]. Next, each auxiliary models are sequentially updated as
in the work [21]. The final solution is obtained by the weighted average
of the main model particles.

3.2.1 State evolution
The state evolution for the HPF is conducted based on the Bayesian
network, similarly to the work [21]. However, relying on only previous
main model is not suitable for our purposes because the assumption of

the temporal continuity is broken for the fast hand motion. Therefore,
the palm model x[0]t initially samples the particles from the trajectory
of the calibrated gyro poses Gt(0..N) and the palm part of the previous
main model x[M]t−1. In our approach, we obtain the multiple gyro
poses in a camera scene since the sampling frequency of the gyroscope
is faster than that of the camera. The particles of the palm model are
evenly sampled based on:

x[0]t = slerp(a(x[M]t−1,0),Gt(0), ..,Gt(N)), (16)

where a(x[M]t−1,0) is the palm part of the previous main model and
slerp(·) performs spherical interpolation of quaternion among the
poses. Since the gyroscope measures only rotation, the translation
parameters follow the previous main model. We sample again the
particles for the palm model from the state updated by the slerp-based
pose estimation. This refines the estimation when the hand simultane-
ously moves during rotation and the actual hand pose is away from the
trajectory of the gyro pose. The other auxiliary models (fingers) are
sampled from the main model at the previous time step. The sampling
is formulated based on:

p(x[i]t |Pa(x[i]t)) =

{
N(x[i]t ;x[i]t ,Σ[i]) if i = 0
N(x[i]t ;a(x[M]t−1, i),Σ[i]) if i = 1, ..,5

(17)

where the operator a(x[M]t−1, i) produces the part of the state of the
main model, which represents the i-th auxiliary model, and N(x;m,Σ)
expresses the normal distribution over x with mean m and the predefined
diagonal covariance matrix Σ.

The main model is sampled from the updated auxiliary models at
the present time step based on:

p(x[M]t |Pa(x[M]t)) = N(x[M]t ;x[0:M−1]t ,ΣM), (18)

where x[0:M−1]t are the auxiliary models updated by previous steps.
This searches for refinement of the hand pose in a full dimensional
space (26 DoFs), given the concatenation of the updated sub-states
corresponding to the M auxiliary models in lower dimensional spaces.

3.2.2 Observation likelihood
The sampled particles are evaluated based on the observation likeli-
hood, which measures the fitting of the rendered hand model to the
observations of the gyroscope and the depth camera. The input is the
preprocessed depth image and the calibrated gyro pose. To calculate
this likelihood, an objective function is defined as:

E = (1−αg)Ed +αgEg, (19)

where Ed quantifies the depth discrepancy between visual observations
and the rendered hand model, detailed in the work [21], and Eg is a
gyro-regularization term. When the hand motion is fast, the depth
image is blurred. In this case, adopting only Ed does not exhibit
adequate performance due to the degraded depth image. Therefore, we
additionally adopt the term Eg that serves to regularize the sampled
particle x from the calibrated gyro pose. To calculate the term Eg,
similarly to the work [19], we introduce two arbitrary unit length
vectors because the quaternion q is the same as −q. The vectors rotated
by the sampled particle and the calibrated gyro pose are compared in
Euclidean space for similarity of the orientations based on:

Eg =
2

∑
i=1

β‖pr(�ui)−hcalib
g (�ui)‖2

2
2

, (20)

where �ui is an arbitrary unit length vector and pr(�ui) represents the
vector rotated by the hand orientation corresponding to a sampled
particle pr and hcalib

g (�ui) is the vector rotated by the calibrated gyro
orientation, and β is a empirically identified weight value.

The weight αg is adapted according to the speed of hand motion.
When the hand moves fast, the depth image is usually blurred. In this
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case, the depth term Ed is less effective than the gyro-regularization
term Eg. Therefore, we empirically adapt the weight based on:

αg =




0.2+ Ω−0.02
0.1−0.02 ×0.6, if 0.02 < Ω < 0.1

0.2, if Ω ≤ 0.02
0.8, if Ω ≥ 0.1

(21)

where Ω is the sum of the quaternion-based distance starting the pre-
vious hand pose a(x[M]t−1,0) to the end of the gyro pose Gt(N) at the
time step t, which reflects the rotational speed of the gyroscope at the
time step t. The likelihood is then calculated by:

p(z|x) = exp
(
−E2(z,x)

2σ2

)
. (22)

4 EXPERIMENTS

We performed extensive experiments to evaluate the performance of the
proposed method and to compare it with state-of-the-art approaches.

