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Abstract—Human activity recognition is a fundamental and
challenging task in computer vision. Its solution can support
multiple and diverse applications in areas including but not
limited to smart homes, surveillance, daily living assistance,
Human-Robot Collaboration (HRC), etc. In realistic conditions,
the complexity of human activities ranges from simple coarse
actions, such as siting or standing up, to more complex activities
that consist of multiple actions with subtle variations in appear-
ance and motion patterns. A large variety of existing datasets
target specific action classes, with some of them being coarse
and others being fine-grained. In all of them, a description of
the action and its complexity is manifested in the action label
sentence. As the action/activity complexity increases, so is the
label sentence size and the amount of action-related semantic
information contained in this description. In this paper, we
propose an approach to exploit the information content of these
action labels to formulate a coarse-to-fine action hierarchy based
on linguistic label associations, and investigate the potential
benefits and drawbacks. Moreover, in a series of quantitative
and qualitative experiments, we show that the exploitation of this
hierarchical organization of action classes in different levels of
granularity improves the learning speed and overall performance
of a range of baseline and mid-range deep architectures for
human action recognition (HAR).

I. INTRODUCTION

Computer vision exhibits rapid advancement, benefiting
from the developments in machine learning and, in particular,
of deep learning approaches. One computer vision sub-field
that has faced significant advancement is that of human activity
recognition. This is considered as a challenging task due to
the high-dimensionality of video data, appearance variability
due to viewpoint changes, intra-class appearance variations,
etc. In recent years, numerous deep learning-based approaches
for action recognition have been proposed that benefit from
the representational power and temporal modeling capabilities
of deep neural networks (DNNs) [1]. These approaches can
be grouped into two categories, on the basis of their end-
to-end model learning capabilities. The first utilizes DNNs
as frame-wise or segment-wise feature descriptors forwarding
the representation to probabilistic [2], [3] or deterministic [4],
[5] temporal models, separating the learning of spatial and
temporal representations. On the contrary, the second class
of methods employ end-to-end spatio-temporal DNN archi-
tectures that combine spatial feature extraction and temporal
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modeling in a unified framework. In both cases, the com-
plexity and robustness of the temporal modeling depends
on the complexity and temporal ordering variations of the
modelled action/activity. A set of complex activities/actions
require models capable of expressing both short- and long-
term dependencies and variations. Usually, models with large
state storing capacity and a large number of hyper-parameters
are defined. However, for such models the learning process is
hard and the adaptability to new activity sets is low, requiring
the redefinition of the core model structure and a reassessment
of the model’s learning capacity to the new task [1].

The aforementioned issues become more challenging as
the inter-class variability of the activities to be recognized
decreases. High action complexity and low inter-class vari-
ability increases the complexity of the model designs since all
possible dependencies and correlations among the classes in
the feature learning and temporal modeling processes need to
be considered. Instead of brute force solutions that employ
models of increasing complexity, a common strategy is to
exploit a priori knowledge from other information sources.
One such source capable of providing knowledge about po-
tential dependencies and correlations between action classes
are the lexical descriptions of the actions as manifested in
the action labels or script data. A key observation is that,
in most cases, the size, the complexity and the semantic
content of the label sentence or script size, increases with
the action complexity. Moreover, the label contains implicit
information on potential relationships between actions. Thus,
distilling and comparing the semantic content of labels via
natural language processing (NLP) methods can be helpful in
extracting meaningful knowledge about action class attributes
and similarity metrics that can assist in the class distinction.

In the present work, we propose a novel way to exploit NLP-
driven knowledge on action class similarities extracted from
their action labels, in order to define action hierarchies that
represent coarse-to-fine action contents. Additionally, we show
experimentally that this coarse-to-fine, two-level action hier-
archy, when properly exploited by an action recognition DNN
architecture, leads to faster learning and higher recognition
accuracy scores for baseline designs, with potential benefits
for state-of-the-art (SOTA) designs. Overall, the contributions
of our work are the following:
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o We present an NLP-based approach to identify and quan-
tify similarities of action labels of different action classes,
based on verb commonalities or similarities.

o We show that this verb-centered label grouping can be
utilized to generate a two-level action hierarchy that
allows the reformulation of the HAR problem into a
coarse-to-fine multi-level activity classification problem.

o« We provide DNN design directions for the utilization
of the derived two-level granularity hierarchy in HAR-
oriented deep model, illustrating the benefits of incor-
porating the learned coarse representation into the fine-
grained representation learning problem.