Datasets: For the calibration experiments, we used a synthetic dataset
compiled by rendering a hand model. Synthetic depth images were
rendered by controlling the 26 DoFs of hand pose. The orientations
corresponding to the synthetic gyroscope were obtained by spherical
interpolation between the previous and the current pose of the rendered
hand model. The number of samples depends on the sampling rate of
the considered synthetic gyroscope. We assumed a sampling rate of
0.03 sec for the camera and of 0.01 sec for the synthetic gyroscope. For
example, when a synthetic hand image is rendered at time t, the three
orientations of the synthetic gyroscope are obtained at the time steps t,
t +0.01 and t +0.02. Based on these data, we assessed quantitatively
the calibration performance.

For the evaluation of tracking performance, we used two real datasets
acquired by actual sensors. Specifically, the real dataset #1 was used
for an ablation study and contains slow hand motions (100 frames)
and fast hand motions with temporal discontinuities (865 frames), and
very fast hand motions (188 frames). The real dataset #2 was used for
comparison to state-of-the-art. This contains slow hand motions with
temporal continuity and no motion blur (300 frames), and fast hand
motions with temporal discontinuities (2070 frames), out of which 218
frames were classified as containing very fast motions. The classifica-
tion was assisted by considering the magnitude of the angular velocities
measured by the gyroscope. Frames are classified as very fast when
the average L2-norm of angular velocities exceeds 6.66 rad/sec during
the adjacent 3 frames. In this case, excessive motion blur is frequently
caused. To the best of our knowledge, these are the first datasets of their
kind and our study is the first to compare quantitatively/qualitatively
hand-pose tracking performance in the case of motion blur.

We observed that an infrared image is not blurred despite fast hand
motion and a reflective material exhibits high intensity in the IR image.
We put reflective tape on the tip of the little finger, which reflects the
error well when the hand is wrongly flipped. The 2D center position of
the tape was estimated as ground truth based on a simple contour-based
detection method.

Parameter settings: To estimate the time-delay and the pose-offset
during calibration, αg of Eq. 19 is zero since gyroscope and camera
were not yet calibrated. Three gyro poses were used for slerp-based
sampling and 64 particles were sampled in the state evolution. For the
evaluation of the particles, β of Eq. 20 was set to 0.4.

Performance issues: Our method was evaluated on an Intel Core i7
4GHz with a single NVIDIA GTX1080-ti GPU. It ran on a 30Hz
RGBD camera like Intel Realsense SR-300 and 100 Hz gyroscope of
LG Watch Urbane W150 OEM. The angular velocity of the gyroscope is
transferred to the hand tracking system through User Datagram Protocol
(UDP) socket communication over WiFi. Regarding the computational
complexity of the model, as we use a particle filter to track a hand
model, analysis made by the works [3, 7, 39] could apply. Indicatively,
our tracking method achieves real time performance (50Hz) under the
above settings.

Fig. 5. Time delay experiment based on synthetic data. A time series
of the real part of the quaternion representing hand orientation was
estimated based on the proposed approach. The plot shows (a) the time
series calibrated for the time offset based on the proposed method, (b)
the relevant ground truth and (c) the measurements (prior to calibration)
that correspond to a synthetic gyroscope with the predefined time delay.
The calibrated time series that is estimated by our method exhibits the
same timeline as the ground truth.

Trial 1 2 3 4 5 6 7
Time delay [sec] 0.03 0.01 0.03 0.04 0.02 0.04 0.04

Table 1. The consistency of the estimated time delay based on real data.

4.1 Evaluation of calibration

4.1.1 Time delay

In a first experiment, we evaluated our approach for estimating the time
delay between the depth camera and the gyroscope. First, we verified
our approach based on the synthetic dataset. Fig. 5 shows the estimated
time delay based on synthetic data. We set ground-truth time delay as
0.1 sec. We plotted only the real part ’w’ of the quaternion representing
the hand orientation because the other imaginary components (x,y,z)
showed a similar pattern. As shown in Fig. 5, the estimated time delay
was the same to the ground truth (0.1 sec).

We also evaluated the consistency of the estimation of our approach
based on real data. Unlike the evaluation based on the synthetic data,
in real data ground truth is not available. Table 1 shows the consistency
of the estimated time delay based on the real data. Unlike the synthetic
experiment, we estimated slightly different time delay in every experi-
ment. The optimal τ that minimizes Eq. 11 was estimated from 0.01
sec to 0.04 sec. The deviation is likely to come from the error of hand
tracking, pose offset, and the noise of the sensors. For the fast motion
frames, the errors in the estimated delays did not affect the overall
performance of our hand tracking approach. However, for the frames
of very fast motion, the case of time delay (0.04 sec) showed better
results (see Table 2).

4.1.2 Pose offset

We evaluated the pose offset estimated by solving Eq. 10. Similarly to
the time-delay experimental setting, the ground-truth pose offset was
created from the synthetic hand model. In our configuration, the two
synthetic offsets were created as (−0.22,−0.46,−0.21,−0.82) and
(−0.07,−0.96,−0.21,−0.09) in Eq. 2 (the ordering of the quaternion
is (w,x,y,z)). Since our formulation does not consider the offset o1,
we evaluated only the offset o2. Fig. 6(a) shows the ratio d2/d3 where
D =

{
d0,d1,d2,d3

}
is sorted in descending order as diagonal elements

of the SVD, as solving Eq. 10, and the offset error according to
the frame. We observe that the estimated pose offset was closer to
the ground-truth pose when the ratio d2/d3 increased. Finally, the
estimated offset converged to the ground-truth offset.

Time delay [sec] 0.00 0.01 0.02 0.03 0.04
Mean±std on (1) 5.3±4.1 5.4±4.0 5.3±4.1 5.2±4.2 5.3±4.6
Mean±std on (2) 10.2±8.8 10.2±8.7 10.5±9.3 9.5±7.4 9.2±6.6

Table 2. Mean and standard deviation (std) with a fingertip pixel error on
(1) fast motion and (2) very fast motion according to time delay.

Trial 1 2 3 4 5 6 7
w -0.74 0.74 -0.73 -0.73 -0.73 0.75 0.73
x -0.66 0.65 -0.67 -0.67 -0.66 0.64 0.67
y 0.07 -0.07 0.05 0.06 0.07 -0.07 -0.06
z -0.14 0.14 -0.13 -0.13 -0.15 0.14 0.13

Table 3. Consistency of the estimated pose offset (normalized quater-
nion) based on real data. Note that the quaternion q represents the same
orientation as the one of the −q.

Based on the result of the synthetic dataset, we conducted the ex-
periment of the pose offset with a real dataset. Unlike the synthetic
dataset, for this type of test no ground-truth information on the off-
set is available. We replaced the pose-offset error as the sum of the
pose errors gathered for the calibration, which is calculated as the sum
of the quaternion distance between ∆hc(0..t) and the corresponding
o−1

2 ∆hg(0..t)o2 in Eq. 6 for the calibration of the pose offset. Fig. 6(b)
shows that the estimated pose offset converged to an orientation as the
sum of the orientation errors decreased. Table 3 shows the consistency
of the estimated pose offset in the real data during seven trials. The
quaternion estimations were similar in all trials.

4.2 Ablation study
We quantitatively/qualitatively evaluated our method with an ablative
study of its main components on the real dataset #1. Specifically, we
compared the proposed method with the baseline HPF approach [21],
with gyro-regularization, slerp-sampling, and their combination. Fig.
7 shows the effect of the components of our algorithm by plotting
the percentage of frames in which the 2D position error of the tip of
the little finger is below a certain threshold. First of all, adding gyro-
regularization increased the accuracy of the base algorithm. Since the
likelihood includes the gyro-regularization term, the likelihood of the
sampled particles is affected by the calibrated gyro pose. However,
the problem is that sampling relies entirely on the previous frame.
Only adopting the component of gyro-regularization was not enough to
achieve adequate performance for fast hand motion.