The remainder of the paper is organized as follows. In
Section II we review related work on action recognition,
highlighting the novelties of the proposed approach. Sec-
tion III describes the proposed methodology. Our approach
is validated experimentally in Section IV. Finally, Section VI
provides a summary of this work.

II. RELATED WORK

Over the last couple of years, deep learning has dominated
video-based human activity recognition. Convolutional Neural
Networks (CNNs) are now considered a standard for spatial
feature extraction due to their representational superiority over
hand-engineered feature descriptors. HAR requires modeling
of the temporal evolution of these spatial features. Thus,
recently, HAR methods utilize temporal modeling neural net-
work designs, such as Recurrent Neural Networks (RNNs).

Similarly to the hand-engineered HAR methods, the design
complexity of deep learning-based methods is also inter-
weaved with the activity complexity. Complex activity sets
with low inter-class and high intra-class variations require
DNNs with high representational capacity, leading to deep
and wide DNN designs, with a variety of temporal convo-
lution kernel sizes and memory mechanisms. To increase the
information flow, recent methods exploit multi-modal DNN
designs combining visual information with language, audio or
other sensory data [6].

In particular, the linguistic analysis on script data has proven
to be a useful information source for activity recognition that
is utilized by both hand-engineered and deep learning-based
methods [7], [8], [9]. Nevertheless, only a small portion of
existing HAR datasets provide script data. Another source
of linguistic activity-related information is the action/activity
labels. Despite the small sizeof label sentences, they contain
valuable information about motion motifs (expressed in the
form of verbs), as well as about the presence of action-relevant
objects (expressed in the form of nouns). Thus, a number of
HAR approaches utilize the semantic content of action labels
in their model design, in a variety of ways. A subset of meth-
ods [10], [11] highlighted the existence of potential semantic
overlap between verb-centered labels in HAR datasets, due
to different verb meaning interpretation by annotators and
proposed joint multi-label classification and label correlation
approaches, with the goal of exploiting label correlation as a
complementary attribute for better activity distinction. Other

works, utilize linguistic analysis of label sentences to derive
semantic similarities. The similarity attribute is then used
in the form of weights either for potential mis-classification
penalization [12], or for cross-domain learning, to weight the
source instances based on the similarity of labels of the source
and target data [13].

Compared to these works, our work exploits label similari-
ties to cluster activities based on motion motif commonalities,
expressed in the form of verb-centered semantic similarities.
Moreover, the derived label grouping is utilized to generate
a two-level action hierarchy, enabling the reformulation of
the HAR problem into a coarse-to-fine multi-task activity
classification problem.

Coarse-to-fine and multi-task learning (MTL) for HAR,
have already been exploited in the existing literature, in a
number of hand-engineered (e.g. [14], [15]) and deep learning-
based methods (e.g. [16], [17]). The main idea is to first
aggregate feature representations of different granularities into
a common representation, essentially learning latent tasks
shared across action classes, and subsequently evaluate them
on the fine-grained classification problem, without explic-
itly defining a coarse-grained label set. Regarding the deep
learning-based approaches, the action granularity representa-
tion hierarchy is expressed with a series of sub-networks,
one for every granualrity level. In the case of an uncropped
input sequence the different representation levels are gener-
ated with sub-network parameter gradations [17], [18], where
lighter/shallower networks lead to coarser representations and
deeper/wider produce more fine-grained ones. Another way to
achieve this is to utilize the different actor body part regions as
inputs for the discrete sub-networks to produce coarse-grained
representations and then use their aggregation to generate
the fine-grained one [5], [16], [19]. In comparison to such
DNN architecture designs, the proposed DNN design strategy
follows the same principal as the first class, however, we allow
for a direct evaluation of the learned multi-level granularity
representations using the NLP-driven action hierarchy.