Slerp-sampling exhibited better accuracy than adopting gyro-
regularization. By performing slerp-sampling, the particles are sampled
among the previous orientation and the gyro trajectory. Therefore, the
sampling may include the true hand pose through the trajectory of
the gyro pose despite fast hand motion. However, fast hand motion
generates image artifacts. Since adopting only the component of the
slerp-sampling does not include gyro-regularization in the likelihood,
the particles have high likelihood when fully fitting to the blurred depth.

Finally, the proposed combination of both gyro regularization and
slerp sampling highly increased accuracy within range of the error
[5..30] pixels.

Fig. 8 shows three consecutive frames of fast hand motion. Note that
motion blur was generated by fast hand motion, as shown in the second
row of Fig. 8. The base algorithm and the one with gyro-regularization
failed to track the fast hand motion. Although the strategy of slerp-
sampling seemed to track the fast hand motion, it tried to fit the model
to blurred depth image. Consequently, the proposed exhibited adequate
accuracy despite fast hand motion.

4.3 Comparison to state-of-the-art
We quantitatively/qualitatively compared the proposed method to other
hand tracking methods (PSO [27], PSO with gyro [31], Tkach et
al. [46], Chen et al. [4]) in both exocentric and egocentric camera view.
We adapted the work [31] by replacing the CNN estimates with the
calibrated gyro pose and reproduced PSO [27]. Figure 9 shows the

(a) The estimated pose offset according to the frame based on synthetic
dataset. As the D ratio increased, the offset distance (error) decreased.

(b) The estimated pose offset according to the frame based on real dataset.
As the D ratio increased, the sum of the pose errors decreased.

Fig. 6. The result of pose-offset experiment. According to the frames,
the pose-offset converged to an orientation.

quantitative result on real dataset #2, which measured the 2D pixel
error of the little fingertip between the ground truth and the estimated
position from each algorithm. Sample qualitative results are shown in
Fig. 11.

Slow motion: As shown in Fig. 9, most algorithms exhibited adequate
accuracy in the case of slowly moving hands where the assumption of
temporal continuity was valid.

Fast motion: The performance of all algorithms decreased in the
case of fast motions. In particular, the accuracy of the works [27, 46]
dropped considerably because they rely heavily on the estimation for the
previous frame. The method [31] showed a somewhat better accuracy
than the works [27,46]. Search space adaptation and gyro-regularization
had a good effect when hand motion is fast. The accuracy of the fingers’
pose was not stable. Especially, there were many finger tracking losses
during fast hand motion. The discriminative approach of Chen et al. [4]
was not much affected by fast hand motion because it estimates hand
pose from learned CNN models. Although the 2D localization accuracy
of the tip of the little finger was better than ours, it showed unstable
result in some poses not generalized from the dataset [50] (see the first
row in Fig. 11(a)).

Very fast motion: Excessively fast motions introduce considerable
motion blur. Tracking methods such as the works [27, 46] fail to track
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case, the depth term Ed is less effective than the gyro-regularization
term Eg. Therefore, we empirically adapt the weight based on:

αg =




0.2+ Ω−0.02
0.1−0.02 ×0.6, if 0.02 < Ω < 0.1

0.2, if Ω ≤ 0.02
0.8, if Ω ≥ 0.1

(21)

where Ω is the sum of the quaternion-based distance starting the pre-
vious hand pose a(x[M]t−1,0) to the end of the gyro pose Gt(N) at the
time step t, which reflects the rotational speed of the gyroscope at the
time step t. The likelihood is then calculated by:

p(z|x) = exp
(
−E2(z,x)

2σ2

)
. (22)

4 EXPERIMENTS

We performed extensive experiments to evaluate the performance of the
proposed method and to compare it with state-of-the-art approaches.

Datasets: For the calibration experiments, we used a synthetic dataset
compiled by rendering a hand model. Synthetic depth images were
rendered by controlling the 26 DoFs of hand pose. The orientations
corresponding to the synthetic gyroscope were obtained by spherical
interpolation between the previous and the current pose of the rendered
hand model. The number of samples depends on the sampling rate of
the considered synthetic gyroscope. We assumed a sampling rate of
0.03 sec for the camera and of 0.01 sec for the synthetic gyroscope. For
example, when a synthetic hand image is rendered at time t, the three
orientations of the synthetic gyroscope are obtained at the time steps t,
t +0.01 and t +0.02. Based on these data, we assessed quantitatively
the calibration performance.

For the evaluation of tracking performance, we used two real datasets
acquired by actual sensors. Specifically, the real dataset #1 was used
for an ablation study and contains slow hand motions (100 frames)
and fast hand motions with temporal discontinuities (865 frames), and
very fast hand motions (188 frames). The real dataset #2 was used for
comparison to state-of-the-art. This contains slow hand motions with
temporal continuity and no motion blur (300 frames), and fast hand
motions with temporal discontinuities (2070 frames), out of which 218
frames were classified as containing very fast motions. The classifica-
tion was assisted by considering the magnitude of the angular velocities
measured by the gyroscope. Frames are classified as very fast when
the average L2-norm of angular velocities exceeds 6.66 rad/sec during
the adjacent 3 frames. In this case, excessive motion blur is frequently
caused. To the best of our knowledge, these are the first datasets of their
kind and our study is the first to compare quantitatively/qualitatively
hand-pose tracking performance in the case of motion blur.

We observed that an infrared image is not blurred despite fast hand
motion and a reflective material exhibits high intensity in the IR image.
We put reflective tape on the tip of the little finger, which reflects the
error well when the hand is wrongly flipped. The 2D center position of
the tape was estimated as ground truth based on a simple contour-based
detection method.

Parameter settings: To estimate the time-delay and the pose-offset
during calibration, αg of Eq. 19 is zero since gyroscope and camera
were not yet calibrated. Three gyro poses were used for slerp-based
sampling and 64 particles were sampled in the state evolution. For the
evaluation of the particles, β of Eq. 20 was set to 0.4.

Performance issues: Our method was evaluated on an Intel Core i7
4GHz with a single NVIDIA GTX1080-ti GPU. It ran on a 30Hz
RGBD camera like Intel Realsense SR-300 and 100 Hz gyroscope of
LG Watch Urbane W150 OEM. The angular velocity of the gyroscope is
transferred to the hand tracking system through User Datagram Protocol
(UDP) socket communication over WiFi. Regarding the computational
complexity of the model, as we use a particle filter to track a hand
model, analysis made by the works [3, 7, 39] could apply. Indicatively,
our tracking method achieves real time performance (50Hz) under the
above settings.

Fig. 5. Time delay experiment based on synthetic data. A time series
of the real part of the quaternion representing hand orientation was
estimated based on the proposed approach. The plot shows (a) the time
series calibrated for the time offset based on the proposed method, (b)
the relevant ground truth and (c) the measurements (prior to calibration)
that correspond to a synthetic gyroscope with the predefined time delay.
The calibrated time series that is estimated by our method exhibits the
same timeline as the ground truth.

Trial 1 2 3 4 5 6 7
Time delay [sec] 0.03 0.01 0.03 0.04 0.02 0.04 0.04

Table 1. The consistency of the estimated time delay based on real data.

4.1 Evaluation of calibration

4.1.1 Time delay

In a first experiment, we evaluated our approach for estimating the time
delay between the depth camera and the gyroscope. First, we verified
our approach based on the synthetic dataset. Fig. 5 shows the estimated
time delay based on synthetic data. We set ground-truth time delay as
0.1 sec. We plotted only the real part ’w’ of the quaternion representing
the hand orientation because the other imaginary components (x,y,z)
showed a similar pattern. As shown in Fig. 5, the estimated time delay
was the same to the ground truth (0.1 sec).

We also evaluated the consistency of the estimation of our approach
based on real data. Unlike the evaluation based on the synthetic data,
in real data ground truth is not available. Table 1 shows the consistency
of the estimated time delay based on the real data. Unlike the synthetic
experiment, we estimated slightly different time delay in every experi-
ment. The optimal τ that minimizes Eq. 11 was estimated from 0.01
sec to 0.04 sec. The deviation is likely to come from the error of hand
tracking, pose offset, and the noise of the sensors. For the fast motion
frames, the errors in the estimated delays did not affect the overall
performance of our hand tracking approach. However, for the frames
of very fast motion, the case of time delay (0.04 sec) showed better
results (see Table 2).