III. PROPOSED METHOD

The proposed approach consists of a two-stage action recog-
nition DNN framework that exploits linguistic commonalities
in action labels. In that direction, we define an action tree
structure in which top levels express more abstract/coarse
action classes that become more specific/fine-grained in bot-
tom levels. We claim that redesigning the higher-levels of
existing deep architectures to exploit this action hierarchy
into a two-stage coarse-to-fine action classification task allows
the network to learn faster, and to develop more robust
representations for both coarser as well as for more complex
activity sets. In more detail, the network functionality initially
involves the extraction of estimates regarding the coarser
action categories in an input sequence. The estimation is then
refined by propagating the information deeper into the network
with the goal of classifying the action into the set of complex
action classes that have been grouped under each coarser
action category. Intuitively, the idea is to let the network
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learn at its early levels feature representations that are capable
of distinguishing distinctive classes. Then, at its subsequent
layers, the network learns finer representations that enable it
to distinguish actions that belong to the same coarser action
category but have subtle differences.

A. Action tree hierarchy

The action tree hierarchy expresses the degree of similarity
of the lexical descriptions of the action labels. We can con-
struct a multitude of such tree structures by focusing each time
on a particular part of the speech (e.g. verbs, nouns) or even
part-of-speech combinations (e.g. verb + noun) increasing
the semantic content being utilized. However, the semantic
correlation of the classes that is expressed in each structure is
different depending on the part of the speech or combination
used. Typically, an action is largely characterized by the verb
that is used to describe it in the linguistic representation.
Moreover, the majority of existing complex activity datasets
contain action labels that share common verbs and differentiate
based on the objects used by users, which are expressed in the
form of nouns. Thus, the most meaningful way to construct
the action tree is to target verb-centered commonalities in
action labels. To construct the tree, we first isolate the action
verbs in the sentence using a combination of part-of-speech
taggers and carefully defined syntax rules. Subsequently, we
cluster the classes based on verb sharing or if the degree
of similarity of the semantic content of the verbs is large
(above a predefined threshold). Finally, we construct a square
N-by-N binary matrix, with N denoting the number of
fine-grained action labels. An entry of this matrix has the
value 1 if the corresponding classes have a common motion
motif expressed via verb commonality (or high verb semantic
content similarity, explained in the forthcoming paragraphs)
or 0, otherwise.

In more detail, following our previous work [12] on NLP-
assisted label clustering, we utilize part of speech taggers
trained on large sets of corpus readers (specifically, Word-
Net [20]) that are provided in the Natural Language ToolKit
(NLTK) platform [21] to assign tags for each word. Moreover,
to refine the number of potential verbs identified in each
sentence, we define syntax rules regarding the verb position,
the actual contribution of the verb in the semantic content
and overall linguistic structure of an action label sentence.
Specifically, the following grammatical rules are imposed to
refine and correct the set of identified action verbs:

o Syntax rule 1: A candidate verb can be followed by any
number of particles (at, on, out, up, etc) or ad-positions
(on, of, at, with, etc), delimiter or possibly by a noun.

o Syntax rule 2: If a verb is followed by a particle or an
ad-position, then define the candidate verb as compound.

o Syntax rule 3: A sentence may start with a verb token. If,
instead, a sentence starts with a noun token followed by
another noun, ad-position or adjective, search the corpus
if the starting word can be classified also as a verb. If
yes, change the token label to verb.

‘dn pueig
‘[1eq & Surmory I,
‘spuey Surdde|)

‘umop Aem ) [[e
dn spuey — Surpuog

> umop 1§
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Fig. 1: Action hierarchy generated with the application of the
proposed verb-centered lexical analysis on the class labels
of the MHAD dataset, [ Jumping in place, Jumping jacks,
Bending - hands up all the way down, Punching, Waving -
two hands, Waving - one hand, Clapping hands, Throwing a
ball, Sit down then stand up, Sit down, Stand up. ]

The first syntax rule corresponds to the general format of an
action description, do something with something, which can
be found in the majority of human action recognition datasets.
Contrary, the second rule (initially presented in our previous
work), corresponds to verb cases in which the juxtaposition
of an ad-position/adverb after the verb changes entirely the
semantic content of the verb, e.g. take in and take out. Finally,
the role of the third rule is to deal with cases of words in the
English language that can have more than one possible tag,
due to multiple possible interpretations of the specific word.
For example, the word screw can be interpreted as, (a) a verb
referring to the act of putting something into its position by
turning it, and, (b) a noun referring to a thin pointed piece of
metal that is used for fastening one thing to another.

In order to impose these syntax rules in our text processing
pipeline, we utilize Noun Phrase chuncking (NP-chunck) tech-
niques [22] to segment and label multi-token sequences and
identify the ones that follow the desired structure (grammar).
The refined, tokenized label set is then clustered based on
the similarity of verb tokens, with the cluster number being
equal to the number of unique verbs identified in the entire
label set. The clustered sets allow the construction of two-level
action trees in which the first level nodes correspond to the
verb-centroid of each cluster and the leafs to the fine-grained
labels that have been assigned to this cluster. Figure 1, depicts
the extracted action hierarchy for the MHAD dataset [23].

B. Incorporating the action hierarchy in DNN design

The previous stage allows the automatic generation of
coarser action labels from the existing initial (finer) label set.
The derived class set can serve as a more abstract, easier to
solve formulation of the problem. One way to benefit from
this formulation is to instruct the deep architecture to learn
representations for this coarse-grained action set, and then,
once it is able to discriminate the coarser action classes, use
this representation as complementary information for the fine-
grained classification problem.

A deep architecture design approach that utilizes this dual
problem formulation consists of a two-branch architecture,
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with the first sub-net being responsible for the coarser action
classification, whereas the second sub-net is responsible for
the finer classification. In order for the fine-grained sub-net to
have access to the feature representations of the coarse-grained
sub-net, an inter-connection can be utilized to skip-forward
and connect (via concatenation) them with the existing fine-
grained representation. One further design issue is the choice
of the level at which we associate the two representations. In
the present work, we consider two approaches regarding the
feature-level of the coarse-grained sub-net. We should note
that the fused maps are forwarded to the next layer set of the
fine-grained sub-net.

o Mid-level feature fusion: fuse the feature maps of the
sub-nets at the same high level of feature representation.
o High to mid feature fusion: fuse the learned coarse-
grained action class probability distributions with the
mid-level representations at lower layers of the fine-
grained sub-net, and utilize the combined representation
in the higher layers of the fine-grained modeling sub-net.

The first scheme is a common fusion strategy followed in the
literature, combining the two representations at feature-level
and attempting to map them into a more discriminative feature
space. The second stems from the observation that, as the
action complexity increases, so is the number of action motifs
in the action sequence, expressed via verbs. For example, in
the MPII Cooking Activities dataset [8], there exist cases of
classes with more than one action verbs, such as take and
put in the fridge. The action tree generation scheme proposed
in this work only considers the first verb encountered, thus
ignoring any additional verbs. This will lead to coarse-grained
probability distributions that contain considerable probability
values for the additional ignored verb cases. However, we can
consider this probability distribution as an additional feature
pattern, e.g. take cup and put on the table will lead to different
pattern compared to take cup and pour coffee, despite the
clustering of the two classes into the same coarse-grained class
with the verb take.

With respect to the second approach, the probability vector
corresponding to the coarse classes has much smaller dimen-
sionality compared to the 1D feature vector from the FC layer
of the fine-grained sub-net. In addition, this vector expresses
assignment probability, thus, the value of each component
ranges from O to 1, with the summation of all component
values being equal to 1. To increase the contribution of the
coarse prediction as a feature component in the fine-grained
representation, we proceed with the following adjustments:
(a) batch normalization in the feature vectors of the fine-
grained FC layer to be concatenated with the coarse-grained
probability vector, and, (b) constrain the dimensionality of
the feature vector from fine-grained FC layer to be roughly
D times (experimentally derived) the size of the probability
vector from the coarse-grained part.