4.1.2 Pose offset

We evaluated the pose offset estimated by solving Eq. 10. Similarly to
the time-delay experimental setting, the ground-truth pose offset was
created from the synthetic hand model. In our configuration, the two
synthetic offsets were created as (−0.22,−0.46,−0.21,−0.82) and
(−0.07,−0.96,−0.21,−0.09) in Eq. 2 (the ordering of the quaternion
is (w,x,y,z)). Since our formulation does not consider the offset o1,
we evaluated only the offset o2. Fig. 6(a) shows the ratio d2/d3 where
D =

{
d0,d1,d2,d3

}
is sorted in descending order as diagonal elements

of the SVD, as solving Eq. 10, and the offset error according to
the frame. We observe that the estimated pose offset was closer to
the ground-truth pose when the ratio d2/d3 increased. Finally, the
estimated offset converged to the ground-truth offset.

Time delay [sec] 0.00 0.01 0.02 0.03 0.04
Mean±std on (1) 5.3±4.1 5.4±4.0 5.3±4.1 5.2±4.2 5.3±4.6
Mean±std on (2) 10.2±8.8 10.2±8.7 10.5±9.3 9.5±7.4 9.2±6.6

Table 2. Mean and standard deviation (std) with a fingertip pixel error on
(1) fast motion and (2) very fast motion according to time delay.

Trial 1 2 3 4 5 6 7
w -0.74 0.74 -0.73 -0.73 -0.73 0.75 0.73
x -0.66 0.65 -0.67 -0.67 -0.66 0.64 0.67
y 0.07 -0.07 0.05 0.06 0.07 -0.07 -0.06
z -0.14 0.14 -0.13 -0.13 -0.15 0.14 0.13

Table 3. Consistency of the estimated pose offset (normalized quater-
nion) based on real data. Note that the quaternion q represents the same
orientation as the one of the −q.

Based on the result of the synthetic dataset, we conducted the ex-
periment of the pose offset with a real dataset. Unlike the synthetic
dataset, for this type of test no ground-truth information on the off-
set is available. We replaced the pose-offset error as the sum of the
pose errors gathered for the calibration, which is calculated as the sum
of the quaternion distance between ∆hc(0..t) and the corresponding
o−1

2 ∆hg(0..t)o2 in Eq. 6 for the calibration of the pose offset. Fig. 6(b)
shows that the estimated pose offset converged to an orientation as the
sum of the orientation errors decreased. Table 3 shows the consistency
of the estimated pose offset in the real data during seven trials. The
quaternion estimations were similar in all trials.

4.2 Ablation study
We quantitatively/qualitatively evaluated our method with an ablative
study of its main components on the real dataset #1. Specifically, we
compared the proposed method with the baseline HPF approach [21],
with gyro-regularization, slerp-sampling, and their combination. Fig.
7 shows the effect of the components of our algorithm by plotting
the percentage of frames in which the 2D position error of the tip of
the little finger is below a certain threshold. First of all, adding gyro-
regularization increased the accuracy of the base algorithm. Since the
likelihood includes the gyro-regularization term, the likelihood of the
sampled particles is affected by the calibrated gyro pose. However,
the problem is that sampling relies entirely on the previous frame.
Only adopting the component of gyro-regularization was not enough to
achieve adequate performance for fast hand motion.

Slerp-sampling exhibited better accuracy than adopting gyro-
regularization. By performing slerp-sampling, the particles are sampled
among the previous orientation and the gyro trajectory. Therefore, the
sampling may include the true hand pose through the trajectory of
the gyro pose despite fast hand motion. However, fast hand motion
generates image artifacts. Since adopting only the component of the
slerp-sampling does not include gyro-regularization in the likelihood,
the particles have high likelihood when fully fitting to the blurred depth.

Finally, the proposed combination of both gyro regularization and
slerp sampling highly increased accuracy within range of the error
[5..30] pixels.

Fig. 8 shows three consecutive frames of fast hand motion. Note that
motion blur was generated by fast hand motion, as shown in the second
row of Fig. 8. The base algorithm and the one with gyro-regularization
failed to track the fast hand motion. Although the strategy of slerp-
sampling seemed to track the fast hand motion, it tried to fit the model
to blurred depth image. Consequently, the proposed exhibited adequate
accuracy despite fast hand motion.