Overall, to enforce the symbiotic relation between the
two action granularity levels in the learning process, a deep
architecture that follows the aforementioned design strategy
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Fig. 2: (a) A simplified illustration of the custom baseline
BiLSTM-based architecture, (b) its hierarchical variant.
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should minimize the following joint classification categorical
cross-entropy-based loss function:

N [ K L
L= 3 [ miog (v3) + S witiiog (V1)
n=1 Lk=1 =1

(D
where w; is a vector expressing label-centered associations
between the fine-grained action classes, (T.9",T/") are the
ground-truth action labels for the coarse-grained and the fine-
grained action classes respectively and, (Y,9",Y,/™) are the
estimated action classes.

Regarding the weight vector wy, in the second part of the
equation, it is derived from our previous work [12], concerning
the extraction of misclassification penalization weights based
on label description clustering using NLP. In more detail, we
follow a verb-centered clustering of the action labels based
on verb commonalities or verb with high semantic content
similarity, with the verb cluster centers defining the coarser
action class set. The weight vector values are uniformly
defined based on the number of classes belonging in the same
coarser action class.

IV. EXPERIMENTAL SETUP

In the set of experiments that follow we assess the con-
tribution of the proposed methodology to the performance
of an action recognition pipeline. In order to illustrate the
independence of the proposed approach to the specifics of the
employed DNN, the evaluation is carried out on the basis of
two deep architecture designs types. The designs involve (a) an
architecture based on BiLSTM cells performing only temporal
modeling of extracted frame-wise feature vectors serving as
a baseline deep architecture design [12], and (b) the state-of-
the art, end-to-end video classification architecture by Carreira

342

Authorized licensed use limited to: Foundation for Research and Technology (FORTH). Downloaded on May 30,2021 at 06:07:27 UTC from IEEE Xplore. Restrictions apply.



Max/min asc verb
Num finer labels
Num Gen labels

1/0 asc
11
8

2/0 asc
21
18

5/0 asc
64
36

Datasets Architecture Datasets (mAcc. (Coarse, Fine)%)
MHAD J-HMDB | MPII Cooking Design MHAD J-HMDB MPII Cook
Num unique verbs 9 verbs 19 verbs 42 verbs NH-BiLSTM (-, 64.17)% (-, 36.28)% (-, 29.45)%
Avg num verbs/Ibl | 1.128 verb/Ibl 1.0 verb/Ibl | 1.188 verbs/lbl H-BiLSTM (82.50, 70.25)% | (45.68, 42.61)% | (60.70, 35.40)%
Avg 1bl length 3.182 PoS/Ibl | 1.333 PoS/Ibl 2.297 PoS/Ibl NH-I3D [24] (-, 89.61)% (-, 72.38)% (-, 48.18)%
Avg asc via verb 0.545 asc/Ibl 0.286 asc/Ibl 1.656 asc/Ibl H-I3D (98.75, 96.38)% | (78.47, 76.10)% | (70.47, 54.30)%

TABLE I: Dataset Label Statistics. Abbreviations in the table
contents refer to, Avg: average, num: number, PoS: part-of-
speech, [bl: label, Average asc: average number of classes a
single class is related to based on a PoS, asc: associations, is
the amount of label lexical relations based on a specific PoS.

and Zisserman [24], based on 3D convolutions (Conv3D) and
inception layers, with small variations to comply with the dual
problem formulation.

Regarding the field of evaluation, we evaluate the pro-
posed designs on three activity recognition datasets, namely
Berkeley’s MHAD [23], the J-HMDB [25] and Max Planck’s
Cooking dataset [26]. These datasets correspond to coarse-
grained, mid-range, and fine-grained activity sets with the
action complexity reflected on the size and complexity of the
label descriptions. Moreover, the proposed two-level action
tree hierarchy results in at least 20% reduction of the class
amount in the coarser-level classification task, with increasing
rates as the activity complexity and diversity increases. Ta-
ble I presents statistical information regarding the number of
unique verbs, average number of verbs per label, average verb
associations between classes based on verbs, number of fine-
grained (initial) classes and the generated number of coarser
action labels.

A. Architecture modifications

For evaluating the proposed action hierarchy-based deep
design directions, we modify the baseline architectures in order
to introduce the hierarchical action format of the derived action
tree into the deep design.

Custom baseline BiLSTM-based DNN: Compared to the
initial single stream design (presented in [12] and illustrated
in Fig. 2a), the modifications involve maintaining only the first
BiLSTM layer and decoupling the two action granularity levels
into discrete sub-nets. The coarse-level sub-net consists of a
BiLSTM layer followed by a two-level Fully-Connected (FC)
layer set, with Leaky ReLU and soft-max activation functions,
respectively. The goal of this sub-net is to produce probability
distribution estimates for the set of coarse-grained classes.
Contrary, the fine-grained sub-net also consists of a BILSTM
layer followed by a three FC layer set, with the first two
utilizing a Leaky ReLU and dropout sequence, whereas the
last exploits a soft-max activation function, which generates
the fine-grained class estimates. Moreover, the input of the
second FC layer is defined to be the concatenation of the
feature maps of the first FC layer of the coarse-grained sub-

TABLE II: Action recognition performance for the MHAD,
JHMDB and MPII datasets between hierarchical (H) and non-
hierarchical (NH) deep architecture designs.

net and those of the corresponding level of the fine-grained
network. Both sub-nets share the same initial BILSTM layer,
as depicted in Fig. 2b.

Custom I3D network: We maintain the original design up
until the last receptive field up-sampling layer-block, using
the pre-trained weights on ImageNet [27] and Kinetics [24].
For our hierarchical design modifications, the coarse-grained
and fine-grained sub-networks maintain the same design as the
previous architecture with the difference of the replacement of
BiLSTM with Conv3D layers.

B. Training configurations

The batch size for MPII and J-HMDB was set to 32 samples
per batch, whereas for MHAD to 16. The networks were
trained for 20K iterations for MHAD and J-HMDB and for
38K iterations for the MPII dataset, in a Nvidia Quadro P6000
GPU. The loss minimization is performed using the Adadelta
optimizer. For MPII Cooking, due to the large range of action
segment sizes, we train the networks with video clips of 10
frames, sampled uniformly across the entire sequence. For
MHAD, we only utilized data from only a single viewing
angle. No data augmentation was introduced.

Regarding the learning process, we follow the standard
experimental protocol described in the corresponding baseline
dataset papers and report, for the case of multiple splits, the
average accuracy across all splits.

V. EXPERIMENTAL RESULTS

Our experiments are organized as follows. Initially, we
compare the hierarchical variants of the custom and the
I3D-centered action recognition architectures with their non-
hierarchical counterparts in terms of recognition accuracy and
learning performance. Subsequently, we assess qualitatively
the contribution of the new formulation using visualizations
of the learned feature mapping at different training stages of
the two sub-networks in the proposed hierarchical architecture
design. Finally, we explore different fusion schemes for the
two action granularity modeling sub-nets, and assess the
corresponding DNN performance.

A. Accuracy, label complexity, deep architecture evaluation

The first set of experiments aims at assessing the impact of
adopting a hierarchical design on a deep architecture for action
recognition. For this purpose we compare existing one-level
granularity action classification networks with variants that
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Fig. 3: (a) Training and validation accuracy change for the
hierarchical action classification deep architecture for the
MHAD dataset, (b) Training and validation accuracy change
between the hierarchical and non-hierarchical architectures.

exploit the proposed two-level granularity hierarchy. Table II
presents the test accuracy scores. The input source for both
architectures are raw RGB frame sequences, which for the
BiLSTM-based architecture are first passed from the Incep-
tionNetv3 [28] network pre-trained on ImageNet, in order to
be transformed into sequences of frame-wise feature vectors.

We observe that re-formulating our classification task into
a two-stage optimization problem, which initially involves
classifying actions into a set of coarser action categories and
then refining our estimations to a set of fine-grained action
classes, leads to an increase in accuracy in every dataset and
architecture case. Specifically, an improvement in recognition
accuracy in the range of 4 to 6% can be observed for both
DNN architectures, for every dataset case.