4.3 Comparison to state-of-the-art
We quantitatively/qualitatively compared the proposed method to other
hand tracking methods (PSO [27], PSO with gyro [31], Tkach et
al. [46], Chen et al. [4]) in both exocentric and egocentric camera view.
We adapted the work [31] by replacing the CNN estimates with the
calibrated gyro pose and reproduced PSO [27]. Figure 9 shows the

(a) The estimated pose offset according to the frame based on synthetic
dataset. As the D ratio increased, the offset distance (error) decreased.

(b) The estimated pose offset according to the frame based on real dataset.
As the D ratio increased, the sum of the pose errors decreased.

Fig. 6. The result of pose-offset experiment. According to the frames,
the pose-offset converged to an orientation.

quantitative result on real dataset #2, which measured the 2D pixel
error of the little fingertip between the ground truth and the estimated
position from each algorithm. Sample qualitative results are shown in
Fig. 11.

Slow motion: As shown in Fig. 9, most algorithms exhibited adequate
accuracy in the case of slowly moving hands where the assumption of
temporal continuity was valid.

Fast motion: The performance of all algorithms decreased in the
case of fast motions. In particular, the accuracy of the works [27, 46]
dropped considerably because they rely heavily on the estimation for the
previous frame. The method [31] showed a somewhat better accuracy
than the works [27,46]. Search space adaptation and gyro-regularization
had a good effect when hand motion is fast. The accuracy of the fingers’
pose was not stable. Especially, there were many finger tracking losses
during fast hand motion. The discriminative approach of Chen et al. [4]
was not much affected by fast hand motion because it estimates hand
pose from learned CNN models. Although the 2D localization accuracy
of the tip of the little finger was better than ours, it showed unstable
result in some poses not generalized from the dataset [50] (see the first
row in Fig. 11(a)).

Very fast motion: Excessively fast motions introduce considerable
motion blur. Tracking methods such as the works [27, 46] fail to track



1898  	 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 5, MAY 2020

Fig. 7. Quantitative result of ablative study to evaluate the main compo-
nents of our algorithm.

the hand pose. Specifically, the tracking result of Tkach et al. [46] is
likely to be reinitialized well when all fingertips are visible. However,
the motion blur makes the finger part highly noisy in the image and
increases uncertainty. Although the gyro information is exploited by the
method of Park et al. [31], its accuracy drops. Moreover, in this case, the
accuracy of Chen et al. [4] was less than the proposed method because
the trained dataset does not contain images contaminated by motion
blur. The proposed method showed accurate and robust performance
and was not much affected by very fast hand motion.

We also qualitatively compared the proposed method in another
sequence obtained from an egocentric viewpoint which contains 1600
frames with fast rotation including motion blur. In this view, there are
many self-occlusions, which make the problem more difficult with fast
hand motion. Unlike the previous experiment, the comparison is shown
qualitatively because fingers are frequently invisible in the egocentric
view. Figure 11(b) shows the tracking results. In this more challenging
sequence, our algorithm outperformed other methods [4, 27, 30, 46].

4.4 Possible applications

Our 3D hand tracking method can be a valuable component for sup-
porting various applications such as 3D manipulation of virtual objects,
system control, mapping to 3D avatar’s hand, etc. Our method can be
particularly useful in supporting hand-based interaction in scenarios
where hands move fast. This allows the users to interact with virtual
objects without constraints on hand motion speed. As a simple example
(see Fig. 10), we show an application with the HMD-attached camera
setting as in Fig. 1 where a user manipulates rapidly virtual objects in
a virtual environment which was implemented in the Unity3D game
engine. In order to address both camera and hand motion in the unre-
stricted case, we need an independent mechanism that tracks the camera
relative to its environment. Although there are several methods (both
visual and non-visual) for such camera tracking, we did not employ one
as we considered it beyond the scope of this research. Nevertheless, our
method tracks successfully the relative pose between the camera and
the gyroscope-worn hand under the assumption that the camera does
not move much and the hand remains within the camera’s FOV. This
assumption is quite realistic when a user manipulates virtual objects.
More relevant results are available in the supplementary video.

Our approach can be also used to support gesture-based interaction
in an AR/VR scenario in the form of sign language understanding.
Motion blur occurs very often in sign language movement tracking,
especially in the transition phases between different hand signs. The
successful tracking of the hands in such situations may prove very
beneficial towards a more successful gesture interpretation. Moreover,
it can be also used to transfer correctly the motion of a user’s hand into

some remote place in the context of a tele-presence or tele-operation
application. The investigation of such possibilities and applications is
within our plans for future work.