Regarding the relation between the learning process of the
two action granularity levels, as can be observed in Fig. 3a for
the case of MHAD, the learning rate of the two granularity
levels is simultaneous with similar gradation. The small margin
between the performance of the two sub-networks during
learning suggests that each refinement, at each epoch for the
coarse-grained action representation, has a positive effect on
the fine-grained representation learning as well, indicating the
contribution of the coarse-grained representation. If this was
not the case, we would observe higher performance margins
and slower learning rates for the fine-grained learning problem.
This would be indicative that the coarse-grained representation
has no or little contribution, and the model struggles to learn

X g
e,

@
o’e

-
%

Fig. 4: Scatter-plots of the first two PCA components for the last
BiLSTM layer of the coarse-grained action classification sub-network
of the baseline hierarchical DNN architecture. First row plots refer to
a training accuracy of 75% for the coarser action recognition sub-net
and a 61% for the finer action recognition sub-net. Second row plots
refer to a training accuracy of 84.2% for the coarser and a 71.4%
for the finer action recognition sub-net.

meaningful representations. Overall, we can observe that the
model generalizes well and does not exhibit under- or over-
fitting behaviours.

Finally, as shown in Fig. 3b, the hierarchical architecture
learns faster compared to the non-hierarchical one, regarding
the first set of training epochs. However, we can observe that
as the number of training epochs increases, the difference
in learning speed between the two directions decreases, and
eventually balances as we approach the limits of the network’s
learning capacity.

B. Visualization of learned representations

In order to have a better understanding of the underlying
representations that each action granularity sub-net learns and
their relation, we visualize the high-dimensional feature space
by mapping it on a 2D plane. Specifically, we employ learned
feature maps of (a) the last FC layer and, (b) the dedicated
BiLSTM layer of each sub-net in the custom baseline DNN
architecture. A standard way to generate such visualizations
is to employ dimensionality reduction techniques, such as
Principal Component Analysis (PCA), or more recently the
t-distributed Stochastic Neighbor Embedding (t-SNE) [29]. In
this work we opted to use PCA on the learned feature maps
for the MHAD dataset. Our selection stems from the small
amount of samples and the fact that the first two components
account for about 85% to 90% of the variation in the entire
dataset. More over, PCA generated better and more easily
distinctive visualizations in the 2-D space compared to t-
SNE, providing a good intuition regarding the clustering of the
samples and the separability of the classes based on the learned
representation. The first visualization aims at validating the
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correct lexical clustering of the action classes. Specifically,
we expect samples belonging to classes that were clustered
together under a specific coarser verb-centered class to be
mapped in near-by locations on the plane. To that end, Fig. 4
shows the positioning and underlying grouping of the dataset
samples in the training set, based on the learned representation
of the coarse-grained action sub-network, for the case of
the BiLSTM layer that is dedicated to this granularity. Left-
wise scatter-plots are coloured based on the corresponding
coarse-grained action labels whereas right-wise scatter-plots
are coloured based on the corresponding fine-grained action
classes. Moreover, row-wise each sub-figure pair depicts the
difference between the generated representation across differ-
ent stages of training. The clustering formations verify the
correct verb-centered lexical grouping of the action labels and
indicates that visualization of learned representations at the
initial training stages can be used to assess and refine the
lexical grouping of the action labels.

To further confirm the contribution of integrating hierarchi-
cal action granularity analysis through lexical descriptions of
action labels, we include a second illustration depicting the
final representations learned from the DNN that leverages this
additional knowledge in its design in relation to the one that
doesn’t. Figure 5 depicts the first two PCA components for
both the hierarchical and non-hierarchical architectures, using
the learned feature representations of the final FC layer of
each architecture. It can be observed that the action hierarchy-
inspired DNN architecture leads to more discriminative fea-
tures, validating the overall accuracy gain.