5 SUMMARY

We proposed a sensor-fusion method to track the articulations of a hand
in the presence of excessive motion blur. To do this, we firstly calibrated
the time delay and the pose offset between a depth camera and a hand-
worn gyroscope. The tracking problem was formulated as a hierarchical
particle filter exploiting the fusion of gyroscopic and camera-based
depth information. Specifically, we proposed slerp-based sampling and
gyro-regularization within the HPF framework. In the course of the
extensive evaluations we performed, our method exhibited accurate and
robust performance despite fast hand motions. The proposed method is
the first to achieve a solution to hand articulations tracking based on
sensor-fusion method in the presence of excessive motion blur.
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Fig. 7. Quantitative result of ablative study to evaluate the main compo-
nents of our algorithm.

the hand pose. Specifically, the tracking result of Tkach et al. [46] is
likely to be reinitialized well when all fingertips are visible. However,
the motion blur makes the finger part highly noisy in the image and
increases uncertainty. Although the gyro information is exploited by the
method of Park et al. [31], its accuracy drops. Moreover, in this case, the
accuracy of Chen et al. [4] was less than the proposed method because
the trained dataset does not contain images contaminated by motion
blur. The proposed method showed accurate and robust performance
and was not much affected by very fast hand motion.

We also qualitatively compared the proposed method in another
sequence obtained from an egocentric viewpoint which contains 1600
frames with fast rotation including motion blur. In this view, there are
many self-occlusions, which make the problem more difficult with fast
hand motion. Unlike the previous experiment, the comparison is shown
qualitatively because fingers are frequently invisible in the egocentric
view. Figure 11(b) shows the tracking results. In this more challenging
sequence, our algorithm outperformed other methods [4, 27, 30, 46].

4.4 Possible applications

Our 3D hand tracking method can be a valuable component for sup-
porting various applications such as 3D manipulation of virtual objects,
system control, mapping to 3D avatar’s hand, etc. Our method can be
particularly useful in supporting hand-based interaction in scenarios
where hands move fast. This allows the users to interact with virtual
objects without constraints on hand motion speed. As a simple example
(see Fig. 10), we show an application with the HMD-attached camera
setting as in Fig. 1 where a user manipulates rapidly virtual objects in
a virtual environment which was implemented in the Unity3D game
engine. In order to address both camera and hand motion in the unre-
stricted case, we need an independent mechanism that tracks the camera
relative to its environment. Although there are several methods (both
visual and non-visual) for such camera tracking, we did not employ one
as we considered it beyond the scope of this research. Nevertheless, our
method tracks successfully the relative pose between the camera and
the gyroscope-worn hand under the assumption that the camera does
not move much and the hand remains within the camera’s FOV. This
assumption is quite realistic when a user manipulates virtual objects.
More relevant results are available in the supplementary video.

Our approach can be also used to support gesture-based interaction
in an AR/VR scenario in the form of sign language understanding.
Motion blur occurs very often in sign language movement tracking,
especially in the transition phases between different hand signs. The
successful tracking of the hands in such situations may prove very
beneficial towards a more successful gesture interpretation. Moreover,
it can be also used to transfer correctly the motion of a user’s hand into

some remote place in the context of a tele-presence or tele-operation
application. The investigation of such possibilities and applications is
within our plans for future work.

5 SUMMARY

We proposed a sensor-fusion method to track the articulations of a hand
in the presence of excessive motion blur. To do this, we firstly calibrated
the time delay and the pose offset between a depth camera and a hand-
worn gyroscope. The tracking problem was formulated as a hierarchical
particle filter exploiting the fusion of gyroscopic and camera-based
depth information. Specifically, we proposed slerp-based sampling and
gyro-regularization within the HPF framework. In the course of the
extensive evaluations we performed, our method exhibited accurate and
robust performance despite fast hand motions. The proposed method is
the first to achieve a solution to hand articulations tracking based on
sensor-fusion method in the presence of excessive motion blur.
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Fig. 11. Qualitative comparison to state-of-the-art methods (a) in exocentric view and (b) egocentric view. This shows the tracking results in the
presence of motion blur when the hand rotates quickly.
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