C. Fusion strategies

We evaluate two different ways to combine the representa-
tions of the two granularities. The first combines the learned
representations at a mid-level phase, concatenating the feature
maps of the same representational level, illustrated in Fig. 2b.
The joint feature maps are generated by concatenating the
learned feature maps of the first FC layers. We should note
that in our design the two layers have the same dimensionality.
The concatenated representation is then forwarded deeper in
the higher layers of the fine-grained sub-network.

Contrary, the second direction utilizes the learned coarse-
grained probability distributions as a feature descriptor. For
this, we combine the coarse-grained probability distributions
(CPD) with mid level representations learned at the lower
layers of fine-grained sub-net. Specifically, we fuse the coarse-
grained probability distributions obtained from Softmax, and
the feature maps obtained from the first FC layer of the
fine-grained branch. The utilization of the learned coarse-
grained probability distributions as a feature set is based on the
assumption that such representation will be more beneficial for
complex action sets, for which a single verb-centered grouping
is not adequate, since such activities combine multiple action
motifs and are usually expressed with more than one verbs in
their label sentences.

In the second fusion scheme, one needs to be careful with
the determination of the dimensionality of the fused feature

Architecture Datasets (mAcc. (Coarse, Fine)%)

Design MHAD J-HMDB MPII Cook
H-BILSTM (82.50, 70.25)% | (45.68, 42.61)% | (60.70, 35.40)%
HFP-BILSTM | (86.35, 65.46)% | (42.41, 39.55)% | (36.84, 28.19)%
H-13D (98.75, 96.38)% | (78.47, 76.10)% | (70.47, 54.30)%
HFP-I3D (91.35, 82.89)% | (67.17, 60.46)% | (60.34, 37.55)%

TABLE III: Accuracy variations due to (a) mid-level feature
fusion (H), (b) coarse-grained probability distribution level to
mid-level fine-grained feature fusion (HFP).

vectors. The dimensionality of the CPD feature vector is
smaller (equal to the coarse-grained class set) compared to that
of the fine-grained mid level FC-generated representation. This
could potentially limit the significance of the coarse-grained
probability distribution set. To alleviate this, we experimentally
found that concatenating the CPD with a feature descriptor that
is 6 times larger, finds a good balance in performance, with
smaller sizes leading to an under-fitting model.

As can be observed in Table III, the mid-level fusion scheme
allows for better exploitation of the learned coarse-grained
action representation. The CPD-centered direction is not able
to reach the performance of the previous fusion scheme, due
to the limited information contained in this 1D coarse-grained
class assignment vector. This fact, combined with the re-
quirement to limit the dimensionality of the integrated vector,
constrains the modeling capacity and leads to performance
degradation as the complexity of the action increases.

VI. CONCLUSIONS

This paper dealt with a new approach for enhancing the
performance of deep learning-based human activity recogni-
tion models by leveraging existing linguistic information on
action labels. Specifically, we proposed a method involving a
verb-centered vocabulary analysis of the label sentences, with
the goal of organizing action classes into groups sharing the
same action-related verb or containing verbs with very similar
semantic content. This method allows for the extraction of
a new action class set based on a generalized action motif,
expressed solely with the action verb, and thus forming a two-
level action hierarchy. Moreover, we introduced design direc-
tions that allow the exploitation of the developed two-level
action tree hierarchy by a HAR deep learning architecture.
The reformulation of the problem into a two-level coarse-to-
fine optimization process enriches the model’s discriminative
power. This observation is backed with extensive quantitative
evaluation on three datasets at various action granularity levels.

However, it is evident that the success of the proposed
strategy is intertwined with the correct identification of the
lexical correlations between the action labels. This requires
more elaborate vocabulary analysis which will generate multi-
level action granularity hierarchies based on the underlying
motion motifs. Given that even a bi-level analysis is capable of
enhancing the learning ability of HAR deep model, additional
work on the lexical analysis of action labels appears to be a
promising research direction.
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(a) Hierarchical DNN architecture

(b) Non-hierarchical DNN architecture

Fig. 5: Scatter-plots from the application of PCA to the feature representations generated by the last fully-connected layer of
the custom BiLSTM-based (a) hierarchical and (b) non-hierarchical architectures applied on the MHAD dataset.
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